CHEMISTRY A European Journal

Accepted Article

Title: Palladium-Catalyzed Multi-Component Reactions of N-Tosylhydrazones, 2-Iodoanilines and CO2 towards 4-Aryl-2-Quinolinones

Authors: Jiang Cheng, Song Sun, Wei-Ming Hu, and Ning Gu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Eur. J. 10.1002/chem.201604256

Link to VoR: http://dx.doi.org/10.1002/chem.201604256

Supported by ACES

10.1002/chem.201604256

CHEMISTRY A European Journal Communication

CO₂ Fixation

Palladium-Catalyzed Multi-Component Reactions of *N*-Tosylhydrazones, 2-lodoanilines and CO₂ towards 4-Aryl-2-Quinolinones

Song Sun, Wei-Ming Hu, Ning Gu, Jiang Cheng*

Dedication ((optional)

Abstract: A palladium-catalyzed three-component reaction between *N*-tosylhydrazones, 2-iodoanilines and atmospheric pressure of CO_2 was developed whereby a tandem carbene migration insertion/lactamization strategy to afford 4-aryl-2quinolinones in moderate to good yields. Notablely, a wide range of functional groups were tolerated in this procedure. This protocol features with simultaneous formation of four novel bonds i.e. two C–C, one C=C and one C-N bonds in amide, representing an efficient methodology for incorporation of CO_2 into heterocycles.

Recently, the incorporation of the entire "CO2" moiety or its "C=O" fragment via multi-component reactions towards carbonylcontaining compounds,^[1-2] especially heterocycles,^[3] represents a great advance and greener approach by avoiding the use of hazardous carbonylation reagents such as carbon monoxide and phosgene. With this regard, Kobayashi, Kunai, as well as others independently reported elegant cascade reaction of in situ formed benzyne with a nucleophile and CO2 towards a series of carbonylcontaining heterocycles (Scheme 1a).^[4] The sequential carboxylation/cyclization reaction of propargylic alcohols (or amines), CO₂ and a third component allows to facilely construction of oxazolidinones or other useful heterocyclic frameworks.^[5] For instance, Li developed a four-component reaction of aldehydes, primary amines, alkynes, and CO₂ leading to oxazolidinones (Scheme 1b).^[6] Jiang reported coppercatalyzed domino reaction of readily available propargylic alcohols, CO₂ and nitriles to access highly substituted 3(2H)furanones (Scheme 1c).^[7] However, despite much progress has been made in this field, the development of procedures involving either new reaction partners or new target molecules in the fixation of CO₂ remains an area of synthetic interest.

On the other hand, thanks to the well-developed N-

tosylhydrazone chemistry,^[8-9] the reaction of *N*-tosylhydrazone with aryl- halides generates corresponding olefins whereb eliminatio sequential carbene migration insertion/β-H procedure.^[10] Therefore, in the case of 2-iodoaniline, ortho-(1 phenylvinyl)aniline is formed,^[10c] which is a potential substrate t incorporate CO₂ towards 2-quinolinones developed by Yu^[11a] an others recently.^[11] Thus, a three-component reaction between Λ tosylhydrazones, 2-iodoanilines and CO2 was highly expected i the construction of 2-quinolinones, which did not require the time consuming procedure for the isolation of the intermediates orthc (1-phenylvinyl)anilines. As part of our continuing studies on the transformation of CO2,^[12] we herein present an unprecedente strategy towards 4-aryl-2-quinolinones by a three-componer coupling reaction of N-tosylhydrazones, 2-iodoanilines and CO catalyzed by a Pd(II)/phosphine system (Scheme 1d). Suc frameworks were ubiquitous in drugs, bioactive natural products photoelectric materials, and important intermediates in organi synthesis.[13]

Scheme 1. Some typical examples of multi-component reaction involving carbon dioxide towards carbonyl-containing heterocycles.

Initially, we tested the reaction of *N*-tosylhydrazone **1a** (0.3 mmol), 2-iodoaniline **2a** (0.2 mmol), and atmospheric pressure of CO_2 (Table 1). To our delight, this three-component reaction took place in the presence of Pd(OAc)₂ (10 mol%) and NaO^tBu (1.2 mmol) under atmospheric pressure of CO_2 in diglyme at 140 °C for 24 h, producing 4-phenyl-2-quinolinone **3a** in 27% yield (Table 1, entry 1). The employment of phosphine ligands increased the reaction efficiency dramatically, and PPh₃ was the best (65%, Table 1, entries 2-4) (for details, see Supporting Information). The efficiency of the reaction was further increased to 68% by

^{[*] &}lt;sup>[a]</sup> Dr. S. Sun, W.-M. Hu, N. Gu, and Prof. Dr. J. Cheng School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, and Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, Changzhou University, Gehu Road 1, Changzhou, 213164, P. R. China E-mail: jiangcheng@cczu.edu.cn Homepage: www.chengjiangjs.com Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201xxxxxx.

replacing Pd(OAc)₂/PPh₃ with Pd(PPh₃)₂Cl₂ (Table 1, entries 5-7). Among the bases tested, NaO'Bu was the best (68%, Table 1, entries 7-9). The solvent had a profound effect on the reaction and diglyme (68%) was superior to 1, 4-dioxane (53%), while DMSO almost inhibited the reaction (Table 1, entries 7, 10-11). Notablely, in the presence of 6 equivalents of NaO'Bu, **3a** was isolated in 75% yield (**1a**: **2a** = 1.7: 1, Table 1, entry 12). Increasing the pressure of CO₂ did not have any positive effect for this transformation (Table 1, entry 13).

 $\ensuremath{\text{Table 1.}}$ Selected results for screening the optimized reaction conditions^{[a]}

[Pd]	Ligand	Base	Isolated Yield [%]
Pd(OAc) ₂		NaO ^t Bu	27
Pd(OAc) ₂	Xphos	NaO ^t Bu	51
Pd(OAc) ₂	Ph ₂ P(2-Py)	NaO ^t Bu	62
Pd(OAc) ₂	PPh_3	NaO ^t Bu	65
PdCl ₂	PPh ₃	NaO ^t Bu	64
Pd(PPh ₃) ₄		NaO ^t Bu	45
$Pd(PPh_3)_2Cl_2$		NaO ^t Bu	68
$Pd(PPh_3)_2Cl_2$		LiO ^t Bu	48
$Pd(PPh_3)_2Cl_2$		KO ^t Bu	< 5
$Pd(PPh_3)_2Cl_2$		NaO ^t Bu	53
$Pd(PPh_3)_2Cl_2$		NaO ^t Bu	0
$Pd(PPh_3)_2Cl_2$		NaO ^t Bu	$51^{[d]} 71^{[e]} 75^{[f]} 72^{[g]}$
$Pd(PPh_3)_2Cl_2$		NaO ^t Bu	41
	[Pd] Pd(OAc) ₂ Pd(OAc) ₂ Pd(OAc) ₂ Pd(OAc) ₂ Pd(Ph ₃) ₄ Pd(PPh ₃) ₂ Cl ₂ Pd(PPh ₃) ₂ Cl ₂	[Pd] Ligand Pd(OAc)2 Pd(OAc)2 Xphos Pd(OAc)2 Ph2P(2-Py) Pd(OAc)2 PPh3 Pd(OAc)2 PPh3 Pd(PA)2 PPh3 Pd(PPh3)4 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2 Pd(PPh3)2Cl2	[Pd] Ligand Base Pd(OAc)2 NaO'Bu Pd(OAc)2 Xphos NaO'Bu Pd(OAc)2 Ph2P(2-Py) NaO'Bu Pd(OAc)2 PPh3 NaO'Bu Pd(OAc)2 PPh3 NaO'Bu Pd(OAc)2 PPh3 NaO'Bu Pd(PA)2 PPh3 NaO'Bu Pd(PPh3)4 NaO'Bu Pd(PPh3)2Cl2 NaO'Bu Pd(PPh3)2Cl2 KO'Bu Pd(PPh3)2Cl2 NaO'Bu Pd(PPh3)2Cl2 NaO'Bu

[a] Reaction conditions: **1a** (0.3 mmol), **2a** (0.2 mmol), [Pd] (0.02 mmol), ligand (0.04 mmol), base (1.2 mmol), diglyme (3.0 mL), at 140 °C under atmospheric pressure of CO₂ for 24 h, in a sealed Schlenk tube, unless otherwise noted. [b] in 1, 4-dioxane, at 100 °C. [c] in DMSO. [d] NaO'Bu (1.0 mmol). [e] NaO'Bu (1.4 mmol). [f] NaO'Bu (1.2 mmol), **1a** (0.34 mmol). [g] NaO'Bu (1.2 mmol), **1a** (0.4 mmol). [h] CO₂ (2.5 MPa). Xphos = dicyclohexyl(2',4',6'-triisopropyl-[1,1'-biphenyl]-2-yl)phosphine.

With the optimized reaction conditions in hand, we then explored the scope and limitation of the N-tosylhydrazones as shown in Scheme 2. Generally, except the 4-CF₃ substituted analogue (3g, 33%), the reaction efficiency was not sensitive to the electronic property of the groups on the phenyl ring of Ntosylhydrazones as substrates bearing both electron-donating (3b-3c, 3h-3k, 58-76%) and electron-withdrawing groups (3d-3f, 62-71%) worked well to deliver the desired products in moderate to good yields. In the cases of substrates with ortho- hindrance on the phenyl, 3h-3j were isolated in acceptable 58%, 61% and 65% yields, respectively. Notably, some functional groups, such as methyl (3b, 3h, 3j), fluoro (3d), chloro (3e), and cyano (3f) groups, which were suitable for potential further functionalization, survived well in these reactions. Importantly, the diversity of the product was further increased as this procedure allow to access 4- (2naphthyl) (3I, 46%), 3- methyl (3m, 71%; 3n, 73%), propyl (3o, 70%) and phenyl (3p, 56%) of 4-aryl-2-quinolinones in moderate to good yields. In particular, the procedure was applicable to the construction of fused cyclic product. For instance, 3q could be isolated in 60% yield.

 $\begin{array}{l} \label{eq:scheme 2. Scope of N-tosylhydrazones. Reaction conditions: 1 (0.34 mmol), 2 (0.2 mmol), Pd(PPh_3)_2Cl_2 (0.02 mmol), NaO'Bu (1.2 mmol), diglyme (3.0 mL), <math display="inline">\epsilon$ 140 $^{\circ}C$ under atmospheric pressure of CO2 for 24 h, in a sealed Schlenk tube.

Next, the scope of 2-iodoanilines was also investigated. A shown in Scheme 3, the substituted 2-iodoanilines proceede smoothly with *N*-tosylhydrazone (**1a**) and atmospheric pressure c CO_2 to afford 4-aryl-2-quinolinones with substituents on the 6-, 7 and 8- position in moderate to good yields. To our delight, th substrates bearing strong electron-withdrawing groups such a cyano, nitro groups also ran smoothly under the standar conditions to afford products **4g** and **4h** in 57% and 45% yields respectively.

Scheme 3. The substrate scope of 2-iodoanilines. Reaction conditions: 1a (0.34 mmol), 2 (0.2 mmol), Pd(PPh₃)₂Cl₂ (0.02 mmol), NaO'Bu (1.2 mmol), diglyme (3.0 mL), at 140 °C under atmospheric pressure of CO₂ for 24 h, in a sealed Schlenk tube.

Some control experiments were conducted to get some insights into this transformation. Firstly, 2-(1-phenylprop-1-en-1-yl)aniline **5** (Z/E = 3/2)^[14] was employed to react with 1 atm of CO₂ in the presence of 6 equivalents of Na^tOBu and the 3-methyl-4-phenyl-2-quinolinone **3n** was isolated in 96% yield, indicating

A European Journal

Communication

ISTRY

DOI: 10.1002/chem.201xxxxx

both Z and E isomers took part in this transformation (Scheme 4a). This was consistent with the 6π -electrocyclic reaction intermediate.[15] pathway proceeding with isocyanate Subsequently, 1-iodo-2-isocyanatobenzene (6) was employed to react with 1a in the presence of Pd(PPh₃)₂Cl₂ (10 mol%) and NaO^tBu (3 equiv) under N₂ in diglyme at 140 °C for 24 h, and 3a was isolated in 43% yield (Scheme 4b), indicating the possibility of 6 serving as an intermediate (for details, see Supporting Information). Moreover, the intermolecular kinetic isotopic experiment confirmed the $k_{\rm H}/k_{\rm D}$ in methyl was 1.3. Thus, the β hydride elimination was not the rate determining step during this transformation (Scheme 4c).

Scheme 4. Mechanism study.

Scheme 5. Proposed mechanism.

Based on these experimental results, a proposed mechanism was outlined in Scheme 5. The reaction is initiated by oxidative addition of Pd^0 to 2-iodoaniline to afford Pd^{II} species **A**. Meanwhile, diazo substrate **K** is generated *in situ* from *N*-tosylhydrazone **J** with the assistance of base. After that, the reaction of **K** and Pd^{II} species **A** affords palladium carbene intermediate **B**. Subsequently, migratory insertion of aromatic

group to the carbenic carbon gives intermediate **C**, which encounters β -hydride elimination to deliver amine **E** and regenerates the Pd⁰ catalyst in the presence of base. Then, with the assistance of base, the amine **E** reacts with CO₂ rapidly, leading to carbamate **F**, which converts to isocyanate intermediate **G** by dehydration.^[16] Finally, the 6 π - electrocyclic reaction in **G** takes place towards intermediate **H**, which affords 4-aryl-2-quinolinone I via [1,5]- σ -hydrogen shift in **H**. Alternatively, before the 6 π - electrocyclic reaction of **G**, pathway involving intermediate **6** could not be thoroughly ruled out at the current stage. (for details, see Supporting Information)

In conclusion, we have developed an efficient palladium catalyzed three-component reaction between *N*-tosylhydrazones 2-iodoanilines and CO_2 , allowing to quick access a series of 4 aryl-2-quinolinones in moderate to good yields with diversity. Thi procedure tolerates some functional groups well. This protocc features with simultaneous formation of four novel bonds i.e. two C-C, one C-C double and one C-N bond in amide, representin an efficient methodology for incorporation of CO_2 int heterocycles.

Experimental Section

Experimental Details: In a glovebox, *N*-tosylhydrazone (0.34 mmol), 2 iodoaniline (0.2 mmol), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14 mg), NaO⁵Bu (1.2 mmc 115.2 mg) and diglyme (3.0 mL) was added into a 20 mL Schlenk tub equipped a Teflon cap. The reaction vessel was evacuated to about -0.1 MP (last 30 seconds per time) and backfilled with CO₂ (1 atm) in three times. Th sealed Schlenk tube was stirred at 140 °C for the desired time. After th reaction mixture was cooled to room temperature, 1 M HCl (1.5 mL) was adde to terminate the reaction. The reaction mixture was diluted with EtOAc an washed with saturated brine water. The organic layer was dried over anhydrou MgSO₄ and concentrated in vacuum. The residue was purified by flash colum chromatography on silica gel with CH₂Cl₂-ethyl acetate as eluent to give th desired product.

Acknowledgements

We thank the National Natural Science Foundation of China (nos 21272028 and 21572025), "Innovation & Entrepreneurshi Talents" Introduction Plan of Jiangsu Province, the Key Universit Science Research Project of Jiangsu Province (15KJA150001) Jiangsu Key Laboratory of Advanced Catalytic Material & Technology (BM2012110) and Advanced Catalysis and Gree Manufacturing Collaborative Innovation Center for financia supports. Sun thank the National Natural Science Foundation c China (no. 21602019), Young Natural Science Foundation c Jiangsu Province (BK20150263) for financial supports.

Keywords:	carbon	dioxide	٠	4-aryl-2-quinolinone	٠			
tosylhydrazone • multi-component reaction								

- For selected reviews on the fixation of CO₂: a) D. Yu, S. Teong, Y. Zhang, *Coord. Chem. Rev.* 2015, 293–294, 279; b) B. Yu, L.-N. He, *ChemSusChem* 2015, 8, 52; c) L. Zhang, Z. Hou, *Chem. Sci.* 2013, 4, 3395; d) K. Huang, C.-L. Sun, Z.-J. Shi, *Chem. Soc. Rev.* 2011, 40, 2435; e) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. Kuhn, *Angew. Chem., Int. Ed.* 2011, 50, 8510; *Angew. Chem.* 2011, 123, 8662; f) T. Sakakura, J.-C. Choi, H. Yasuda, *Chem. Rev.* 2007, 107, 2365.
- [2] For the participation of CO₂ in multi-component reactions towards products rather than heterocycles: a) W. Xiong, C. Qi, H. He, L. Ouyang, M. Zhang, H. Jiang, *Angew. Chem. Int. Ed.* 2015, *54*, 3084; *Angew. Chem.* 2015, *127*, 3127; b) M. Zhang, X. Zhao, S. Zheng, *Chem. Commun.* 2014, *50*, 4455; c) W. Xiong, C. Qi, Y. Peng, T. Guo, M. Zhang, H. Jiang, *Chem. Eur. J.* 2015, *21*, 14314; d) C. Qi, L. Huang, H. Jiang, *Synthesis* 2010, 1433; e) H.

CHEMISTRY A European Journal Communication

Yoshida, T. Morishita, J. Ohshita, *Org. Lett.* **2008**, *10*, 3845. f) C.-R. Qi, H.-F. Jiang, *Green Chem.* **2007**, *9*, 1284.

- [3] For the participation of CO₂ in multi-component reactions towards heterocycles: a) W.-Z. Zhang, M.-W. Yang, X.-T. Yang, L.-L. Shi, H.-B. Wang, X.-B. Lu, Org. Chem. Front. 2016, 3, 217; b) J.-N. Xie, B. Yu, C.-X. Guo, L.-N. He, Green Chem. 2015, 17, 4061; c) W.-Z. Zhang, T. Xia, X.-T. Yang, X.-B. Lu, Chem. Commun. 2015, 51, 6175; d) E. Schreiner, S. Braun, C. Kwasnitschka, W. Frank, T. Mullera, Adv. Synth. Catal. 2014, 356, 3135; e) L.-L. Zhao, S.-Y. Wang, X.-P. Xu, and S.-J. Ji, Chem. Commun. 2013, 49, 2569; f) H.-F. Jiang, J.-W. Zhao, Tetrahedron Lett. 2009, 50, 60; g) N. Eghbali, J. Eddy, P. Anastas, J. Org. Chem. 2008, 73, 6932.
- [4] a) T. Kaicharla, M. Thangaraj, A. Biju, Org. Lett. 2014, 16, 1728; b) W.-J.
 Yoo, T. Nguyen, S. Kobayashi, Angew. Chem. Int. Ed. 2014, 53, 10213;
 Angew. Chem. 2014, 126, 10377; c) H. Yoshida, H. Fukushima, J. Ohshita,
 A. Kunai, J. Am. Chem. Soc. 2006, 128, 11040.
- [5] a) P. Garcia-Dominguez, L. Fehr, G. Rusconi, C. Nevado, *Chem. Sci.* 2016, 7, 3914; b) L. Ouyang, X. Tang, H. He, C. Qi, W. Xiong, Y. Ren, H. Jiang, *Adv. Synth. Catal.* 2015, 357, 2556; c) Y. Takeda, S. Okumura, S. Tone, I. Sasaki, S. Minakata, *Org. Lett.* 2012, *14*, 4874; d) J. Zhao, H. Huang, C. Qi, H. Jiang, *Eur. J. Org. Chem.* 2012, 5665; e) S. Li, S. Ma, *Org. Lett.* 2011, *13*, 6046; f) Q. Zhang, F. Shi, Y. Gu, J. Yang, Y. Deng, *Tetrahedron Lett.* 2005, *46*, 5907.
- [6] W.-J. Yoo, C.-J. Li, Adv. Synth. Catal. 2008, 350, 1503.
- [7] C. Qi, H. Jiang, L. Huang, G. Yuan, Y. Ren, Org. Lett. 2011, 13, 5520.
- [8] For selected reviews, see: a) Q. Xiao, Y. Zhang, J. Wang, Acc. Chem. Res.
 2013, 46, 236; b) Y. Xia, Y. Zhang, J. Wang, ACS Catal. 2013, 3, 2586; c) J.
 Barluenga, C. Valdes, Angew. Chem. Int. Ed. 2011, 50, 7486; Angew. Chem.
 2011, 123, 7626; d) Z. Shao, H. Zhang, Chem. Soc. Rev. 2012, 41, 560; e) J.
 Fulton, V. Aggarwal, J. Vicente, Eur. J. Org. Chem. 2005, 1479.
- [9] For selected recent examples, please see: a) A. S. Tsai, J. M. Curto, B. N. Rocke, A.-M. R. Dechert-Schmitt, G. K. Ingle, V. Mascitti, Org. Lett. 2016, 18, 508; b) P.-X. Zhou, Y.-Y. Ye, J.-W. Ma, L. Zheng, Q. Tang, Y.-F. Qiu, B. Song, Z.-H. Qiu, P.-F. Xu, Y.-M. Liang, J. Org. Chem. 2014, 79, 6627; c) X.-X. Wu, P.-X. Zhou, L.-J. Wang, P.-F. Xu, Y.-M. Liang, Org. Lett. 2013, 15, 5080; e) Z. Chen, Q. Yan, Z. Liu, Y. Ye, Y.-M. Liang, Angew. Chem. Int. Ed. 2013, 52, 13324; Angew. Chem. 2013, 125, 13566; f) Z. Zhang, Y. Liu, L. Ling, Y. Li, Y. Dong, M. Gong, X. Zhao, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2011, 133, 4330; g) L. Zhou, F. Ye, Y. Zhang, J. Wang, J. Am. Chem. Soc. 2010, 132, 13590; h) Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang, J. Wang, J. Wang, J. Tatag, J. Wang, Angew. Chem. Int. Ed. 2010, 49, 1139; Angew. Chem. 2010, 122, 1157.

- [10] a) H. Tan, I. Houpis, R. Liu, Y. Wang, Z. Chen, Org. Lett. 2015, 17, 3548; b)
 Z. Liu, Y. Xia, S. Zhou, L. Wang, Y. Zhang, J. Wang, Org. Lett. 2013, 15, 5032; c) D. Ojha, K. Prabhu, J. Org. Chem. 2012, 77, 11027; d) E. Brachet, A. Hamze, J.-F. Peyrat, J.-D. Brion, M. Alam, Org. Lett. 2010, 12, 4042; e)
 Q. Xiao, J. Ma, Y. Yang, Y. Zhang, J. Wang, Org. Lett. 2009, 11, 4732; f) J. Barluenga, P. Moriel, C. Valdes, F. Aznar, Angew. Chem. Int. Ed. 2007, 46, 5587; Angew. Chem. 2007, 119, 5683.
- [11] a) Z. Zhang, L.-L.; Liao, S.-S. Yan, L. Wang, Y.-Q. He, J.-H. Ye, J. Li, Y.-G. Zhi, D.-G. Yu, *Angew. Chem. Int. Ed.* **2016**, *55*, 7068; *Angew. Chem.* **2016**, *128*, 7184; b) S. Wang, P. Shao, G. Du, C. Xi, *J. Org. Chem.* **2016**, *81*, 6672; c) J. Ferguson, F. Zeng, N. Alwis, H. Alper, *Org. Lett.* **2013**, *15*, 1998; d) D. Liang, Z. Hu, J. Peng, J. Huang, Q. Zhu, *Chem. Commun* **2013**, *49*, 173; e) V. Rajeshkumar, T. Lee, S. Chuang, *Org. Lett.* **2013**, *1*; 1468; f) Z. Liang, J. Zhang, Z. Liu, K. Wang, Y. Zhang, *Tetrahedron* **201**; *69*, 6519.
- [12] a) S. Sun, J.-T. Yu, Y. Jiang, J. Cheng, *Adv. Synth. Catal.* 2015, 357, 2022
 b) S. Sun, J.-T. Yu, Y. Jiang, J. Cheng, *J. Org. Chem.* 2015, *80*, 2855.
- [13] a) J. Miyashiro, K. W.Woods, C. H. Park, X. Liu, Y. Shi, E. F. Johnson, J., Bouska, A. M. Olson, Y. Luo, E. H. Fry, V. L. Giranda, T. D. Pennin, *Bioorg. Med. Chem. Lett.* 2009, *19*, 4050; b) P. Cheng, Q. Zhang, Y. B. M Z. Y. Jiang, X. M. Zhang, F. X. Zhang, J. J. Chen, *Bioorg. Med. Chem. Le* 2008, *18*, 3787; c) P. Angibaud, M. Venet, W. Filliers, R. Broeckx, Y. Lign P. Muller, V. Poncelet. D. End, *Eur. J. Org. Chem.* 2004, 479; d) F Labaudiniere, W. Hendel, B. Terlain, F. Cavy, O. Marquis, N. Dereu, , *Med. Chem.* 1992, *35*, 4306; e) K. Hino, K. Furukawa, Y. Nagai, H. Unc *Chem. Pharm. Bull.* 1980, *28*, 2618.
- [14] H. Yanai, H. Mimura, K. Kawada, T. Taguchi, Tetrahedron 2007, 63, 2153.
- [15] a) V. L. K. Valli, H. Alper, J. Org. Chem. 1995, 60, 257; b) L. Luo, M. E Bartberger, W. R. Dolbier, Jr., J. Am. Chem. Soc. 1997, 119, 12366.
 [12] W. L. L. M. L. L. L. L. C. Z. Z. Z. L. C. C. L. C. L. C. L. C. L. C. C. L. C. L. C. C. L. C. C. L. C. C. L. C. L. C. L.
- [16] a) W. Lu, J. Ma, J. Hu, Ji. Song, Z. Zhang, G. Yang, B. Han, *Green Chen* 2014, *16*, 221; b) C.-X. Guo, W.-Z. Zhang, S. Liu, X.-B. Lu, *Catal. Sc Technol.* 2014, *4*, 1570; c) T. Ishida, S. Kikuchi, T. Yamada, *Org. Lei* 2013, *15*, 3710; d)T. Kimura, H. Sunaba, K. Kamata, N. Mizuno, *Inor*, *Chem.* 2012, *51*, 13001; e) S. Peterson, S. Stucka, C. Dinsmore, *Org. Lei* 2010, *12*, 1340.

Received: ((will be filled in by the editorial staff Revised: ((will be filled in by the editorial staff Published online: ((will be filled in by the editorial staff

COMMUNICATION

A palladium-catalyzed three-component reaction between N-tosylhydrazones, 2-iodoanilines and atmospheric pressure of CO_2 was developed whereby a tandem carbene migration insertion/lactamization strategy to afford 4-aryl-2-quinolinones in moderate to good yields. Notablely, a wide range of functional groups were tolerated in this procedure. This protocol features with simultaneous formation of four novel bonds i.e. two C–C, one C=C and one C-N bonds in amide, representing an efficient methodology for incorporation of CO_2 into heterocycles.

CO₂ Fixation

Song Sun, Wei-Ming Hu, Ning Gu, Jiang Cheng* ■ ■ ■ ■

Palladium-Catalyzed Multi-Component Reactions of *N*-Tosylhydrazones, 2lodoanilines and CO₂ towards 4-Aryl-2-Quinolinones