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ABSTRACT: Herein, we present a regioselective Cu-catalyzed
oxidative allylic C(sp3)−H arylation by radical relay using a broad
range of heteroaryl boronic acids with inexpensive and readily
available unactivated terminal and internal olefins. This C(sp2)−
C(sp3) allyl coupling has the advantage of using cheap, abundant,
and nontoxic Cu2O without the need to use prefunctionalized
alkenes, thus offering an alternative method to allylic arylation reactions that employ more traditional coupling partners with
preinstalled leaving groups (LGs) at the allylic position.

The need to innovate and discover new C−C bond-
forming reactions is central in organic chemistry.1 In

contrast to the well-explored C(sp2)−C(sp2) bond-forming
reaction,2 the transition-metal-catalyzed construction of C-
(sp2)−C(sp3) has been less-described.2 Among those coupling
reactions of particular interest, allylic arylation is a powerful
and important transformation in organic synthesis to generate
an arylated stereogenic sp3-hybridized center while preserving
the olefin moiety.2b,c

For a decade, considerable attention has been devoted to the
construction of the allylarene moiety.3−10 One of the efficient
ways of constructing arylated allyl compounds is the transition-
metal- (TM) catalyzed cross-coupling reaction with organo-
metallic reagents, which proceed either through a π-allyl
intermediate or by a formal SN2′-type allylation.8a Arylboronic
acid derivatives as milder nucleophiles have emerged as
advantageous partners for the aryl−allyl coupling reaction
due to their availability, stability, excellent functional-group
compatibility, and ease of handling (Scheme 1, eq 1).8

However, these methods suffer from the use of electrophilic
substrates with preinstalled leaving groups (LGs) at the allylic
position, narrowing the scope of this transformation. To
overcome this issue, an alternative and more eco-friendly
approach is to directly convert the allylic C−H bond of alkene
feedstocks.9 Inspired by Nakamura’s fundamental work on
iron-catalyzed allylic arylation with aryl Grignard reagents,9a

Glorius and co-workers have reported the unique example of a
transition-metal-catalyzed allylic C−H arylation using aryl
boron reagents with unfunctionalized olefins by bimetallic
[RhIII]/[AgI]-catalyzed allylic C(sp3)−H activation (Scheme 1,
eq 2).9b

Along with the development of oxidative cross-couplings via
the generation of π-allyl metal intermediates,11 Cu-catalyzed
allylic C−H functionalization by hydrogen atom abstraction
(HAA), a Kharasch−Sosnosvky-type reaction,12 has emerged
as a promising approach for allylic C(sp3)−H bond

heterofunctionalization.13−15 This C−H allylic radical func-
tionalization process has been found to be highly atom- and
step-economical and has the further advantage of using cheap,
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Scheme 1. Transition Metal-Catalyzed Allylic Arylation with
Aryl Boron Reagents
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abundant, and nontoxic copper salts. However, no example so
far for the formation of allylarene units by allylic C−H
arylation has been reported via the interception of the allylic
radical formed during the HAA process from alkenes by an
ArCuII intermediate, which itself is generated by trans-
metalation from an arylboronic acid with the CuII−OR species
(Scheme 1, eq 3).16 Herein, we will present our recent research
and developments on regioselective Cu-catalyzed oxidative
allylic C−H arylation by radical relay in the presence of a vast
number of commercially available arylboronic acids within the
petrochemical feedstock of terminal and internal olefins.
We first established the reaction conditions to promote the

arylation of cyclohexene (2) with 4-methoxyphenylboronic
acid (1a) as the arylation agent (Table 1).17 To our delight,

when the previous DTBP/L1/[Cu(CH3CN)4]PF4 catalytic
system was employed in pure DMSO,16f the expected 3-
arylated cyclohexene 3a was formed in a 47% isolated yield
after 24 h at 130 °C (Table 1, entry 1). Following this
encouraging preliminary result, other copper salts were
examined. A number of CuI sources, such as CuBr, CuI,
CuOAc, CuBr·DMS, and CuOTf, were effective, but none of
them gave better results.17,18 In parallel, we were pleased to
find that CuTc and Cu2O provided better yields of 60% and
72%, respectively (Table 1, entries 2 and 3, respectively). Both
the oxidant DTBP and the solvent DMSO were crucial to
achieve the high yield. When other oxidants (Table 1, entries
4−6) and solvents (e.g., DMAc, DMF, CH3CN, and
chlorobenzene) were used,17 3A was produced in a low
yield. To circumvent the formation of the homocoupling
biphenyl byproduct and therefore further improve the yield, we
turned our attention to other ligands.17,19 In contrast to
bidentate phosphines, nitrogen-containing ligands (bipyridine
or phenanthroline-type), and N-heterocyclic carbenes,17 it

turned out that the use of tertpyridines L1 and L2 as tridentate
ligands was crucial for the reaction efficiency (Table 1, entries
7−10). Indeed, it is well-known that their strong σ-donor and
π-acceptor properties play an essential role in the stabilization
of copper(II) and copper(III) intermediates.20 Furthermore,
another important feature of the tertpyridine ligand is its ability
to assist single-electron processes, allowing copper-promoted
radical processes in catalytic processes.20 We reasoned that the
addition of extraneous base as well as the use of boronic ester
might be helpful.21 Unfortunately, these two hypotheses led to
lower yields of the desired product 3A.17 Decreasing the
catalytic Cu2O loading from 10 to 5 mol % and the ratio of
cyclohexene from 10 to 5 equiv lead to a drastic yield decrease.
The best reaction performance was attained by stretching the
reaction time from 24 to 48 h and decreasing the temperature
of the reaction from 130 to 80 °C (Table 1, entries 11 and 12,
respectively). Under these optimized reaction conditions, the
3-arylated cyclohexene 3a was produced in an 83% isolated
yield. Interestingly, the optimized protocol was also easily
scaled up from 0.5 to 5.0 mmol without a significant decrease
of the yield (80%).
With the optimized conditions in hand, we set out to probe

the scope of this Cu-catalyzed allylic C−H arylation with
different arylboronic acids 1. As shown in the Scheme 2, the

reaction appears to be relatively insensitive to the electronic
properties of the boronic acid. Indeed, para-substituted
boronic acids bearing both electron-rich (3b and 3c) and
electron-deficient (3d) arenes underwent effective coupling in
good yields. Meanwhile, 2-napthalene boronic acid 1e also
proved to be a suitable coupling partner, furnishing the
arylated product 3e in a 74% yield. Ortho- and meta-

Table 1. Optimization of the Reaction Conditionsa

entry [Cu] ligand oxidant 3a (%)

1 [Cu(NCMe)4]PF4 L1 DTBP 53 (47)b

2 CuTc L1 DTBP 72 (60)b

3 Cu2O L1 DTBP 80 (72)b

4 Cu2O L1 DCP 24
5 Cu2O L1 TBHP n.r.
6 Cu2O L1 NFSI n.r.
7 Cu2O L2 DTBP 75 (64)b

8 Cu2O L3 DTBP 32
9 Cu2O Phen DTBP 7
10 Cu2O dppf DTBP 40
11c Cu2O L1 DTBP 52
12d Cu2O L1 DTBP 92 (83)b

aReaction conditions are as follows: 1a (1 equiv), 2 (10 equiv), [Cu]
(10 mol %), ligand (10 mol %), oxidant (2 equiv), and DMSO at 130
°C. Yields were determined by crude 1H NMR using dibenzylether as
the internal standard. bIsolated yield. cThe reaction was heated at 80
°C for 24 h. dThe reaction was heated at 80 °C for 48 h; DTBP, di-
tert-butyl peroxide.

Scheme 2. Substrate Scope of Boronic Acids

aReaction conditions are as follows: 1a−q (0.5 mmol), 2 (10 equiv),
Cu2O (10 mol %), L1 (10 mol %), DTBP (2 equiv), and DMSO (1.5
mL) under N2 at 80 °C for 48 h.
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substituted phenyl boronic acids also exhibited good
reactivities to give the desired products (3f−3i) in moderate
to good yields. Di- and trisubstituted boronic acids on the aryl
ring were also compatible as coupling partners. It should be
emphasized that a high functional-group tolerance was
observed, including methyl ester (3j), ketone (3k), cyano
(3l), and halides (Br, Cl, and F; 3m−3o, respectively), which
subsequently could provide potential points for further
chemical modulation. Nevertheless, a low yield (36%) was
obtained when the electron-withdrawing substituent p-NO2
was flanked on the aromatic moiety (3p). Interestingly,
boronic acid bearing the heterocycle 1q was well tolerated
and converted to the corresponding product 3q in a 52% yield.
To further expand the scope of our methodology, the Cu-

catalyzed allylic C−H arylation of other cyclic and acyclic
alkene derivatives was investigated, as illustrated in Scheme
3.22 By varying the size of rings of the cyclic alkenes during our

studies, slightly lower yields with both electron-rich and
electron-deficient boronic acids were observed in the presence
of cyclooctene 4 and cycloheptene 5 compared to those
obtained with cyclohexene. Products 12 and 13 were produced
in 45% to 77% yields. In contrast, a drop in the yield was
observed with cyclopentene 6, since the efficiency of the
arylation is dependent on the electronic properties of the
boronic acids. Indeed, while electron-rich boronic acids 1a and
1c led to the desired products 14a and 14c in 40% and 20%
yields, respectively, allylic C−H arylation reactions with
electron-deficient boronic acids 1k, 1n, and 1i were
unsuccessful. It is noteworthy that a substrate featuring an
exocyclic double bond at the cyclohexyl ring could also be
arylated from electron-rich 1a and electron-deficient 1j boronic

acids, giving the corresponding arylated cyclohexene deriva-
tives 15a and 15j in 60% and 53% yields, respectively.
Allylbenzene derivatives 8 and 9 proved to be effective

substrates for the allylic C−H arylation reaction with both
electron-rich and electron-poor boronic acids, producing the
corresponding linear products (E)-16 and (E)-17 with (E)-
stereochemistry in moderate yields (Scheme 3). It is
noteworthy that the reaction with a noncyclic internal olefin,
such as 2-methyl-1-phenylpropene 10, worked well to give the
corresponding products (E)-18 and (Z)-18 in a 78% yield with
a ratio of 10:3, respectively. Finally, when 1-methylcyclohexene
11 was reacted with 4-methoxyphenylboronic acid, a mixture
of three products 19−21 was isolated; however, the mixture
was inseparable by flash chromatography. Among those, the
major coupling compound 19 was obtained via the reaction of
the less sterically hindered allylic C−H bond. It appears that
the regioselectivity of this allylic C−H arylation is under steric
control, thus explaining the formation of the minor arylated
exocyclic product 21 while the abstraction of this primary
allylic hydrogen is unfavored.
To obtain insight into the mechanism of allylic C−H

arylation, a stoichiometric amount of 2,2,6,6-tetramethyl-1-
piperidine (TEMPO) was used as a radical scavenger. The
arylation was completely inhibited, and the methylated
TEMPO adduct was observed.17 This result suggests that the
allylic C−H arylation proceed by a radical pathway involving
the presence of methyl radicals. Based on previous mechanism
studies of Karasch−Sosnovsky-type reactions, three mecha-
nism pathways can be considered for this transformation, as
depicted in Scheme 4. Our first mechanistic hypothesis,

pathway A, begins with the decomposition of DTBP initiated
by LCuI via a single-electron transfer (SET) reaction to
produce a tert-butoxy radical and the oxidized copper(II)
complex I, LCuII-OtBu.23 The formed tert-butoxy radical can
either decompose by β-scission into acetone and a methyl
radical, which can be trapped by TEMPO,24 or be involved in
hydrogen atom abstraction (HAA) step from an alkene to form
an allyl radical.25 In parallel, the copper(II) complex II is
generated by the transmetelation reaction of aryl boronic acid
with LCuII-OtBu (I).21 Taking into account the known
propensity of CuII complexes to react with an organic

Scheme 3. Substrate Scope of Alkenesa

aReaction conditions are as follows: 1a−q (0.5 mmol), 4−10 (10
equiv), Cu2O (10 mol %), L1 (10 mol %), DTBP (2 equiv), and
DMSO (1.5 mL) under N2 at 80 °C for 48 h.

Scheme 4. Proposed Mechanisms
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radical,21,23,26 we postulated that LCu(II)-Ar (II) could then be
oxidized by an allyl radical intermediate to yield the CuIII

species III, which delivers the final product through reductive
elimination.27,28 An alternative pathway B can also be
considered that does not involve a transmetalation step but
instead has a direct radical coupling of the allyl radical with the
aryl group, which is σ-bonded to CuII (II).29 Finally, another
possible pathway C involving an initial transmetalation
reaction of aryl boronic acid with LCuI to give LCuIAr (IV)
is also conceivable.30 This latter would then be oxidized by
DTBP to yield LCuIIAr (II) and release either a methyl radical
or a tert-butoxy radical.30 However, we think that pathway C is
less likely than pathway A or B. Indeed, as demonstrated by
Stahl in regard to the rates of the transmetalation of an aryl
group from arylboronic acids to CuII,31 our reaction with
cyclopentene 4 seems relatively sensitive to the electronic
properties of boronic acids.
In summary, we have developed a direct regioselective Cu-

catalyzed coupling of allylic C(sp3)−H bonds by radical relay
using both electron-rich and electron-deficient heteroaryl
boronic acids in the presence of inexpensive and readily
available unactivated terminal and internal olefins. This
methodology provides an unprecedented method for the
construction of allylarenes and represents an important
extension to the traditional Kharasch−Sosnovsky reaction for
the allylic C(sp3)−H functionalization. We have demonstrated
the excellent functional-group tolerance of this reaction
method as well as its good chemo- and regioselectivity with
terminal olefins. Additionally, this new C(sp2)−C(sp3) allyl
coupling has the advantage of using cheap, abundant, and
nontoxic Cu2O, and offers a compelling alternative to allylic
arylation reactions that employ more traditional coupling
partners with preinstalled leaving groups (LGs) at the allylic
position.
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