Cite This: Org. Lett. XXXX, XXX, XXX–XXX

Letter pubs.acs.org/OrgLett

Synthesis of α -Alkenyl α,β -Unsaturated Ketones via Dehydrogermylation of Oxagermacycles with Regeneration of the Germanium(II) Species

Yohei Minami.[†]® Akihito Konishi.*^{,†,‡}® and Makoto Yasuda^{*,†}®

[†]Department of Applied Chemistry and [‡]Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Supporting Information

ABSTRACT: The synthesis of α -alkenyl α,β -unsaturated ketones using germanium(II) salts is reported. Oxagermacycles derived from α_{β} unsaturated ketones with germanium(II) salts and aldehydes can be transformed into α -alkenyl α , β -unsaturated ketones. Ammonium salts promoted the elimination of Ge(II) species to afford the two classes of α -alkenyl α , β -unsaturated ketones in good yields. The α -alkenyl α , β unsaturated ketones are precursors for multisubstituted heterocycles.

n the field of organic synthesis, multisubstituted α_{β} unsaturated ketones are important building blocks that are successfully employed in the syntheses of bioactive compounds.¹⁻³ The bifunctionality inherent in $\alpha_{,\beta}$ -unsaturated carbonyl and 1,3-diene moieties endows α -alkenyl α , β unsaturated carbonyls with synthetic values that make them capable precursors for highly functionalized organic molecules. The synthesis of α -alkenyl α , β -unsaturated carbonyls has been accomplished via several methods.^{4–8} The synthesis of α -alkenyl α , β -unsaturated carbonyls with strong electron-withdrawing groups,⁹ such as esters¹⁰ and nitriles,¹¹ has been established using a combination of the Morita-Baylis-Hillman and Wittig reactions to construct the diene structure (Scheme 1A). Transition-metal-catalyzed cross-coupling reactions,¹² as well as the direct α -alkenylation of heterocyclic α,β -unsaturated ketones,^{13–17} have attained modest success in the synthesis of cyclic α -alkenyl α , β -unsaturated ketones (Scheme 1B). The α alkenylation of acyclic α_{β} -unsaturated ketones remains undeveloped, however, and this has hampered the flexible and broad-ranging utilization of α -alkenyl α_{β} -unsaturated carbonyls.

Metallacyclic compounds are important intermediates in stoichiometric and/or catalytic carbon–carbon bond forma-tions,^{18,19} metathesis reactions,^{20,21} and polymerizations.²² Oxidative cyclization of low-valent transition metals is one of the well-developed methods for the formation of metallacycles.²³⁻³⁰ A low-valent group of 14 species, each with an oxidation state of +2, are used to perform oxidative cyclization with unsaturated organic molecules to give the metallacycles that are incorporated in this group of 14 metals (along with the oxidation state changed into +4).³¹⁻³⁶ Divalent silicons,³⁷ germaniums, ^{38,39} and tins³⁹ readily react with $\alpha_{,\beta}$ -unsaturated

Scheme 1. Synthesis of α -Alkenyl α,β -Unsaturated Ketones via (A) Combination of the Morita-Baylis-Hillman and Wittig Reactions, (B) Palladium-Catalyzed Cross-Coupling, and (C) Olefination of Oxagermacycles Used in This Work

(A) Morita-Baylis-Hillman reaction followed by bromination and Wittig reaction

carbonyls or 1,3-dienes to afford the corresponding fivemembered metallacycles. However, the high or inert reactivity of divalent silicon and tin salts, respectively, interferes with the synthetic applications of the metallacycles based on these metals. For example, SiCl₂ is a highly reactive intermediate, and

Received: September 30, 2019

SnCl₂ is a bench-stable reductant in organic synthesis. On the other hand, divalent germanium salts with moderate stability and enough reduction capacity can provide the synthetic utility of a low-valent metal. The allylations⁴⁰ or aldol-type reactions⁴¹⁻⁴⁵ of carbonyl compounds have been accomplished using low-valent germanium.⁴⁶ Recently, we reported the diastereoselective synthesis of oxagermacycles via the aldol reactions of aldehydes with C,O-chelated germyl enolates derived from Ge(II) salts and α_{β} -unsaturated ketones. The oxagermacycles were transformed into triols bearing four stereocenters with perfect disatereoselectivity.⁴⁷ Further transformation of the oxagermacycles is a promising strategy that could be used to construct highly functionalized molecules in short steps. Herein, we report the synthesis of α -alkenyl α_{β} unsaturated ketones via dehydrogermylation of oxagermacycles (Scheme 1C). The addition of ammonium salts promoted the initial dehydrogermylation and the subsequent elimination of a Ge–O moiety. The obtained α -alkenyl α_{β} -unsaturated ketones are applicable as a synthon for functionalized heterocyclic compounds.

In an initial study, in order to activate a germanium center of **3** via coordination of a ligand, tetrabutylammonium salts were utilized. The treatment of oxagermacycle **3aa**, which is derived from the Ge(II)-mediated aldol reaction⁴⁷ of 4-methyl-3-penten-2-one **1a** and 3-phenylpropanal **2a**, with Bu₄NBr gave the α -alkenyl α , β -unsaturated ketones **4aa/5aa** in 76% yield (90:10 selectivity) (entry 1 in Table 1). Those results prompted

Table 1. Optimization of the Reaction Conditions

	* Bn H GeCl ₂ -dioxane		5 eq. base 80 °C, time Bn	+ O Bn
1a	2a	3aa	4aa	5aa
entry	base	time (h)	yield (%) ^b	4aa/5aa ^c
1	$Bu_4N^+Br^-$	24	76	90:10
2	$Bu_4N^+Cl^-$	24	69	91:9
3	$Bu_4N^+I^-$	24	54	81:19
4	Bu ₄ N ⁺ HSO ₃ ⁻	24	58	88:12
5	KOAc	24	29	>99:1
6	Cs_2CO_3	24	0	-
7	Et ₃ N	24	0	-
8	pyridine	24	0	-
9 ^a	$Bu_4N^+Br^-$	1	74 (48)	95:5
10 ^d	$Bu_4N^+Br^-$	24	69	86:14

^{*a*}Reaction conditions: **1a** (0.5 mmol), **2a** (0.5 mmol), GeCl₂-dioxane (0.6 mmol), base (2.5 mmol), MeCN (2 mL), 80 °C. ^{*b*}Yields were determined by ¹H NMR measurement using 1,1,2,2-tetrachloroethane as an internal standard. Isolated yield is in parentheses. ^{*c*}The ratio of **4aa/5aa** was determined by ¹H NMR measurement of the crude reaction mixture. ^{*d*}GeBr₂-dioxane was used instead of GeCl₂-dioxane.

us to further optimize the reaction conditions for the synthesis of diene **4**. Bu₄NCl, Bu₄NI, Bu₄NHSO₃, and KOAc were also productive, but the yields of the product were insufficient (entries 2-5). The size of halide was crucial, either smaller or larger than bromide is not suitable (entries 2 and 3). Other typical bases such as Cs₂CO₃, Et₃N, and pyridine promoted the dissociation of **3aa** to **1a** and **2a** (entries 6–8). An improvement in the selectivity of **4aa/5aa** was afforded when the reaction time was shortened from 24 to 1 h (entry 9). Instead of GeCl₂-dioxane, GeBr₂-dioxane worked to give slightly lower yield (entry 10).

With the optimized conditions in hand, a variety of α , β unsaturated ketones and aliphatic aldehydes was applied in the reaction to give the corresponding α -alkenyl α , β -unsaturated ketones **4** (Scheme 2). The reaction with the linear aldehydes

Scheme 2. Substrate Scope of α,β -Unsaturated Ketones and Aliphatic Aldehydes^{*a*}

^{*a*}Yields were determined via ¹H NMR measurement with 1,1,2,2tetrachloroethane as an internal standard. Isolated yields are in parentheses. Due to the adsorption of the products on silica gel, the isolated yields decreased. Ratios of 4/5 for the E/Z mixtures were determined by ¹H NMR measurement of the crude reaction mixture.

2a-2d selectively afforded the products **4aa**-4ad with an internal butadiene framework in good yields. The employment of an α -branched aldehyde **2e** also gave the diene **4ae** as the main product, but the generation of **5ae** with a terminal butadiene framework was slightly increased. Several unsaturated ketones (**1b**-**1f**) were applicable to the reaction. Products **4ba**-**4fa** were generated as E/Z mixtures with respect to the carbon-carbon double bond adjacent to the carbonyl group. Presumably, the observed ratios depend on the thermodynamic stability between the two isomers. A perfect *E*-selectivity for the carbon-carbon double bond derived from aldehyde was found in **4**. This result suggests that the E2-type mechanism involves the formation of the carbon-carbon double bond.

Next, we examined the reaction of 1a with aromatic aldehydes 2f-2m (Scheme 3). For aromatic aldehydes, the obtained butadienes 5af-5am proved to be the terminal versions as E/Z mixtures. In these cases, prolonged reaction times resulted in sufficient yields. The benzaldehyde derivatives bearing electron-donating (2g) and electron-withdrawing (2h, 2i, 2j) groups and

"Yields were determined by ¹H NMR measurement using 1,1,2,2tetrachloroethane as an internal standard. Isolated yields are in parentheses. Due to the adsorption of the products on silica gel, the isolated yields decreased. The E/Z ratio was determined by ¹H NMR measurement of the crude reaction mixture.

Organic Letters

2-naphthaldehyde (2k) were applicable to the reaction, but 2j possessed a strong electron-withdrawing nitro group that suppressed the yield. The ratio between *E*- and *Z*-isomers remained relatively constant among products 5af-5ak. Heteroaromatic aldehydes (2l, 2m) were utilized in this reaction. For the diene 5al from 2-thiophenecarboxaldehyde 2l, the ratio of the *E*-isomer was slightly increased presumably because of the electrostatic repulsion between the carbonyl group and the sulfur atom.

The reaction mixture was monitored by ¹H NMR spectroscopy to investigate the reaction mechanism. The NMR measurement of the reaction of **3ai** with Bu_4NBr in acetonitrile- d_3 showed that a singlet signal appeared at 5.74 ppm after being mixed for 0.5 h at 80 °C (Scheme 4A). The

^{*a*}Conditions: (A) ¹H NMR spectra (400 MHz, acetonitrile- d_3) showing the progress of the transformation of **3ai** to **5ai** via **6ai** at 80 °C by Bu₄NBr; (B) transformation of **3ai** to **5ai** via **6ai** and protonation of the reaction intermediate; (C) transformation of **3aa** to **4aa** via **6aa**; and (D) determination of the germanium species after the completion of the reaction.

observed singlet signal should be assigned to the benzylic proton. Quenching the reaction in 30 min with saturated aqueous NH_4Cl gave the benzylic alcohol 7ai in 59% yield, which strongly suggests that the observed singlet signals at 5.74 ppm should be from an intermediate, 6ai (Scheme 4B). Actually, the ESI-MS measurement directly detected a molecular ion for 6ai in the reaction mixture (Figures S4 and S5). The isolated alcohol 7ai was quantitatively transformed into the diene 5ai in

the presence of both a Lewis acid and Bu₄NBr (entry 1 in Table S1). The absence of either Bu₄NBr or Ge(II) salts gave none of product **5ai** (entries 2 and 3 in Table S1). Because the combination of either GeCl₄ or BF₃-Et₂O with Bu₄NBr also succeeded (entries 4 and 5, respectively), the utility of Lewis acids and Bu₄NBr was expected to promote the elimination of the Ge–O moiety. We also attempted to observe the germanium alkoxide intermediate **6aa** or trap the alcohol **7aa** derived from the aliphatic aldehyde **2a**, but the fast olefination of **3aa** into **4aa** under the same conditions hampered these trials (Scheme 4C). We postulated that the alkoxygermanium intermediate **6** was formed as a key intermediate in the initial step of the reaction, which was followed by the elimination of the Ge–O moiety to give α -alkenyl α,β -unsaturated ketones **4** and **5**.

After the completion of the reaction, we examined the structure of the germanium species. When tetraphenylphosphonium salt was utilized instead of Bu₄NBr, the highly crystalline nature of the Ph₄P⁺ ions facilitated the isolation of germanium salts after the reaction. The treatment of the oxagermacycle 3ai with an equimolar amount of tetraphenylphosphonium chloride quantitatively gave 5ai with $Ph_4P^+[GeCl_3]^-$ 8. The structure of $Ph_4P^+[GeCl_3]^-$ 8 was confirmed by X-ray crystallographic analysis (Scheme 4D). The regeneration of the germanium(II) species suggested that the intermediate 6ai was formed not via direct β -hydride elimination, but rather by the base-promoted 1,2-elimination of the germanium moiety. The base-promoted 1,2-elimination can be found in the reaction of a $\beta\text{-stannyl}$ ketone.⁴⁸ Although regeneration of the germanium(II) species might be unusual, the bistability of the two oxidation states of germanium (Ge(II)/ Ge(IV)) enabled the dissociation of the Ge-C bond. The stepwise change in the oxidative state of the germanium center may have led to a catalytic reaction. The regenerated germanium(II) species 8 did not show catalytic activity due to the formation of an inert tricoordinated germanate(II) complex. Further investigation of the catalytic condition of Ge(II) salt is ongoing in our group.

Although details of the reaction mechanism remain uncertain, we believe that Scheme 5 offers a plausible mechanism for the transformation of the oxagermacycle 3 into dienes. Initially, the treatment of an oxagermacycle intermediate 3 with Bu₄NBr

Scheme 5. Plausible Reaction Mechanism

DOI: 10.1021/acs.orglett.9b03454 Org. Lett. XXXX, XXX, XXX–XXX triggered the deprotonation of an α -proton of the carbonyl group. The generated enolate 9 cleaved the Ge–C bond to afford the alkoxygermanium species 6 in situ. For the aliphatic aldehydes (path A), the deprotonation at the β position of 6 led to elimination of the Ge–O moiety of 10 to primarily give diene 4. When the main product was 4 rather than 5, this suggested that the 1,2-elimination of the Ge–O moiety would proceed via an E2-type mechanism. In contrast, for the aromatic aldehyde (path B), the 1,4-elimination of the Ge–O moiety of 11 selectively gave the *E*-isomer of 5 as a kinetically controlled product. A gradual isomerization was observed to afford an E/Z mixture (see Figure S3). Because the 1,4-elimination was observed by NMR spectroscopy.

The obtained α -alkenyl α , β -unsaturated ketones were applied to the synthesis of 1,5-diphenyl-3-methylpyrazole derivatives **12** and **13** (Scheme 6). The analogues of 1,5-diphenyl-3-

Scheme 6. Synthesis of 1,5-Diphenyl-3-methylpyrazole Derivatives

methylpyrazole have shown potential for use as HIV-1 reverse transcriptase inhibitors.^{49,50} The treatment of **4da** with phenylhydrazine hydrochloride afforded the 1,5-diphenyl-3-methylpyrazole derivative **12** in 61% yield.⁵¹ The 1,5-diphenyl-3-methylpyrazole derivative **13** was synthesized from **5af** via the treatment of phenylhydrazine followed by oxidation with DDQ.⁵² The formation of **13** was confirmed by X-ray crystallographic analysis.

In conclusion, we have developed a method for the synthesis of α -alkenyl α,β -unsaturated ketones from α,β -unsaturated ketones with aldehydes using germanium(II) salts. Highly substituted α_{β} -unsaturated ketones were successfully synthesized. Various aldehydes, such as aromatic, heteroaromatic, and alkyl versions, are applicable to the reaction. The internal butadienes were obtained from aliphatic aldehydes. On the other hand, the terminal butadienes were formed from aromatic aldehydes. From a mechanistic perspective, tetrabutylammonium bromide worked as a base, which promoted dehydrogermylation to give a germanium alkoxide intermediate with the regeneration of divalent germanium species. The intermediate was transformed to α -alkenyl α_{β} -unsaturated ketones in the presence of germanium salts and tetrabutylammonium salts. The internal dienes 4 and the terminal dienes 5 were formed via the 1,2-elimination and the 1,4-elimination of the Ge-O moiety, respectively. The 2-acyl-1,3-butadiene derivatives 4 and 5 could be transformed into highly substituted pyrazoles.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b03454.

Experimental procedures, characterization of products, and spectroscopic data (PDF)

Accession Codes

CCDC 1953429–1953430 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: a-koni@chem.eng.osaka-u.ac.jp. *E-mail: yasuda@chem.eng.osaka-u.ac.jp.

ORCID

Yohei Minami: 0000-0001-5246-418X Akihito Konishi: 0000-0002-3438-786X Makoto Yasuda: 0000-0002-6618-2893

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the JSPS KAKENHI (Grant Nos. JP15H05848 in Middle Molecular Strategy, JP18H01977, JP18K19079, and JP18K14201). M.Y. acknowledges support from the JSPS Fellowship for Young Scientists (19J10386). A.K. would like to thank the Iketani Science and Technology Foundation for their financial support. We thank Dr. N. Kanehisa (Osaka University) for valuable advice regarding X-ray crystallography. Thanks are due to the Analytical Instrumentation Facility, Graduate School of Engineering, Osaka University.

REFERENCES

(1) Desimoni, G.; Faita, G.; Quadrelli, P. Forty Years after "Heterodiene Syntheses with α , β -Unsaturated Carbonyl Compounds": Enantioselective Syntheses of 3,4-Dihydropyran Derivatives. *Chem. Rev.* **2018**, *118*, 2080.

(2) Nájera, C.; Sydnes, L. K.; Yus, M. Conjugated Ynones in Organic Synthesis. *Chem. Rev.* **2019**, *119*, 11110.

(3) Zheng, K.; Liu, X.; Feng, X. Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. *Chem. Rev.* **2018**, *118*, 7586.

(4) Wei, Y.; Shi, M. Recent Advances in Organocatalytic Asymmetric Morita–Baylis–Hillman/Aza-Morita–Baylis–Hillman Reactions. *Chem. Rev.* **2013**, *113*, 6659.

(5) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Recent Contributions from the Baylis–Hillman Reaction to Organic Chemistry. *Chem. Rev.* **2010**, *110*, 5447.

(6) Singh, V.; Batra, S. Advances in the Baylis-Hillman Reaction-Assisted Synthesis of Cyclic Frameworks. *Tetrahedron* 2008, 64, 4511.
(7) Roy, D.; Tharra, P.; Baire, B. Intercepted Meyer-Schuster

Rearrangements in Organic Synthesis. Asian J. Org. Chem. 2018, 7, 1015.

(8) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Indium Chloride Catalyzed Alkylative Rearrangement of Propargylic Acetates Using Alkyl Chlorides, Alcohols, and Acetates: Facile Synthesis of α -Alkyl- α , β -Unsaturated Carbonyl Compounds. Org. Lett. **2014**, *16*, 1176. (9) Palmelund, A.; Myers, E. L.; Tai, L. R.; Tisserand, S.; Butts, C. P.; Aggarwal, V. K. A New Manifold for the Morita Reaction: Diene Synthesis from Simple Aldehydes and Acrylates/Acrylonitrile Mediated by Phosphines. *Chem. Commun.* **2007**, 4128.

(10) Crist, R. M.; Reddy, P. V.; Borhan, B. Synthesis of Isomeric 1,4-[¹³C]₂-Labeled 2-Ethoxycarbonyl-1,4-Diphenylbutadienes. *Tetrahedron Lett.* **2001**, *42*, 619.

(11) Muthiah, C.; Kumar, K. S.; Vittal, J. J.; Kumara Swamy, K. C. New Allylphosphonates Derived from (OCH₂CMe₂CH₂O)PCl and Baylis-Hillman Adducts - Stereochemistry and Utility. *Synlett* **2002**, 2002, 1787.

(12) Negishi, E. Novel and Selective α -Substitution of Ketones and Other Carbonyl Compounds Based on Pd-Catalyzed Cross Coupling of α , β -Unsaturated Carbonyl Derivatives Containing α -Halogen or α -Metal Groups. J. Organomet. Chem. **1999**, *576*, 179.

(13) Moon, Y.; Kwon, D.; Hong, S. Palladium-Catalyzed Dehydrogenation/Oxidative Cross-Coupling Sequence of β -Heteroatom-Substituted Ketones. *Angew. Chem., Int. Ed.* **2012**, *51*, 11333.

(14) Kim, D.; Hong, S. Palladium(II)-Catalyzed Direct Intermolecular Alkenylation of Chromones. *Org. Lett.* **2011**, *13*, 4466.

(15) Kim, Y. W.; Niphakis, M. J.; Georg, G. I. Copper-Assisted Palladium(II)-Catalyzed Direct Arylation of Cyclic Enaminones with Arylboronic Acids. J. Org. Chem. 2012, 77, 9496.

(16) Cheng, D.; Gallagher, T. Direct and Regioselective C–H Alkenylation of Tetrahydropyrido[1,2-*a*]Pyrimidines. *Org. Lett.* **2009**, *11*, 2639.

(17) Li, M.; Li, L.; Ge, H. Direct C-3-Alkenylation of Quinolones via Palladium-Catalyzed C–H Functionalization. *Adv. Synth. Catal.* **2010**, 352, 2445.

(18) Negishi, E. A Quarter of a Century of Explorations in Organozirconium Chemistry. *Dalton Trans.* **2005**, 827.

(19) Ma, W.; Yu, C.; Chen, T.; Xu, L.; Zhang, W.-X.; Xi, Z. Metallacyclopentadienes Synthesis, Structure and Reactivity. *Chem. Soc. Rev.* 2017, 46, 1160.

(20) Trnka, T. M.; Grubbs, R. H. The Development of L_2X_2 Ru = CHR Olefin Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 2001, 34, 18.

(21) Schrock, R. R. Multiple Metal–Carbon Bonds for Catalytic Metathesis Reactions (Nobel Lecture). *Angew. Chem., Int. Ed.* **2006**, *45*, 3748.

(22) Choi, S.-K.; Gal, Y.-S.; Jin, S.-H.; Kim, H. K. Poly(1,6-Heptadiyne)-Based Materials by Metathesis Polymerization. *Chem. Rev.* **2000**, *100*, 1645.

(23) Montgomery, J. Nickel-Catalyzed Cyclizations, Couplings, and Cycloadditions Involving Three Reactive Components. *Acc. Chem. Res.* **2000**, *33*, 467.

(24) Jang, H.-Y.; Krische, M. J. Catalytic C-C Bond Formation via Capture of Hydrogenation Intermediates. *Acc. Chem. Res.* 2004, *37*, 653.

(25) Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Non-Metathesis Ruthenium-Catalyzed C-C Bond Formation. *Chem. Rev.* 2001, 101, 2067.

(26) Fairlamb, I. J. S. Asymmetric Cycloisomerization of 1,6- and 1,7-Enynes by Transition-Metal Catalysts. *Angew. Chem., Int. Ed.* **2004**, *43*, 1048.

(27) Aubert, C.; Buisine, O.; Malacria, M. The Behavior of 1,*n*-Enynes in the Presence of Transition Metals. *Chem. Rev.* **2002**, *102*, 813.

(28) Kurahashi, T.; Matsubara, S. Nickel-Catalyzed Reactions Directed toward the Formation of Heterocycles. *Acc. Chem. Res.* **2015**, *48*, 1703.

(29) Hoshimoto, Y.; Ohashi, M.; Ogoshi, S. Catalytic Transformation of Aldehydes with Nickel Complexes through η^2 Coordination and Oxidative Cyclization. *Acc. Chem. Res.* **2015**, *48*, 1746.

(30) Jeganmohan, M.; Cheng, C.-H. Cobalt- and Nickel-Catalyzed Regio- and Stereoselective Reductive Coupling of Alkynes, Allenes, and Alkenes with Alkenes. *Chem. - Eur. J.* **2008**, *14*, 10876.

(31) Mazières, S.; Lavayssière, H.; Dousse, G.; Satge, J. Physical-Chemical Studies and Reactivity of New Divalent Germanium Species. *Inorg. Chim. Acta* **1996**, 252, 25. (32) Mizuhata, Y.; Sasamori, T.; Tokitoh, N. Stable Heavier Carbene Analogues. *Chem. Rev.* **2009**, *109*, 3479.

(33) Ghadwal, R. S.; Azhakar, R.; Roesky, H. W. Dichlorosilylene: A High Temperature Transient Species to an Indispensable Building Block. *Acc. Chem. Res.* **2013**, *46*, 444.

(34) Yao, S.; van Wüllen, C.; Sun, X.; Driess, M. Dichotomic Reactivity of a Stable Silylene toward Terminal Alkynes: Facile C-H Bond Insertion versus Autocatalytic Formation of Silacycloprop-3-Ene. *Angew. Chem., Int. Ed.* **2008**, *47*, 3250.

(35) Lips, F.; Mansikkamäki, A.; Fettinger, J. C.; Tuononen, H. M.; Power, P. P. Reactions of Alkenes and Alkynes with an Acyclic Silylene and Heavier Tetrylenes under Ambient Conditions. *Organometallics* **2014**, *33*, 6253.

(36) Tokitoh, N.; Okazaki, R. Recent Topics in the Chemistry of Heavier Congeners of Carbenes. *Coord. Chem. Rev.* **2000**, *210*, 251.

(37) Takeda, N.; Tokitoh, N. A Bulky Silylene Generated under Mild Conditions: Its Application to the Synthesis of Organosilicon Compounds. *Synlett* **2007**, 2007, 2483.

(38) Rupar, P. A.; Staroverov, V. N.; Baines, K. M. Reactivity Studies of N-Heterocyclic Carbene Complexes of Germanium(II). *Organometallics* **2010**, *29*, 4871.

(39) Neumann, W. P. Germylenes and Stannylenes. *Chem. Rev.* 1991, 91, 311.

(40) Hashimoto, Y.; Kagoshima, H.; Saigo, K. Allylation of Carbonyl Compounds Mediated Germanium(II) Iodide. *Tetrahedron Lett.* **1994**, 35, 4805.

(41) Kagoshima, H.; Hashimoto, Y.; Oguro, D.; Saigo, K. An Activated Germanium Metal-Promoted, Highly Diastereoselective Reformatsky Reaction. *J. Org. Chem.* **1998**, *63*, 691.

(42) Yasuda, M.; Tanaka, S.; Baba, A. Reductive Cross-Aldol Reaction Using Bromoaldehyde and an Aldehyde Mediated by Germanium(II): One-Pot, Large-Scale Protocol. *Org. Lett.* **2005**, *7*, 1845.

(43) Tanaka, S.; Yasuda, M.; Baba, A. Germanium(II)-Mediated Reductive Cross-Aldol Reaction of Aldehydes: Synthesis of Aldols with Diastereocontrolled Quaternary Carbon Centers. *Synlett* **2007**, 2007, 1720.

(44) Tanaka, S.; Tagashira, N.; Chiba, K.; Yasuda, M.; Baba, A. Germanium(II)-Mediated Reductive Mannich-Type Reaction of α -Bromoketones to N-Alkylimines. *Angew. Chem., Int. Ed.* **2008**, *47*, 6620.

(45) Tanaka, S.; Tagashira, N.; Chiba, K.; Yasuda, M.; Baba, A. Germanium(II)-Mediated Reductive Cross-Aldol Reaction of Bromoaldehydes with Aldehydes: NMR Studies and Ab Initio Calculations. *J. Org. Chem.* **2008**, *73*, 6312.

(46) Konishi, A.; Minami, Y.; Hosoi, T.; Chiba, K.; Yasuda, M. First Isolation and Characterization of the Highly Coordinated Group 14 Enolates: Effects of the Coordination Controls on the Geometry and Tautomerization of Germyl Enolates. *Chem. - Eur. J.* **2016**, *22*, 12688.

(47) Minami, Y.; Konishi, A.; Yasuda, M. Stereocontrolled Synthesis of Triols Containing Four Asymmetric Centers: Application of *C*,*O*-Chelated Germyl Enolates to a Diastereoselective Aldol Reaction. *Org. Lett.* **2018**, *20*, 4148.

(48) Ryu, I.; Murai, S.; Sonoda, N. A Novel Synthesis of β -Trichlorostannyl Ketones from Siloxycyclopropanes and Their Facile Dehydrostannation Affording 2-Methylene Ketones. *J. Org. Chem.* **1986**, *51*, 2389.

(49) Genin, M. J.; Biles, C.; Keiser, B. J.; Poppe, S. M.; Swaney, S. M.; Tarpley, W. G.; Yagi, Y.; Romero, D. L. Novel 1,5-Diphenylpyrazole Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors with Enhanced Activity versus the Delavirdine-Resistant P236L Mutant: Lead Identification and SAR of 3- and 4-Substituted Derivatives. *J. Med. Chem.* **2000**, *43*, 1034.

(50) Penning, T. D.; et al. Synthesis and Biological Evaluation of the 1,5-Diarylpyrazole Class of Cyclooxygenase-2 Inhibitors: Identification of 4-[5-(4-Methylphenyl)-3- (Trifluoromethyl)-1H-Pyrazol-1-Yl]-Benzenesulfonamide SC-58635, Celecoxib. *J. Med. Chem.* **1997**, *40*, 1347.

(51) Kim, S. H.; Lim, J. W.; Yu, J.; Kim, J. N. Regioselective Synthesis of 1,3,4,5-Tetrasubstituted Pyrazoles from α -Alkenyl- α , β -Enones

Organic Letters

Derived from Morita-Baylis-Hillman Adducts. Bull. Korean Chem. Soc.

2013, 34, 2915.
(52) Desai, V. G.; Satardekar, P. C.; Polo, S.; Dhumaskar, K. Regioselective Synthesis of 1,3,5-Trisubstituted Pyrazoles. Synth. Commun. 2012, 42, 836.