PRENYLATED XANTHONES FROM CUDRANIA COCHINCHINENSIS

CHENG-HSIUNG CHANG, CHUNG-CHIN LIN,* YUKIO KAWATA,† MASAO HATTORI†‡ and TSUNEO NAMBA†

Department of Pharmacy, Chia-Nan Junior College of Pharmacy, Tainan Hsien, Taiwan, Republic of China; *School of Pharmacy, Kaohsiung Medical College, Kaohsiung, Taiwan, Republic of China, *Research Institute for Wakan-Yaku (Traditional Sino-Japanese Medicines), Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-01, Japan

(Received 3 April 1989)

Key Word Index-Cudrania cochinchinensis; Moraceae; prenylated xanthone, ¹³CNMR; gerontoxanthone.

Abstract—In the course of our studies on the bark of *Cudrania cochinchinensis*, we isolated four new prenylated xanthones, named gerontoxanthones E, G, H and I, along with the known xanthone, cudraniaxanthone. The structures of new xanthones were established by spectroscopic and chemical means.

INTRODUCTION

In a previous paper [1], we described the isolation of four new prenylated xanthones, gerontoxanthones A-D, from *Cudrama cochinchinensis* var. gerontogea. As a part of our continuing studies on this plant [1, 2], we now wish to report the isolation and structure elucidation of four new prenylated xanthones.

RESULTS AND DISCUSSION

Methanolic extraction of the fresh bark of C. cochinchinensis var. gerontogea, followed by solvent partition and CC led to the isolation of four new prenylated xanthones, gerontoxanthones E, G, H and I, together with the known xanthone, cudraniaxanthone, which was identified by comparison of its spectral data with those reported [3].

Gerontoxanthone G (1) was assigned the molecular formula C_{23} H₂₄ O₆ (m/z 396 1592). Its UV spectrum was indicative of a 1,3,5,6-tetraoxygenated xanthone chromophore [1,4]. Compound 1 gave a triacetate (1a) on acetylation, suggesting the presence of three hydroxyl groups, in which the one at C-1 was chelated (δ 13.54 in ¹H NMR). The ¹H NMR spectrum of 1 showed the presence of a 2,3-dihydro-2,3,3-trimethylfuran ring (δ 4.53, q, J = 6.8 Hz, methine; $\delta 1.39$, d, J = 6.8 Hz, sec-methyl; 1.49, 1.24, gem-dimethyl) and a 3-methylbut-2-enyl group (δ 5.40, *m*, olefinic proton; δ 3.44, *d*, J = 7.3 Hz, benzylic methylene; $\delta 1.76$, 1.75, two methyls) Furthermore, the singlet aromatic proton signals at δ 7.52 and 6.29 were assigned to H-8 and H-4 (or H-2), respectively. Cyclization of 1 with 2,2-dichloro-5,6-dicyanobenzoguinone (DDQ) [5] gave a product which was identified as gerontoxanthone A (1b) by direct comparison with an authentic sample [1]. This indicated that the dihydrofuran ring of 1 was closed at C-2 and the 3-methylbut-2-enyl side chain was located at C-7. From the above evidence, the structure of I was concluded to be 4',5'-dihydro-1,5,6trihydroxy-7-(3-methylbut-2-enyl)-4',4',5'-trimethylfurano-(2',3':3,2) xanthone.

Gerontoxanthone E (2) was assigned the molecular formula $C_{24}H_{26}O_6$ (m/z 410.174). Its UV and ¹H NMR spectra were very similar to those of 1. The 'HNMR spectrum indicated the presence of a 3-methylbut-2-enyl group (δ 5.40, *m*, olefinic proton; δ 3.42, *d*, J = 7.3 Hz, benzylic methylene; $\delta 1.77$, 1.75, two methyls) and a 2,3-dihydro-2,3,3-trimethylfuran ring (δ 4.55, q, J = 6.1 Hz, methine; δ 1.40, d, J = 6.1 Hz, sec-methyl; δ 1.50, 1.25, gem-dimethyl). In addition, the spectrum contained signals at δ 13.46 (chelated 1-OH), 9.28 (5-OH or 6-OH), 7.70 (H-8), 6.43 (H-4) and 4.01 (OMe). In the UV spectrum, the λ_{max} at 313 nm was shifted bathochromically to 364 nm on addition of sodium acetate, indicating that the free hydroxyl group was located at C-6 and the methoxy group had to be placed at C-5. The above evidence led us to conclude that the structure of 2 was 4',5'-dihydro-1.6dihydroxy-5-methoxy-7-(3-methylbut-2-enyl)-4',4',5'-trimethylfurano (2',3':3,2)-xanthone. The ¹³CNMR spectrum also supported the proposed structure (Table 1).

Gerontoxanthone H (3) was assigned the molecular formula $C_{23}H_{24}O_5$ (m/z 380.1651). Its UV spectrum was indicative of a 1,3,7-trioxygenated xanthone chromophore [5,6]. Acetylation of 3 gave a triacetate (3a). As one of the three free hydroxyl groups was a chelated hydroxyl group (¹H NMR, δ 13.35) at C-1, the others were concluded to be located at C-3 and C-7. The ¹H NMR spectrum showed the presence of two prenyl groups (δ 5.30, 2H, m; δ 4.19, 2H, d, J = 6.8 Hz; δ 3.50, 2H, d, J = 7.4 Hz; $\delta 1.88$, 1.84, 2 × Me; $\delta 1.66$, 1.65, 2 × Me) and three aromatic protons, two of which were orthocoupled to each other (δ 7.41, d, J = 9.3 Hz, H-6; δ 7.34, d, J = 9.3 Hz, H-5) and the other was a singlet ($\delta 6.32$, H-2 or H-4). The low-field benzylic proton signals (δ 4.19) suggested that one prenyl group was located at C-8 [5]. Therefore, the possible structure of this compound was either 3 or 4. The spectral features of gerontoxanthone H, however, differed from the reported data of 6-deoxy-ymangostin (4) [5]. In the UV spectrum, the λ_{max} was immediately shifted on addition of aluminium trichloride, suggesting the presence of an isolated H-2 proton. Furthermore, the signal at $\delta 98.6$ (d) in the ${}^{13}\hat{C}NMR$ spectrum was assignable to C-2 rather than to C-4, indicating that another prenyl group was located at C-4.

[‡]Author to whom correspondence should be addressed.

Cudraniaxantone

These findings led us to conclude the structure of **3** to be 1,3,7-trihydroxy-4,8-di(3-methylbut-2-enyl)xanthone.

Gerontoxanthone I (5) was assigned the molecular formula $C_{23}H_{24}O_6$ (m/z 396.1564). Its UV spectrum showed a characteristic chromophore of a 1,3,5,6-tetraoxygenated xanthone with four free hydroxy groups [4]. One of the free hydroxyl groups was chelated (¹H NMR, δ 13.86, 1-OH) and two were ortho-dihydroxy group (the UV maximum was shifted with NaOAc/H₃BO₄ and AlCl₃/HCl). The ¹H NMR spectrum showed the pressure of two ortho-coupled aromatic protons (δ 7.63, d, J = 8.8 Hz, H-8, δ 7.01, d, J = 8.8 Hz, H-7) on ring B, and 1,1-dimethylprop-2-enyl (δ 6.60, 1H, dd, J = 17.7 and 10.4 Hz; δ 5.47, d, J = 17.7 Hz; δ 5.35, d, J = 10.4 Hz; δ 1.81, gem-dimethyl) and 3-methylbut-2-enyl (δ 5.22, 1H, m; δ 3.37, 2H, d, J = 7.0 Hz; δ 1.78, 1.66, two methyls) side chains. Both side chains had to be located on ring A, two structures (5 and 6) being possible. Cyclization of 5 with DDQ gave 7. The ¹H NMR (in acetoned₆) of 7 showed new signals at δ 6.77 (d, J = 9.8 Hz), 5.62 (d, J = 9.8 Hz) and 1.52 (gem-dimethyl), indicating the presence of a 2H-pyran ring. The 1,1-dimethylprop-2enyl side chain remained intact during the reaction with DDQ. In the ¹H NMR spectrum (in pyridine) of 7, the solvent-induced shifts, +0.23 for H-11 and -0.01 for H-12, indicated that the 2H-pyran ring was linear [7] Compound 7 was identified as macluraxanthone by comparison of the spectral data with those reported [7,8]. Therefore, the two side chains, 3-methylbut-2-enyl and 1,1-dimethylprop-2-enyl, were located at C-2 and C-4,

Prenylated xanthones from Cudrania cochinchinensis

с	1	2	3	5
1	159.0 s	158.6 s	163.1 s	160.4 s
2	114.2 s	114.1 s	98.6 d	112.5 s
3	166 8 s	166.7 s	163 7 s	161 9 s
4	90.5 d	90.5 d	106.7 s	111.9 s
4a	160.1 s	159.3 s	155.8 s	155.4 s
4b	146.1 s	150 0 s	152 8 s	147.5 s
5	133.9 s	134.2 s	117.3 d	134 2 s
6	151 1 s	155.3 s	124 9 d	152 1 s
7	127 3 s	127 7 s	152.7 s	1139d
8	1168d	120 7 d	129.5 s	117.7 d
8a	117.8 s	117.9 s	1198s	1152s
9	182 O s	181.3 s	184.9 s	182 3 s
9a	104.6 s	104.0 s	104.8 s	104.1 s
11	28 8 t	26.2 t	26.7 t	22.8 t
12	123.3 d	122.6 d	124.3 d	123.8 d
13	132.7 s	129 4 s	132 O s	132 5 s
14	18.3 q	18.2 q	18.8 q	18.4 q
15	264q	29.0 q	26.5 q	26.3 q
16	44.4 s	44.3 s	22.5 t	42.7 s
17	92.1 d	92.1 d	123.9 d	151.8 d
18	15.0 q	149 q	131 8 s	112 8 t
19	21.4 q	21.1 q	18.5 q	29.2 q
20	260q	25.8 q	26.3 q	29.2 q
5-OMe	-	62.3 q		

Table 1. ${}^{13}CNMR$ spectral data for gerontoxanthones G(1), E(2), H(3) and I(5)

Measured at 22.5 MHz in acetone- d_6

respectively. On the basis of the above evidence, the structure of 5 was concluded to be 4-(1,1-dimethylprop-2-enyl)-1,3,5,6-tetrahydroxy-2-(3-methylbut-2-enyl)-xan-thone.

EXPERIMENTAL

Mps[•] uncorr; ¹H and ¹³C NMR: 270 and 22.5 MHz, respectively; MS: 70 eV.

Plant material Fresh root bark of C. cochinchinensis var. gerontogea was collected at Chai-I, Taiwan. The plant was identified by Muh-Tsuen Kao (National Taiwan University).

Extraction and separation. The fresh root bark of C. cochinchinensis var. gerontogea (1.5 kg) was chopped and extracted with boiling MeOH (101 \times 4). The MeOH extract (101.8 g) was suspended in H₂O (500 ml) and extracted successively with C_6H_6 (21), CHCl₃ (21), EtOAc (3.51) and BuOH (151) to give the respective extracts in yields of 42.1, 11.0, 13.2 and 12.4 g. A portion of the C_6H_6 extract (ca 20 g) was chromatographed on a silica gel column (5 5 \times 80 cm) The column was eluted successively with C_6H_6 , C_6H_6 -EtOAc (8:1, 6.1, 4.1 and 1:1), EtOAc and CHCl₃-MeOH to give fractions A-H, which were further subjected to repeated CC on silica gel, eluting with a gradient of C₆H₆ and EtOAc, followed by polyamide CC and prep. TLC. These procedures led to the isolation of the following compounds. gerontoxanthones E (5 mg, 2) and F (8 mg) from fraction C; gerontoxanthone A (29 mg) from fraction D; gerontoxanthones B (16 mg) and G (65 mg, 1) and sterols (53 mg) from fraction E; gerontoxanthones C (15 mg), H (25 mg, 3) and I (35 mg, 5) from fraction F; gerontoxanthone D (21 mg) and cudraniaxanthone (115 mg) from fraction H.

Gerontoxanthone G (1). Yellowish fine needles (MeOH), mp $203-205^{\circ}$, $[\alpha]_{\rm D}^{25^{\circ}}$ 0 (Me₂CO, c 0.11), HRMS m/z: 396.1592, Calcd for $[M]^+$, $C_{23}H_{24}O_6$: 396.1573, TLC: R_f 0.21 $[C_6H_6$ -EtOAc (6:1)], solvent B), orange yellow under UV light, red with Flavone T and greenish brown with FeCl₃; UV λ_{max}^{MeOH} nm (log ε): 254 (4.23), 285 (3.63), 328 (3.88), + AlCl₃ (after 10 min): 244, 269, 292 (sh), 388; + A1Cl₃ + HCl: 243 (sh), 257, 264 (sh), 284 (sh), 353; + NaOAc: 270 (sh), 285 (sh), 355; $IR \nu_{max}^{KBr} cm^{-1}$. 3620, 3450, (OH), 1660 (conj C=O), 1618, 1595 EIMS m/z (rel int.). 396 [M]⁺ (26), 381 [M-Me]⁺ (100), 325 (23); ¹H NMR (270 MHz, Me₂CO-d₆): δ 13 54 (1H, s, ex. D₂O, 1-OH), 9.08 (1H, s, ex. D₂O, OH), 8.74 (1H, s, ex. D₂O, OH), 7 52 (1H, s, H-8), 6.29 (1H, s, H-4), 5 40 (1H, m, H-12), 4.53 (1H, q, J = 6.8 Hz, H-17), 3.44 (2H, d, J = 7.3 Hz, H-11), 1.76, 1.75 (6H, each s, 13-Me₂), 1 39 (3H, d, J =6.8 Hz, 17-Me), 1.49, 1.24 (6H, each s, 16-Me₂); ¹H NMR (270 MHz, pyridine-d_s): δ14.2 (1H, s, 1-OH), 8.05 (1H, s, H-8), 6 09 (1H, s, H-4), 5 65 (1H, m, H-12), 4.42 (1H, q, J = 6.1 Hz, H-17), 3.77 (2H, d, J = 7.3 Hz, H-11), 1.75, 1.69 (6H, each s, 13-Me₂), 1.49, 1 24 (6H, each s, 16-Me₂), 1.27 (3H, d, J = 6.1 Hz, 17-Me).

Gerontoxanthone-G triacetate (1a). Colourless needles, (MeOH), mp 115–116°; EIMS m/z (rel. int.): 522 [M]⁺ (13), 480 [M - Ac + H]⁺ (100), 465 [M - Ac - Me + H]⁺ (52), 438 [M - 2Ac + 2H]⁺ (72), 423 [M - 2Ac - Me + 2H]⁺ (100), 396 [M - 3Ac + 3H]⁺ (24), 381 [M - 3Ac - Me + 3H]⁺ (95); ¹H NMR (270 MHz, CDCl₃): δ 7.98 (1H, s, H-8), 6 65 (1H, s, H-4), 5.23 (1H, m, H-12), 4.52 (1H, q, J = 6 6 Hz, H-17), 3.30 (2H, d, J = 7.3 Hz, H-11), 2.51, 2.42, 2.35 (9H, each s, 1,5,6-OAc), 1.75, 1.70 (6H, each s, 13-Me₂), 1.57 (6H, s, 16-Me₂), 1.40 (3H, d, J = 6.6 Hz, 17-Me)

Cyclization of gerontoxanthone G. Compound 1 (20 mg) was treated with DDQ (20 mg) in dry C_6H_6 (20 ml) and the mixture

was refluxed for 1 hr The product was purified by silica gel CC and prep TLC (C_6H_6 -EtOAc 8 1) to give compound 1b mp 235-237°, EIMS m/z 399 [M]⁺, ¹H NMR (Me_2CO-d_6): δ 13 46 (1H, s, 1-OH), 8 63 (1H, s, OH), 7.44 (1H, s, H-8), 6 59 (1H, d, J = 9.8 Hz, H-11), 6 38 (1H, s, H-4), 5 91 (1H, d, J = 9.8 Hz, H-12), 4.55 (1H, q, J = 6.4 Hz, H-17), 1.51 (9H, s, 13-Me₂, 16-Me), 1 40 (3H, d, J = 6.4 Hz, 17-Me), 1 24 (3H, s, 16-Me)

Gerontoxanthone E (2). Pale yellow needles (MeOH); mp 136-138°, $[\alpha]_D^{25^\circ}$ 0 (Me₂CO, c 0 04); HRMS m/z 410 1739, Calcd for $[M]^+$, C₂₄ H₂₆O₈ 410 1729, TLC R_f 0 69 (solvent B), orange yellow under UV light, red with Flavone T and greenish brown with FeCl₃, UV λ_{meOH}^{MeOH} nm (log c) 254 (4 7), 280 (sh) (3 85), 313 (4 5); +AlCl₃ (after 10 min) 244, 285 (sh), 343, 390 (sh), + NaOAc. 239, 280 (sh), 364, IR ν_{max}^{Meom-1} 1650 (conj. C=O), EIMS m/z (rel int) 410 [M]⁺ (26), 395 [M - Me]⁺ (100), 339 (11), ¹H NMR (270 MHz, Me₂CO-d₆) δ 13 46 (1H, s, ex D₂O, 1-OH), 9 28 (1H, s, ex D₂O, 6-OH), 7 70 (1H, s, H-8), 6 43 (1H, s, H-4), 5.40 (1H, m, H-12), 4 55 (1H, q, J = 6 1 Hz, H-17), 4 01 (3H, s, 5-OMe), 3 42 (2H, d, J = 7.3 Hz, H-11), 1 77, 1 75 (6H, each s, 13-Me₂), 1 40 (3H, d, J = 6 1 Hz, 17-Me), 1 50, 1 25 (6H each s, 16-Me₂).

Gerontoxanthone H (3) Yellow needles (MeOH), mp 175–177° HRMS m/z 380 1651, Calcd for $[M]^+$, $C_{23}H_{24}O_5$ 380.1644, TLC R_f 0.26 (solvent B), brown colour under UV light, red with Flavone T and dark green with FeCl₃. UV λ_{max}^{Men} nm (log ε) 238 (4.53), 264 (4.77), 317 (4.32), 382 (3.90); + AlCl₃ 232, 280, 335, 440; + NaOAc. 245, 278, 342, 415, IR ν_{max}^{KBr} cm ⁻¹ 3560, 3460 (OH), 1640 (conj C=O), 1602, 1580, EIMS m/z (rel int.) 380 [M]⁺ (62), 365 [M-Me]⁺ (13), 337 [M-C₃H₇]⁺ (100), 281 (40), ¹H NMR (270 MHz, Me₂CO-d₆) δ 13 35 (1H, s, ex D₂O, 1-OH), 9.77 (1H, br s, ex D₂O, OH), 8.72 (1H, br s, ex D₂O, OH), 7.41 (1H, d, J=9.3 Hz, H-6), 7.34 (1H, d, J=9.3 Hz, H-5), 6.32 (1H, s, H-2), 5.30 (2H, m, H-12, 17), 4.19 (2H, d, J = 6.8 Hz, H₂-11), 3.50 (2H, d, J = 7.4 Hz, H₂-16), 1.88, 1.84 (6H, each s, 13-Me₂), 1.66, 1.65 (6H, each s, 18-Me₂)

Gerontoxanthone-H triacetate (3a) EIMS m/z (rel. int) 506 [M]⁺ (46), 464 [M-Ac+H]⁺ (63), 421 [M-2Ac+H]⁺ (100), 379 [M-3Ac+2H]⁺ (78), 337 (25), 323 (31), 281 (31); ¹H NMR (270 MHz, CDCl₃): δ 7.344, 7.341 (2H, each s, H-5, 6), 6 79 (1H, s, H-2), 5 13 (2H, m, H-12, 17), 3 99 (2H, d, J = 6.4 Hz, H₂-11), 3 52 (2H, d, J = 7.3 Hz, H₂-16), 2 44 (3H, s, 1-OAc), 2 362, 2 356 (6H, each s, 3,5-OAc), 1 86, 1 82 (6H, each s, 13-Me₂), 1 69, 1 67 (6H, each s, 18-Me₂)

Gerontoxanthone I (5). Yellow needles (MeOH), mp 178–180°, HRMS m/z 396 1564, Calcd for $[M]^+$, $C_{23}H_{24}O_6$ 396 1572, TLC R_f 0.13 (solvent B), orange red colour under UV light, red colour with Flavone T and greenish brown with FeCl₃ UV ν_{max}^{MeOH} nm (log ε) 255 (4 4), 285 (3.76), 329 (4 13), +AlCl₃ (after 10 min): 246, 276, 294, 327, 394, +AlCl₃+HCl: 254, 272 (sh), 288 (sh), 347, 392 (sh); +NaOAc: 257, 290 (sh), 367, +NaOAc+H₃BO₃ 261, 288, 349, IR ν_{max}^{Bar} cm^{-1.} 1625 (conj C=O), EIMS m/z (rel int) 396 [M]⁺ (92), 381 [M-Me]⁺ (25), 353 [M-Me-CO]⁺ (50), 340 [M-C₄H₈]⁺ (90), 325 [M -C₅H₁₁]⁺ (100), 297 (25), 285 (32), 153 (6), ¹H NMR (270 MHz, Me₂CO-d₆) δ 13.86 (1H, s, ex. D₂O, 1-OH), 9 72 (1H, s, ex D₂O, OH), 7 97 (1H, s, ex D₂O, OH), 7 76 (1H, s, ex D₂O, OH), 7.63 (1H, d, J = 8.8 Hz, H-8), 701 (1H, d, J = 8 8 Hz, H-7), 6.60 (1H, dd, J = 17 7 and 10 4 Hz, H-17), 5 47 (1H, d, J = 17.7 Hz, Ha-18), 5.35 (1H, d, J = 10.4 Hz, Hb-18), 5 22 (1H, m, H-12), 3 37 (2H, d, J = 7.0 Hz, H₂-11), 1 81 (6H, s, 16-Me₂), 1 78, 1 66 (6H, each s, 13-Me₂)

Cyclization of gerontoxanthone 1 Compound 5 (25 mg) was refluxed with DDQ (25 mg) in dry C₆H₆ (25 ml) for 1 hr. The products were filtered, and the filtrate subjected to silica gel CC with C₆H₆-EtOAc (5 2), followed by polyamide CC with 50% EtOH to yield 7 EIMS m/z 394, ¹H NMR (270 MHz, CDCl₃): δ 13 53 (1H, s, 1-OH), 7 69 (1H, d, J = 8.8 Hz, H-8), 6.96 (1H, d, J = 8.8 Hz, H-7), 6 77 (1H, d, J = 9.8 Hz, H-11), 6 74 (1H, dd, J = 17.6 and 9.3 Hz, H-17), 5 62 (1H, d, J = 9.8 Hz, H-12), 5 22 (1H, d, J = 17.6 Hz, Ha-18), 5 05 (1H, d, J = 9.3 Hz, Hb-18), 1 65 (6H, s, 16-Me₂), 1 52 (6H, s, 13-Me₂) $\Delta\delta = \delta$ (pyridine) $-\delta$ (CDCl₃) + 0 27 (H-8), + 0 27 (H-7), + 0 23 (H-11), -0.01 (H-12). The compound was identical with macluraxanthone [8]

Cudraniaxanthone Yellowish needles (MeOH), $C_{19}H_{18}O_6$; mp 300°, TLC R_f 0.38 on a polyamide plate (60% EtOH, solvent D) The spectroscopic data (¹H NMR, ¹³C NMR etc.) agreed with those reported [3]

Acknowledgements--The authors are deeply indebted to Dr T-H Wang (President of Chia-Nan Junior College of Pharmacy) for his encouragement We are grateful to The National Science Council for financial support

REFERENCES

- 1 Chang, C H, Lin, C C, Hattori, M and Namba, T (1989) Phytochemistry 28, 595
- 2. Chang, C H., Lin, C C and Namba, T. (1989) Shoyakugaku Zasshi (in press)
- 3 Murti, V V S, Seshadri, T R and Sivakumaran, S (1972) Phytochemistry 11, 2089
- 4 Monache, G D, Botta, B., Mello, J. F, Coelho, J S B and Menichini, F (1984) J Nat Prod 47, 620
- 5 Dharmaratne, H R W, Sotheeswaran, S, Balasubramaniam, S and Reisch, J (1986) Phytochemistry 25, 1957
- 6 Wolfron, M L, Komitsky, J F and Looker, J H (1965) J Org. Chem 30, 144
- 7 Menache, G D, Monache, F D, Bettolo, G. B M and Lima, R A de (1983) J. Nat Prod 46, 655
- 8 Monache, F D, Botta, B, Nicoletti, M, Coelho, J S. de B. and Lyra, F. D de A (1981) J Chem Soc, Perkin Trans I, 484