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ABSTRACT: The electrophilic reactivity of a series of 8-arylated vinyl p-
quinone methides (pVQMs) was determined by analyzing the kinetics of their
reactions with carbanions in DMSO at 20 °C according to the linear free
energy relationship log k = sN(N + E). The electrophilicity parameters E for
pVQMs were used to successfully predict Michael-additions with structurally
diverse C-, N-, S-, and H-nucleophiles.

The interest in vinyl p-quinone methides (pVQMs)1−4

increased recently because it was shown that applying a
1,6-addition/cyclization strategy in reactions of pVQMs with
sulfonium ylides,5 carbanions,6 or ammonium ylides7a gave rise
to vinyl cyclopropanes that rearranged to chiral spirocyclo-
pentenes. Hence, pVQMs are versatile building blocks for the
stereocontrolled synthesis of complex molecules.5−7 The
further development of pVQM-based organic synthesis could
clearly benefit from the knowledge of their electrophilic
reactivity to define scope and limitations of their reactions with
nucleophiles.1−3

The electrophilicity of 6-aryl-substituted p-quinone methides
(pQMs) had been studied by Mayr and co-workers8 who
analyzed the second-order rate constants of the reactions of
nucleophiles with pQMs according to the linear free energy
relationship eq 1:9

° = +k s N Elog (20 C) ( )N (1)

In this work, we set out to characterize the electrophilic
reactivity E of pVQMs 1a−d (Figure 1) by studying the
kinetics of their reactions with the carbanions 2a−d as
reference nucleophiles in DMSO at 20 °C. In this way, pVQMs
are integrated into Mayr’s reactivity scales, which allows
chemists to reliably predict the scope of their reactions with

structurally diverse nucleophiles when exploring novel organic
syntheses.10

The pVQMs 1a−d were synthesized according to literature
procedures and characterized by spectroscopic and electro-
chemical methods (Supporting Information). Single crystal X-
ray crystallography (Figure 2) revealed that the conjugated π-
systems in 1a−d are slightly bent. The pVQMs 1a−d are dyes
with λmax between 405 and 432 nm (in DMSO) and molar
absorption coefficients in the range of 5 × 104 M−1 cm−1

(Figure 1), which enabled us to follow their reactions with the
colorless nucleophiles 2a−d by photometry.
When solutions of the colored pVQMs 1 in DMSO (or d6-

DMSO) were treated with the potassium salts of nucleophiles
2, a rapid fading of the color of 1 was observed. As described in
Scheme 1, the reaction mixtures were then either analyzed by
NMR methods or worked-up to isolate the Michael adducts.
Mixtures of the regioisomers 3 and 4 were obtained via 1,6-
and 1,8-additions of 2a, 2c, and 2d to pVQMs 1, which are
ambident electrophiles. Only 2b underwent selective 1,8-
additions to 1a−d, and the exclusive formation of regioisomers
4 could be detected in the crude reaction mixtures. Subsequent
acidic workup of the reaction mixtures yielded the isolated
products in good to excellent yields.
In the kinetic experiments the presence of a Brønsted acid is

required to ensure fast protonation of the initial Michael
adducts.8a Solutions of the corresponding CH acids 2-H in
DMSO were therefore only partially deprotonated by 0.5 equiv
of KOtBu to generate DMSO stock solutions of the carbanions
2 as 1:1 mixtures with the CH acids 2-H. The reaction kinetics
were determined by employing stopped-flow UV/vis photo-
metry to follow the fading of the colored pVQMs 1 in their
reactions with the colorless carbanions 2. By using a large
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Figure 1. pVQMs 1a−d and reference nucleophiles 2a−d used for the
determination of their electrophilicities E. Nucleophilicity parameters
N and sN (in DMSO) were obtained from previous literature.8a,11
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excess of the carbanions over the electrophiles, the resulting
absorbance decays followed first-order kinetics. First-order rate
constants kobs were calculated by least-squares fitting of the
single-exponential At = A0 exp(−kobst) + C to the
experimentally observed time-dependent absorbances (Figure
3a). Second-order rate constants k2

exptl were subsequently
obtained as the slopes of the linear correlations of kobs with the
concentrations of the carbanions [2] (Figure 3b; analogous
correlations for all other electrophile−nucleophile combina-
tions studied in this work are shown in the Supporting
Information). Table 1 gathers the measured k2

exptl values for
the investigated reactions of pVQMs 1 with the carbanionic
reference nucleophiles 2.
Next, we used eq 1 to perform a least-squares analysis, which

allowed us to determine the electrophilicity parameters E for
the pVQMs 1a−d from k2

exptl and the known nucleophilicity

Figure 2. Single crystal X-ray structures of the pVQMs 1a−d. Thermal ellipsoids are shown at a 50% probability level. Bottom: Side views on 1a−d.
The blue lines indicate the planes through the carbon atoms of the quinone moieties.

Scheme 1. Products of the Reactions of 1 with 2 in DMSO

aYields of isolated products after chromatographic workup. bReaction
performed in d6-DMSO; the initially formed potassium phenolates
4Xb-K were directly analyzed by NMR spectroscopic methods.
cReaction at 1 mmol scale. dReaction performed in d6-DMSO; the
mixture of potassium salts 3bc-K and 4bc-K (both with deprotonated
malononitrile moiety) was directly analyzed by NMR spectroscopic
methods.

Figure 3. (A) Decay of the absorbance A of 1c (c = 1.75 × 10−5 M) at
408 nm in the reaction (DMSO, 20 °C) with 2b (c = 6.00 × 10−4 M).
(B) The slope of the linear correlation of kobs with the concentration
of 2b yields the second-order rate constant k2.

Table 1. Second-Order Rate Constants for the Reactions of
1 with the Reference Nucleophiles 2 in DMSO at 20 °C

1 2 k2
exptl (M−1 s−1) k2

eq 1,a (M−1 s−1) k2
exptl/k2

eq 1

1a 2a 5.72 × 102 3.59 × 102 1.6
2b 7.88 × 101 6.62 × 101 1.2
2c 3.09 × 101 2.98 × 101 1.0
2d 1.06 × 101 2.00 × 101 0.53

E(1a) = −17.42
1b 2a 7.11 × 102 6.49 × 102 1.1

2b 1.65 × 102 1.23 × 102 1.3
2c 6.16 × 101 5.65 × 101 1.1
2d 2.39 × 101 3.79 × 101 0.63

E(1b) = −17.00
1c 2a 1.14 × 103 8.21 × 102 1.4

2b 2.28 × 102 1.58 × 102 1.5
2c 7.44 × 101 7.30 × 101 1.0
2d 2.47 × 101 4.88 × 101 0.51

E(1c) = −16.84
1d 2a 3.44 × 103 1.91 × 103 1.8

2b 5.92 × 102 3.82 × 102 1.5
2c 1.66 × 102 1.82 × 102 0.91
2d 5.08 × 101 1.22 × 102 0.42

E(1d) = −16.25

aSecond-order rate constant k2 by applying eq 1.
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parameters N (and sN) of the reference nucleophiles (Table 1
and Figure S1, Supporting Information).
If compared to the analogously substituted pQMs the

electrophilicity of pVQMs 1 is reduced by 1−2 orders of
magnitude (Figure 4).8 Moreover, electronic substituent effects

have a stronger impact on the electrophilicity of pQMs than on
analogous π-extended pVQMs: While a change from a
methoxy- to a nitro-substituent in pQMs increases their
electrophilicity E by 1.7 units,8b the same change in the series
of pVQMs results in an increase of E by only 0.9 units.12 This
might be rationalized by the observed deviations from planarity
in the solid state structures (Figure 2), which weaken the
conjugation and thus attenuate the substituent effects.13

Quantum-chemical calculations were performed to gain a
deeper understanding of the ambident reactivity of pVQMs.
We calculated the Gibbs activation and reaction energies for
the addition of nucleophiles 2b and 2d to the electrophile 1b
at the M06-2X/6-31+G(d,p) level considering solvation by the
SMD solvation model for DMSO (Figure 5).14 In line with our
experimental results and previous reports on the formation of
regioisomeric mixtures upon concomitant attack of different
types of nucleophiles at 1,6- and 1,8-positions of simple vinyl
p-quinone methides,1c,3 the calculations show that the barriers
for 1,6- and 1,8-addition differ only by 4−8 kJ mol−1. For a

given combination of 1 and 2, also both intermediates P1(1,6)
and P1(1,8) are formed with similar Gibbs reaction energies.
Depending on the acidity of the (Acc)2CH moiety, the

initially formed phenolate group in the adduct P1 might be
protonated to yield the corresponding phenol P2. In line with
NMR spectroscopic studies of the reactions (Supporting
Information), the proton transfer is unfavored for 2b (pKaH
18.7 for (EtO2C)2MeC−)15 and the phenolate form P1(1,8)
persists as detectable species in the reaction mixture (pKaH
17.7 for 2,6-tert-butyl-4-methylphenolate).16 In additions of 2d
(pKaH 12.4 for (NC)2MeC−)17 to pVQMs, proton transfer
from C−H to O−H occurs to yield a phenol. Owing to the
energetic similarity of the competing reaction paths, the
observed regiochemistry (1,6- vs 1,8-attack) for the attack of
nucleophiles at pVQMs does not follow a clear pattern but
seems to depend on subtle effects, which are introduced by the
nature of the nucleophile.
Nevertheless, the determined electrophilicity parameters E

for 1a−d can be used to rationalize reported reactions and,
more intriguingly, to predict new reactions. In Figure 6, the

electrophilicity and nucleophilicity scales are arranged such
that (E + N) = −3. Reaction partners on the same horizontal
level react (somewhat dependent on the sN parameter) with
second-order rate constants of 10−3 to 10−2 M−1 s−1 at 20 °C.
Accordingly, reactions of pVQMs 1 with sulfonium ylides, such
as 12, and α-bromo malonate (N determined for the chloro-
derivative 6) have been described in the literature.5,6

Nucleophiles located at levels below that of the pVQMs can
be expected to react even more rapidly.
Based on the prediction that reactions of 1 with nucleophiles

of N > 13 should occur at 20 °C,18 we studied the reactions of
pVQMs 1 with carbanions (11 and 15), the pyridinium ylide
14, the heteroatom nucleophiles MeS− and pyrrolidine (7),
and the hydride donor NaBH4 (5). For all combinations, the
reaction products could be isolated in good to excellent yields
without further optimization (Table 2).
As found in the initial product studies (Scheme 1), different

regioisomers were also observed for the reactions of 1a−d with
the nucleophiles in Table 2: While 1,6-addition was the
preferred reaction mode for NaBH4 (5), highly nucleophilic
carbanions (11 and 15), and the pyridinium ylide 14, products
of 1,8-attack were observed for 7 and NaSMe. We rationalize
the formation of the butadienyl-substituted phenol 17 (Table
2, entry 2) by a cyclopropanation/ring opening sequence as
previously observed for reactions of pQMs with α-halo-
tosylmethyl anions.19,20 Interestingly, the reaction of the

Figure 4. Comparison of electrophilicities E of pVQMs 1 with those
of analogously substituted pQMs.8 a Gray values are interpolated on
the basis of the Hammett correlation described in ref 8b.

Figure 5. Reaction paths for additions of the nucleophiles 2b (Acc =
CO2Et) and 2d (Acc = CN) to pVQM 1b (calculated at the
SMD(DMSO)/M06-2X/6-31+G(d,p) level of theory).

Figure 6. Ranking of pVQMs 1a−d in the Mayr reactivity scales
(nucleophilicities N in DMSO if not mentioned otherwise).10
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pyridinium ylide 14 with the pVQM 1a gave the pyridinium
bromide 18 (Table 2, entry 3), which is in contrast to reactions
of ammonium ylides with pVQMs which furnish spirocyclic
products.7

In conclusion, we have characterized the Mayr electro-
philicities E of the vinyl p-quinone methides 1a−d by analyzing
the kinetics and products of their reactions with carbanions in
DMSO. In agreement with earlier findings on the regiose-
lectivities of nucleophile additions to 2,6-dimethoxy-4-(2-
propenylidene)-2,5-cyclohexadien-1-one and eugenol-derived
vinylic p-quinone methides,1c,3 the pVQMs 1 are ambident
electrophiles that have similar 1,6- and 1,8-reactivities. While
the results of our experiments do not allow us to predict the
regiochemistry of the nucleophilic attack at pVQMs, the
determined Mayr E parameters reliably reflect the general
electrophilic reactivity of these electron-deficient π-systems.
Application of the electrophilicity parameters E in eq 1 not
only rationalizes reported reactions but also empowers
chemists to systematically predict novel combinations of
pVQMs with nucleophiles. We demonstrated that uncatalyzed
reactions of 1a−d with different types of C-, N-, S-, and H-
nucleophiles with N > 14 are feasible at ambient temperature21

and lead to novel types of conjugate 1,6- and 1,8-adducts of
pVQMs.
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