

Check fo updates

WILEY-VCH

Chemo-selective C-S/S-S Formation between Diaryl Disulfides and Tetraalkylthiuram Disulfides

Kang Peng,^[a] Hui Zhu,^[a] Xing Liu,^[a] Han-Ying Peng,^[a] Jin-Quan Chen,^[a] and Zhi-Bing Dong*^{[a],[b],[c]}

Abstract: An efficient C-S/S-S formation for the chemo-selective synthesis of aryl dithiocarbamate (C-S formation) and aryl dialkylcarbamo(dithioperoxo)thioate (S-S formation) was studied. The chemo-selectivity could be controlled by modulating the reaction temperature, base, and catalyst. The transformation features simple performance, easily available starting material, high selectivity and easy performance, showing its practical synthetic value for the preparation of some potential biologically or pharmaceutically active compounds.

Introduction

Organosulfur compounds are widely used in medicines, pesticides and biological study.^[1] Among these, dithiocarbamate derivatives have become the focus of research interest due to their significant biological activity.^[2] Many compounds containing this skeleton have been reported to be biologically active, such as monoacylglycerol lipase inhibitors (**a**, **c**),^[3] leukemic cells inhibitors,^[4] thymocytes inhibitors,^[5] antitumor agents,^[6] and antibacterial agents (Figure 1).^[7] In addition, they are an important class of versatile synthetic intermediates in organic synthesis,^[8] they have also been used as linkers in solid-phase organic synthesis,^[9] as protection groups in peptide synthesis,^[11] Moreover, dialkylcarbamo(dithioperoxo)thioates are reported to show anti-filarial activities (**b**) (Figure 1).^[12]

Figure 1. Representative organic dithiocarbamates with biological activity.

So far, a variety of methods are successfully employed for the synthesis of aryl dithiocarbamates, while there are very few

[a]	School of Chemistry and Environmental Engineering, Wuhan
	Institute of Technology, Wuhan 430205, China.
[b]	Key Laboratory of Green Chemical Process, Ministry of Education,
	Wuhan Institute of Technology, Wuhan 430205, China
[c]	Ministry-of-Education Key Laboratory for the Synthesis and
	Application of Organic Functional Molecules, Hubei University,
	Wuhan 430062, China.

Email: dzb04982@wit.edu.cn
https://cee.wit.edu.cn/info/1052/1538.htm

reports synthesis for the of dialkylcarbamo(dithioperoxo)thioate.^[13] Typical approaches to aryl dithiocarbamates involve the coupling reaction of one-pot three-component reactions using amines and carbon disulfide with electrophiles, including alkyl^[14] or aryl halides.^[15] arenediazonium fluoroborates,^[16] N-(phenylthio)phthalimide^[17] and arylboronic acids.^[18] Although remarkable progress has been made, these methods are still limited by tedious operation steps, flammable and explosive substrates or reagents, and high substrate molar ratios. Therefore, it would be still attractive to explore more effective and mild methods, especially the ones starting from easily available materials and inexpensive catalysts. As part of our longstanding interest in developing organosulfur chemistry and exploring their relevant applications,^[19] we report here a protocol for the selective synthesis of dithiocarbamates (C-S formation) and aryl dialkylcarbamo(dithioperoxo)thioates (S-S formation) starting from diaryl disulfides and tetraalkylthiuram disulfides (TATD). The synthesis selectivity could be controlled by modulating the reaction temperature, base, and catalyst. It is worthy to note that the efficiency and easy performance make the protocol attractive for the selective preparation of S-arylated or S-S-arylated dithiocarbamates.

Results and Discussion

Diphenyl disulfide (1a) and tetramethylthiuram disulfide (TMTD, 2a) were selected as the starting materials to explore the possible C-S/S-S formation, the isolated yields were calculated based on PhS group since both substrates are symmetrical disulfides. Gratifyingly, the desired product aryl dithiocarbamates (3a) was obtained in 42% yield when the reaction was conducted in the presence of K₂CO₃ in DMF at 120 °C (Table 1, entry 1). To optimize the synthesis conditions of S-aryl dithiocarbamate (C-S formation), the effect of bases were evaluated (entries 2-4), and K₂CO₃ was proved to be the optimal. The examination of solvents (entries 1, 5-7) and reaction temperature (entries 1, 8-10) showed that N, Ndimethylformamide (DMF) was the best solvent, 120 °C was the optimal reaction temperature. By increasing the base loading did not promote the yield (entry 11-12), and the addition of a catalyst showed a slight yield increase (entry 13). Encouraged by these results, several transition metal catalysts were surveyed (entries 14-26), and the best one was Cul (10 mol% yields in 65%). Thus, the optimized reaction conditions were summarized as follows, diphenyl disulfide (1a, 1 mmol) and tetramethylthiuram disulfide (2a, 1.2 mmol), Cul (10 mol %) and K₂CO₃ (2.0 eq.) in DMF (2 mL) at 120 °C for 24 hours (entry 25).

Table 1. Optimization of reaction conditions for the synthesis of $3a^{[a]}$

Entry	Catalyst	Base	Solvent	Temp[°C]	Yield
	(mol%)				(%) ^[b]
1	-	K ₂ CO ₃	DMF	120	42
2	-	Cs ₂ CO ₃	DMF	120	31
3	-	Na ₂ CO ₃	DMF	120	27
4	-	t-BuOK	DMF	120	36
5	-	K ₂ CO ₃	DMAc	120	Less
6	-	K ₂ CO ₃	DMSO	120	31
7	-	K ₂ CO ₃	Toluene	120	N.R.
8	-	K ₂ CO ₃	DMF	80	24
9	-	K ₂ CO ₃	DMF	100	35
10	-	K ₂ CO ₃	DMF	130	41
11 ^[c]	-	K ₂ CO ₃	DMF	120	40
12 ^[d]	-	K ₂ CO ₃	DMF	120	41
13	PdCl ₂ (20)	K ₂ CO ₃	DMF	120	48
14	PdBr ₂ (20)	K ₂ CO ₃	DMF	120	40
15	NiCl ₂ (20)	K ₂ CO ₃	DMF	120	29
16	CuCl ₂ (20)	K ₂ CO ₃	DMF	120	27
17	Cu ₂ O(20)	K ₂ CO ₃	DMF	120	52
18	Cul(20)	K ₂ CO ₃	DMF	120	64
19	CuBr(20)	K ₂ CO ₃	DMF	120	53
20	PdCl ₂ (10)	K ₂ CO ₃	DMF	120	42
21	NiBr ₂ (10)	K ₂ CO ₃	DMF	120	53
22	CoBr ₂ (10)	K ₂ CO ₃	DMF	120	54
23	Pd(OAc) ₂ (10)	K ₂ CO ₃	DMF	120	37
24	Cu ₂ O(10)	K ₂ CO ₃	DMF	120	39
25	Cul(10)	K ₂ CO ₃	DMF	120	65
26	CuBr(10)	K ₂ CO ₃	DMF	120	42

[a] Reaction conditions: **1a** (1 mmol), **2a** (1.2 mmol), catalyst (mol%), base (2.0 equiv), solvent (2 mL), stirred for 24 hours. [b] Isolated yields based on PhS group. [c] Base (3.0 equiv). [d] Base (4.0 equiv).

With the optimal reaction conditions in hand, the substrate scope was investigated. As shown in Table 2, a variety of substituted diphenyl disulfides reacted with tetraalkylthiuram disulfides (2, TATD), giving the desired products with moderate to good yields (Table 2, entries 1-8). Electron-donating groups attached to the aryl ring of diphenyl disulfides promoted the reaction slightly (entry 2). Electron-withdrawing groups deactivated the diphenyl disulfides, providing the products in lower yields (entries 3-4). In addition, tetraethylthiuram disulfide (2b, TETD) was also suitable for C-S formation under standard reaction conditions. The corresponding products were obtained in slightly lower yields due to the possible steric hindrance from the alkyl group of the tetraethylthiuram disulfides (entries 5-8). The yields of aryl dithiocarbamates obtained by using this protocol are lower than our previous ones,[18d-18h] while it might offer an alternative way for the construction of these important compounds.

Table 2. Substrate scope for the synthesis of aryl dithiocarbamates 3^[a]

3c: 52%

1b

1c

3

4

5

7

8

1d

2:

[a] Reaction conditions: **1a** (1 mmol), **2a** (1.2 mmol), Cul (10 mmol%), K_2CO_3 (2.0 equiv), DMF (2 mL), stirred at 120°C for 24 hours. [b] Isolated yields based on PhS group.

To our delight, when the temperature dropped to 60 °C, the S-S bond formation product dimethylcarbamo(dithioperoxo)thioate (4a) was produced (Table 3, entry 1) under the above standard reaction conditions, and the yield could be increased to 40% when the model reaction was conducted at room temperature (entry 2). Several different catalysts were subsequently tried, and no significant yields increase were found (entries 3-6). With no addition of catalyst or base, the yield dropped slightly (entries 7-8), which indicated that the base or catalyst was not crucial for the reaction. The solvents screening showed that DMF afforded the best result (entries 9-15). Lastly, the substrate ratio of 1a to 2a was examined (entries 5, 16-17), and it turned out that the optimal ratio (1a:2a) was 1:1.2 (entry 16). The optimal reaction the synthesis conditions for of arvl dialkylcarbamo(dithioperoxo)thioate are summarized in entry 16.

Table 3. Optimization of reaction conditions for the synthesis of 4a^[a]

Entra	Catalyzat	Basa	Colvert	Temp[90]	Viold
Entry	Catalyst	Dase	Solvent	temp[C]	(%)[b]
1	Cul	K-CO-	DME	60	21
-	Cui	R2003		00	31
2	Cul	K ₂ CO ₃	DMF	r. t.	40
3	PdCl ₂	K ₂ CO ₃	DMF	r. t.	52
4	Cu(OAc) ₂	K ₂ CO ₃	DMF	r. t.	51
5	NiBr ₂	K ₂ CO ₃	DMF	r. t.	41
6	CoBr ₂	K ₂ CO ₃	DMF	r. t.	48
7	-	K ₂ CO ₃	DMF	r. t.	47
8	PdCl ₂	-	DMF	r. t.	48
9	-	-	DMF	r. t.	54
10	-	-	CH ₂ Cl ₂	r. t.	N.R.
11	-	-	MeCN	r. t.	Less
12	-	-	DMSO	r. t.	53
13	-	-	1,4-	r. t.	N.R.
			Dioxane		
14	-	-	Toluene	r. t.	N.R.
15	-	-	Acetone	r. t.	Mess
16 ^[c]	-	-	DMF	r. t.	66
17 ^[d]	-	-	DMF	r. t.	61

[a] Reaction conditions (for entries 1–12): **1a** (1 mmol), **2a** (1 mmol), catalyst (10 mol%), base (2.0 equiv),solvent(2 mL), stirred for 24 hours. [b] Isolated yields based on PhS group. [c]: **1a** (1 mmol), **2a** (1.2 mmol). [d]: **1a** (1 mmol), **2a** (1.5 mmol).

Under the optimized reaction conditions, the scope of the substrates for the synthesis of aryl dialkylcarbamo(dithioperoxo)thioates was investigated (Table 4). In general, the substituted diphenyl disulfides reacted well with tetraalkylthiuram disulfides, furnishing arvl dialkylcarbamo(dithioperoxo)thioates in moderate to good yields. To our delight, diphenyl disulfides bearing electron-withdrawing groups such as F gave the products in good yields (entry 3-4). Diphenyl disulfides bearing multiple electron-withdrawing groups such as CI gave the products in moderate yields (entries 5 and 9). Generally, due to the possible steric hindrance from the alkyl group of the tetraethylthiuram disulfides, the corresponding products were obtained in slightly lower yields (entries 6-9).

WILEY-VCH

[a] Reaction conditions: **1a** (1 mmol), **2a** (1.2 mmol), DMF (2 mL), stirred at r. t. for 24 hours. [b] Isolated yields based on PhS group.

Figure 2. X-ray crystallography of S-S bond formation product 4b.

To further confirm the S-S bond formation, the product **4b** was characterized by X-ray crystallography (Figure 2, CCDC 1962450).

10.1002/ejoc.201901401

Conclusions

In summary, an efficient C-S/S-S formation for the chemoselective synthesis of aryl dithiocarbamates and arvl dialkylcarbamo(dithioperoxo)thioates was reported. The approach uses inexpensive and readily available diphenyl disulfides and tetramethyl thiuram disulfides as starting materials, series of 17 aryl dithiocarbamates and arvl а dimethylcarbamo(dithioperoxo)thioates could be furnished smoothly in moderate to good yields by modulating the reaction temperature, base, and catalyst. The protocol features easily available starting materials, high selectivity and easy performance, showing its practical synthetic value for the preparation of some potential biologically or pharmaceutically active compounds. The reaction mechanism and the related applications of this protocol are under investigation in our laboratory.

Experimental Section

General remarks: All starting materials were purchased from commercial suppliers and used without further purification unless otherwise stated. Yields refer to isolated compounds estimated to be >95% pure as determined by ¹H NMR and capillary GC analysis. NMR spectra were recorded on a Bruker AM400 NMR instrument in CDCl₃ using TMS as an internal standard. Chemical shifts are given in ppm, and coupling constants (*J*) are given in Hz. All melting points were determined on an RY-1G melting point instrument without correction. High-resolution mass spectra (HRMS) were recorded on a Finnigan MAT 95Q or Finnigan 90 mass instrument (ESI). TLC was performed using aluminum plates coated with SiO₂ (Merck 60, F-254) and visualized with UV light at 254 nm. Column chromatography was performed on silica gel (200–300 mesh) with PE (petroleum ether)/EtOAc as an eluent.

Typical procedure for the preparation of aryl dithiocarbamate (TP1): diphenyl disulfide (1 mmol), tetraalkylthiuram disulfide (1.2 mmol), Cul (10 mmol %) and K₂CO₃ (2.0 mmol) were added in a dried sealed tube equipped with a septum and magnetic stirring bar, DMF (2.0 mL) was then added. The mixture was stirred at 120 °C and checked by TLC until the starting material was finished (about 24 h). The reaction was quenched with sat. NH₄Cl solution (3.0 mL) and then extracted with ethyl acetate. The crude solution was dried over anhydrous Na₂SO₄ and evaporated under vacuum. The residue was purified by flash column chromatography to afford the desired product.

Typicalprocedureforthepreparationofdimethylcarbamo(dithioperoxo)thioate(TP2):diphenyldisulfide(1mmol)and tetraalkylthiuramdisulfide(1.2 mmol)were added in a driedsealedtubeequipped with a septum and magnetic stirring bar, DMF (2.0mL)was then added.The mixture was stirred at room temperature andcheckedby TLC until the starting material was finished (about 24 h).Thereactionwas quenched with sat.NH4Clsolution(3.0 mL) and thenextractedwithethylacetate.The crude solution was dried overanhydrousNa2SO4and evaporated under vacuum.The residue waspurified by flash column chromatography to afford the desired product.

Phenyl dimethylcarbamodithioate (3a)^[191]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound **3a** 256 mg (yield: 65 %), a white solid. M.p.: 90-92 °C. ¹H NMR (400 MHz, CDCl₃): δ =

7.55-7.48 (m, 5H), 3.54 (s, 3H), 3.45 (s, 3H) ppm. ^{13}C NMR (100 MHz, CDCl₃): δ = 197.2, 137.1, 131.9, 130.1, 129.2, 45.8, 42.2 ppm. HRMS (ESI) m/z [M+H]* Calcd for C_9H12NS2 (198.0406); found: 198.0409.

4-Methylphenyl dimethylcarbamodithioate (3b)^[191]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound **3b** 279 mg (yield: 66 %), a white solid. M.p.: 110-112 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.39 (d, *J* = 8.0 Hz, 2H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.58 (s, 3H), 3.52 (s, 3H), 2.44 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 198.1, 140.4, 131.9, 136.8, 128.3, 45.7, 42.0, 21.5 ppm. HRMS (ESI) *m/z* [M+H]⁺ Calcd for C₁₀H₁₄NS₂ (212.0562); found: 212.0567.

2-Fluorophenyl dimethylcarbamodithioate (3c)^[20a]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound **3c** 224 mg (yield: 52 %), a white solid. M.p.: 150-152 °C. ¹H NMR (400 MHz, CDCl₃): $\bar{\delta}$ = 7.55-7.46 (m, 2H), 7.27-7.20 (m, 2H), 3.56 (s, 3H), 3.53 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\bar{\delta}$ = 195.0, 163.2 (d, J_{C-F} = 249Hz), 138.6, 133.0 (d, J_{C-F} = 9.0 Hz), 127.8 (d, J_{C-F} = 4.0 Hz), 119.3 (d, J_{C-F} = 17.0 Hz), 116.3 (d, J_{C-F} = 22.0 Hz), 45.8, 42.4 ppm. ¹⁹F NMR (400 MHz, CDCl₃): $\bar{\delta}$ = -105.5 (s, 1F). HRMS (ESI) *m/z* [M+H]⁺ Calcd for C₉H₁₁FNS₂ (216.0312); found: 216.0315.

3-Fluorophenyl dimethylcarbamodithioate (3d)^[20a]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound **3d** 211 mg (yield: 49 %), a pale yellow solid. M.p.: 52-56 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.45-7.40 (m, 1H), 7.30-7.17 (m, 3H), 3.57 (s, 3H), 3.50 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 196.4, 162.5 (d, J_{C-F} = 247.0 Hz), 133.3, 132.7 (d, J_{C-F} = 3.0 Hz), 130.2 (d, J_{C-F} = 8.0 Hz), 123.9 (d, J_{C-F} = 22.0 Hz), 117.2 (d, J_{C-F} = 21.0 Hz), 45.7, 42.1 ppm. ¹⁹F NMR (400 MHz, CDCl₃): δ = -111.8 (s, 1F). HRMS (ESI) *m/z* [M+H]⁺ Calcd for C₉H₁₁FNS₂ (216.0312); found: 216.0309.

Phenyl diethylcarbamodithioate (3e)^[19f]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound **3e** 257 mg (yield: 57 %), a pale yellow oil. ¹H NMR (400 MHz, CDCl₃): δ : 7.48 (d, J = 9.0 Hz, 5H), 4.06 (d, J = 6.0 Hz, 2H), 3.89 (d, J = 3.0 Hz, 2H), 1.43 (t, J = 3.0 Hz, 3H), 1.32 (t, J = 4.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 196.0, 137.1, 131.6, 130.0, 129.0, 49.9, 47.3, 12.7, 11.6 ppm. HRMS (ESI) *m*/z [M+H]⁺ Calcd for C₁₁H₁₆NS₂ (226.0719); found: 226.0723.

4-Methylphenyl diethylcarbamodithioate (3f)^[19f]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to give the target compound **3f** 282 mg (yield: 59 %), a white solid. M.p.: 73-75 °C. ¹H NMR (400 MHz, CDCl₃): $\overline{0}$: 7.39 (d, J = 2.0 Hz, 2 H), 7.28 (d, J = 2.0 Hz, 2H), 4.09-4.03 (m, 2H), 3.91-3.96 (m, 2H), 2.43 (s, 3H), 1.43 (t, J = 4.0 Hz, 3H), 1.31 (t, J = 3.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\overline{0} = 196.5$, 140.3, 137.0, 129.9, 128.2, 49.9, 47.2, 21.5, 12.7, 11.6 ppm. HRMS (ESI) *m/z* [M+H]⁺ Calcd for C₁₁H₁₈NS₂ (240.0875); found: 240.0879.

2-Fluorophenyl diethylcarbamodithioate (3g)^[18]: According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound **3g** 267 mg (yield: 55 %), a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.55-7.47 (m, 2H), 7.29-7.19 (m, 2H), 4.07-4.02 (, 2H), 3.93-3.88 (m, 2H), 1.45 (t, *J* = 4.0 Hz, 3H), 1.31 (t, *J* = 3.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.6, 163.2 (d, *J*_{C-F} = 249.0 Hz), 138.8, 133.8 (d, *J*_{C-F} = 9.0 Hz), 124.6 (d, *J*_{C-F} = 4.0 Hz), 119.2 (d, *J*_{C-F} = 18.0 Hz), 116.3 (d, *J*_{C-F} = 22.0 Hz), 50.1, 47.1,

12.8, 11.6 ppm. ^{19}F NMR (400 MHz, CDCl₃): δ = -105.3 (s, 1F). HRMS (ESI) m/z [M+H]* Calcd for C11H15FNS2 (244.0625); found: 244.0621.

3-Fluorophenyl diethylcarbamodithioate (3h): According to TP1, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to give the target compound **3h** 228 mg (yield: 47 %), a brown oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.48-7.40 (m, 1H), 7.32-7.18 (m, 3H), 4.08-4.03 (m, 2H), 3.90-3.85 (m, 2H), 1.43 (t, *J* = 5.0 Hz, 3H), 1.32 (t, *J* = 3.0 Hz, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 194.8, 162.4 (d, *J*_{C-F} = 247.0 Hz), 133.2 (d, *J*_{C-F} = 8.0 Hz), 132.9 (d, *J*_{C-F} = 3.0 Hz), 130.1 (d, *J*_{C-F} = 8.0 Hz), 124.1 (d, *J*_{C-F} = 22.0 Hz), 117.2 (d, *J*_{C-F} = 21.0 Hz), 49.9, 47.5, 12.8, 11.6 ppm. ¹⁹F NMR (400 MHz, CDCl₃): δ = -120.0 (s, 1F). HRMS (ESI) *m*/*z* [M+H]⁺ Calcd for C_{11H15}FNS₂ (244.0625); found: 244.0627.

Phenyl dimethylcarbamo(dithioperoxo)thioate (4a)^[17]: According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound **4a** 302 mg (yield: 66 %), a white solid. M.p.: 68-70 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.58-7.25 (m, 5H), 3.58 (s, 3H), 3.45 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 195.7, 135.9, 129.3, 128.9, 128.0, 47.5, 41.8 ppm. Anal. calcd for C₉H₁₁NS₃: C, 47.13; H, 4.83; N, 6.11; found: C, 47.01; H, 4.95; N, 6.02%.

4-Methylphenyl dimethylcarbamo(dithioperoxo)thioate (4b)^[20b]: According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound **4b** 327 mg (yield: 67 %), a white solid. M.p.: 79-81 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.51 (d, *J* = 2.0 Hz, 2H), 7.10 (d, *J* = 2.0 Hz, 2H), 3.56 (s, 3H), 3.41 (s, 3H), 2.31 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 196.0, 138.4, 132.5, 130.2, 129.7, 47.4, 41.7, 21.7 ppm. Anal. calcd for C₁₀H₁₃NS₃: C, 49.35; H, 5.38; N, 5.75; found: C, 49.21; H, 5.47; N, 5.68%.

2-Fluorophenyl dimethylcarbamo(dithioperoxo)thioate (4c): According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound 4c 361 mg (yield: 73 %), a yellow solid. M.p.: 50-52 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.69-7.53 (m, 1H), 7.27-7.25 (m, 1H), 7.14-7.03 (m, 2H), 3.59 (s, 3H), 3.47 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 195.0, 160.6 (d, J_{C-F} = 246 Hz), 132.0 (d, J_{C-F} = 1.0 Hz), 130.0 (d, J_{C-F} = 7.0 Hz), 124.5 (d, J_{C-F} = 4.0 Hz), 122.7, 115.6 (d, J_{C-F} = 21.0 Hz), 47.4, 41.7 ppm. ¹⁹F NMR (400 MHz, CDCl₃): δ = -109.9 (s, 1F). Anal. calcd for C₉H₁₀NS₃: C, 43.70; H, 4.07; N, 5.66; found: C, 43.54; H, 4.19; N, 5.55%.

3-Fluorophenyl dimethylcarbamo(dithioperoxo)thioate (4d): According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 5:1) to give the target compound 4d 371 mg (yield: 75 %), a yellow oil. ¹H NMR (400 MHz, CDCl₃): \bar{o} = 7.31-7.24 (m, 3H), 6.95-6.90 (m, 1H), 3.58 (s, 3H), 3.47 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): \bar{o} = 194.7, 162.7 (d, J_{C-F} = 247.0 Hz), 138.2 (d, J_{C-F} = 8.0 Hz), 130.2 (d, J_{C-F} = 8.0 Hz), 124.2 (d, J_{C-F} = 3.0 Hz), 115.4 (d, J_{C-F} = 24.0 Hz), 114.7 (d, J_{C-F} = 22.0 Hz), 45.6, 41.7 ppm. ¹⁹F NMR (400 MHz, CDCl₃): \bar{o} = -111.1 (s, 1F). Anal. calcd for C₉H₁₀FNS₃: C, 43.70; H, 4.07; N, 5.66; found: C, 43.51; H, 4.19; N, 5.72%.

2,4,5-Trichlorophenyl dimethylcarbamo(dithioperoxo)thioate (4e): According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound 4e 351 mg (yield: 53 %), a white solid. M.p.: 150-154 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.57 (s, 1H), 7.48 (s, 1H), 3.64 (s, 3H), 3.57 (s, 3H) ppm. ^{13}C NMR (100 MHz, CDCl₃): δ = 194.7, 162.7 (d, J_{C-F} = 247.0 Hz), 138.2 (d, J_{C-F} = 8.0 Hz), 130.2 (d, J_{C-F} = 8.0 Hz), 124.2 (d, J_{C-F} = 3.0 Hz), 115.4 (d, J_{C-F} = 24.0 Hz), 114.7 (d, J_{C-F} = 22.0 Hz), 45.6, 41.7 ppm. Anal. calcd for C₉H₈Cl₃FNS₃: C, 32.49; H, 2.42; N, 4.21; found: C, 32.35; H, 42.58; N, 4.33%.

Phenyl diethylcarbamo(dithioperoxo)thioate (4f)^[17]: According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound **4f** 329 mg (yield: 64 %), a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.59-7.56 (m, 2H), 7.34-7.25 (m, 3H), 4.10-4.04 (m, 2H), 3.88-3.82 (m, 2 H), 1.39-1.31 (m, 6 H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 194.2, 136.1, 128.9, 127.8, 52.0, 47.1, 13.3, 11.5 ppm. Anal. calcd for C₁₁H₁₅NS₃: C, 51.32; H, 5.87; N, 5.44; found: C, 51.15; H, 5.98; N, 5.35%.

4-Methylphenyl diethylcarbamo(dithioperoxo)thioate (4g)^[20c]: According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 15:1) to give the target compound 4g 379 mg (yield: 70 %), a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.52 (d, *J* = 2.0 Hz, 2H), 7.13 (d, *J* = 2.0 Hz, 2H), 4.10-4.05 (m, 2H), 3.87-3.81 (m, 2H), 2.34 (s, 3H), 1.38-1.31 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 194.7, 138.3, 132.7, 130.1, 129.7, 51.9, 47.1, 21.2, 13.2 11.5 ppm. Anal. calcd for C₁₂H₁₇NS₃: C, 51.30; H, 6.31; N, 5.16; found: C, 51.18; H, 6.42; N, 5.27%.

2-Fluorophenyl diethylcarbamo(dithioperoxo)thioate (4h): According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound **4h** 303 mg (yield: 55 %), a yellow oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.66-7.64 (m, 1H), 7.27-7.24 (m, 1H), 7.14-7.04 (m, 2H), 4.08-4.02 (m, 2H), 3.87-3.82 (m, 2H), 1.38-1.30 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 193.5, 160.5 (d, *J*_{C-F} = 245 Hz), 132.7 (d, *J*_{C-F} = 1.0 Hz), 129.8 (d, *J*_{C-F} = 8.0 Hz), 124.5 (d, *J*_{C-F} = 4.0 Hz), 123.0 (d, *J*_{C-F} = 17.0 Hz), 115.6 (d, *J*_{C-F} = 22.0 Hz), 51.9, 47.7, 13.3, 11.4 ppm. ¹⁹F NMR (400 MHz, CDCl₃): δ = 105.5 (s, 1F). Anal. calcd for C₁₁H₁₄FNS₃: C, 47.97; H, 5.12; N, 5.09; found: C, 47.85; H, 5.25; N, 4.98%.

2,4,5-Trichlorophenyl diethylcarbamo(dithioperoxo)thioate (4i): According to TP2, the residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) to give the target compound 4i 373 mg (yield: 52 %), a white solid. M.p.: 68-72 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (s, 1H), 7.43 (s, 1H), 4.03 (s, 2H), 3.87 (s, 2H), 1.40 (s, 3H), 1.30 (s, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 191.2, 135.1, 131.7, 131.4, 130.9, 130.5, 129.3, 52.2, 47.5, 13.5, 11.4 ppm. Anal. calcd for C₁₁H₁₂Cl₃NS₃: C, 36.62; H, 3.35; N, 3.88; found: C, 36.48; H, 3.46; N, 3.96%.

Acknowledgments

The foundation support from National Natural Science Foundation of China (21302150), Hubei Provincial Science and Technology (2019CFB596), Chen-Guang program from Hubei Association for Science and Technology, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University (KLSAOFM1810) are all greatly appreciated. K. P. thanks the support of Postgraduate Innovation Foundation from Wuhan Institute of Technology.

Keywords: dithiocarbamates • tetraalkylthiuram disulfide • selective synthesis • C-S/S-S formation

References

- a) Y. Wang, S. Chackalamannil, W. Chang, W. Greenlee, V. Ruperto, R. [1] A.Duffy, R. McQuade, J. E. Lachowicz, Bioorg. Med. Chem. Lett. 2001, 11, 891-894; b) G. Liu, J. R. Huth, E. T. Olejniczak, R. Mendoza, P. DeVries, S. Leitza, E. B. Reilly, G. F. Okasinski, S. W. Fesik, T. W. von Geldern, J. Med. Chem. 2001, 44, 1202-1210; c) G. De Martino, G. La Regina, A. Coluccia, M. C. Edler, M. C. Barbera, A. Brancale, E. Wilcox, E. Hamel, M. Artico, R. Silvestri, J. Med. Chem. 2004, 47, 6120-6123; d) M.-L. Alcaraz, S. Atkinson, P. Cornwall, A. C. Foster, D. M. Gill, L. A. Humphries, P. S. Keegan, R. Kemp, E. Merifield, R. A. Nixon, A. J. Noble, D. O'Beirne, Z. M. Patel, J. Perkins, P. Rowan, P. Sadler, J. T. Singleton, Org. Process Res. Dev. 2005, 9, 555-569; e) G. De Martino, M. C. Edler, G. La Regina, A. Coluccia, M. C. Barbera, D. Barrow, R. I. Nicholson, G. Chiosis, A. Brancale, E. Hamel, M. Artico, R. Silvestri, J. Med. Chem. 2006, 49, 947-954; f) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57, 2832-2842.
- [2] a) C. Rafin, E. Veignie, M. Sancholle, D. Postal, C. Len, P. Villa, G. Ronco, *J. Agric. Food Chem.* 2000, *48*, 5283-5287; b) X. Hou, Z. Ge, T. Wang, W. Guo, J. Cui, T. Cheng, C. Lai, R. Li, *Bioorg. Med. Chem. Lett.* 2006, *16*, 4214-4219; c) G. E. Koutsoumpli, V. D. Dimaki, T. N. Thireou, E. E. Eliopoulos, N. E. Labrou, G. I. Varvounis, Y. D. Clonis, *J. Med. Chem.* 2012, *55*, 6802-6813.
- [3] C. N. Kapanda, J. Masquelier, G. Labar, G. G. Muccioli, J. H. Poupaert, D. M. Lambert, J. Med. Chem. 2012, 55, 5774-5783.
- [4] R. Bessho, K. Matsubara, M. Kubota, K. Kuwakado, H. Hirota, Y. Wakazono,Y. W. Lin, A. Okuda, M. Kawai, R. Nishikomori, T. Heike, *Biochem. Pharmacol.* **1994**, *48*, 1883-1889.
- [5] J. T. Wolfe, D. Ross, G. M. Cohen, FEBS Lett. 1994, 352, 58-62.
- a) L. Ronconi, C. Marzano, P. Zanello, M. Corsini, G. Miolo, C. Maccà,
 A. Trevisan, D. Fregona, *J. Med. Chem.* **2006**, *49*, 1648-1657; b) X. L.
 Hou, Z. M. Ge, T. M. Wang, W. Guo, J. R. Cui, T. M. Cheng, C. S. Lai,
 R. T. Li, *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4214-4219.
- [7] a) N. G. Urlyapova, A. A. Yushchenko, A. D. Daudova, V. A. Makarov, Bull. Exp. Biol. Med. 2007, 143, 327–329; b) R. Nagano, K. Shibata, T.

Naito, A. Fuse, K. Asano, T. Hashizume, S. Nakagawa, Antimicrob. Agents Chemother. **1997**, *41*, 2278-2281.

- [8] P. Morf, F. Raimondi, H.-G. Nothofer, B. Schnyder, A. Yasuda, J. M. Wessels, T. A. Jung, *Langmuir* **2006**, *22*, 658-663.
- [9] B. P. Bongar, V. S. Sadavarte, L. S. Uppalla, J. Chem. Res. 2004, 9, 450-451.
- [10] T. W. Greene, P. G. Wuts, Protecting Groups in Organic Synthesis 1999, 484-485.
- [11] D. Zhang, J. Chen, Y. Liang, H. Zhou, Synthetic Commun. 2005, 35, 521-526.
- [12] A. Gucchait, N. Joardar, P. K. Parida, P. Roy, N. Mukherjee, A. Dutta, R. Yesuvadian, S. P. SinhaBabu, K. Jana, A. K. Misra, *Eur. J. Med. Chem.* 2018, *143*, 598-610.
- [13] J. G. Sheppard, K. R.Frazier, P. Saralkar, M. F. Hossain, W. J. Geldenhuys, T. E. Long, *Bioorg. Med. Chem. Lett.* 2018, 28(8), 1298-1302.
- [14] N. Azizi, F. Aryanasab, M. R. Saidi, Org. Lett. 2006, 8, 5275-5277.
- [15] S. Bhadra, A. Saha, B. C. Ranu, Green Chem. 2008, 10, 1224-1230.
- [16] T. Chatterjee, S. Bhadra, B. C. Ranu, Green Chem. 2011, 13,1837-1842.
- [17] D. Soumya, S. Amit, ChemistrySelect 2018, 3, 42-43.
- [18] C. R. Qi, T. Z. Guo, W. F. Xiong, Synlett 2016, 27, 2626-2630.
- [19] a) W. Xu, M. T. Zeng, M. Liu, X. Liu, C. Z. Chang, H. Zhu, Y. S. Li, Z. B. Dong, *Chem. Lett.* 2017, 46, 641-643; b) W. Xu, M. T. Zeng, M. Liu, S. S. Liu, Y. S. Li, Z. B. Dong, *Synthesis* 2017, 49, 3084-3090; c) W. Xu, M. T. Zeng, S. S. Liu, Y. S. Li, Z. B. Dong, *Tetrahedron Lett.* 2017, 58, 4289-4292; d) Q. Cao, H. Y. Peng, Y. Cheng, Z. B. Dong, *Synthesis* 2018, 50, 1527-1534; e) M. Y. Gao, W. Xu, S. B. Zhang, Y. S. Li, Z. B. Dong, *Eur. J. Org. Chem.* 2018, 47, 6693-6698; f) Z. B. Dong, X. Liu, C. Bolm, *Org. Lett.* 2017, 19, 5916-5919; g) M. T. Zeng, W. Xu, X. Liu, C. Z. Chang, H. Zhu, Z. B. Dong, *Eur. J. Org. Chem.* 2017, 6060-6066; h) W. Xu, F. Gao, Z. B. Dong, *Eur. J. Org. Chem.* 2018, 821-828.
- [20] a) X. M. Wu, G. B. Yan, Synlett 2019, 30, 610-614. b) F. Lamar, G. August, B. Frances, W. W. Michael. Chem-Biol. Interact. 1978, 23, 215-25. c) K. Ferenc, S. Geza, S. A. Eniko, P. Janos, Acta Chimica Academiae Scientiarum Hungaricae 1972, 73, 63-72.

WILEY-VCH

Entry for the Table of Contents (Please choose one layout)

Layout 1:

FULL PAPER

Text for Table of Contents (about 350 characters)

Key Topic*

Author(s), Corresponding Author(s)*

Page No. – Page No.

Title

*one or two words that highlight the emphasis of the paper or the field of the study

Layout 2:

FULL PAPER

Kang Peng, Hui Zhu, Xing Liu, Han-Ying Peng, Jin-Quan Chen, and Zhi-Bing

Key Topic*: Chemo-selective C-S/S-S

Page No. – Page No.

Formation

Dong '

Chemo-selective C-S/S-S Formation between Diphenyl Disulfides and Tetraalkylthiuram Disulfides

*one or two words that highlight the emphasis of the paper or the field of the study

An efficient C-S/S-S formation for the chemo-selective synthesis of aryl dithiocarbamate (C-S formation) and aryl dialkylcarbamo(dithioperoxo)thioate (S-S formation) was studied. The chemo-selectivity could be controlled by modulating the reaction temperature, base, and catalyst. The transformation features simple performance, easily available starting material, high selectivity and easy performance, showing its practical synthetic value for the preparation of some potential biologically or pharmaceutically active compounds.

((Insert TOC Graphic here: max. width: 5.5 cm; max. height: 5.0 cm; NOTE: the final letter height should not be less than 2 mm.))