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Summary of main observation and conclusion  A new class of axially chiral aryl-alkene-indole frameworks has been designed, and the first catalytic 
asymmetric construction of such scaffolds has been established by the strategy of organocatalytic (Z/E)-selective and enantioselective (4+3) cyclization of 
3-alkynyl-2-indolylmethanols with 2-naphthols or phenols (all >95:5 E/Z, up to 98% yield, 97% ee). This reaction also represents the first catalytic 
asymmetric construction of axially chiral alkene-heteroaryl scaffolds, which will add a new member to the atropisomeric family. This approach has not 
only confronted the great challenges in constructing axially chiral alkene-heteroaryl scaffolds but also provided a powerful strategy for the 
enantioselective construction of axially chiral aryl-alkene-indole frameworks. 

 

Background and Originality Content 

Axial chirality is one important feature of nature because axially 
chiral frameworks constitute the core structures of many natural 
products,[1] pharmaceutically relevant molecules[2] and chiral 
ligands or catalysts.[3] In this context, the catalytic asymmetric 
construction of axially chiral frameworks has received intensive 
attention from scientists,[4-5] and many elegant approaches have 
been developed for the enantioselective construction of axially 
chiral biaryl[6-9] and heterobiaryl[10-11] frameworks, which have 
become the majority of the axially chiral frameworks (Scheme 1a). 

However, in sharp contrast, axially chiral alkene-arenes, as an 
important class of atropisomers, have rarely been investigated.[12] 
This is because the catalytic asymmetric construction of axially 
chiral alkene-arene frameworks is much more challenging than 
the construction of axially chiral biaryls due to the low rotational 
barriers, low configurational stability and difficulty in controlling 
the (E/Z)-selectivity and enantioselectivity.[13-14] As a result, there 
are only limited examples on the catalytic asymmetric 
construction of axially chiral alkene-arene frameworks, and all of 
these structures are confined to axially chiral styrene derivatives 
(Scheme 1b).[13-14] For example, the groups of Yan and Tan utilized 
the strategy of organocatalytic addition reactions to vinylidene 
ortho-quinone methides (VQMs).[14c-14e] In the presence of a chiral 
base or acid, 2-ethynylphenol derivatives underwent a prototropic 
rearrangement to give highly active VQM intermediates, which 
were readily attacked by nucleophiles such as sulfinate anion, 
benzenesulfonic acid and naphthols to afford axially chiral styrene 
derivatives.  

In contrast, axially chiral alkene-heteroaryl frameworks have 
scarcely been discovered in the literature,[15] and the catalytic 
asymmetric construction of such frameworks is an unknown 
chemistry, which is challenging because the rotational barrier and 
conformational stability of heteroaryl scaffolds, especially 
five-membered scaffolds, are much lower than those of 
six-membered aryls such as phenyl and naphthyl.

[4g-4h]
 Therefore, 

it has become an urgent task to design a new class of axially chiral 
alkene-heteroaryl frameworks and develop innovative methods 
for the catalytic asymmetric construction of such frameworks. 
Scheme 1 Profile of catalytic asymmetric construction of axially chiral 

frameworks and design of a new class of axially chiral alkene-heteroaryl 

frameworks 

 

 

Indole-based axially chiral skeletons have recently attracted 
increasing attention from chemists due to the unique properties 
of the indole ring and the importance of axially chiral 
indole-containing scaffolds.

[16-17]
 To fulfill the above-mentioned 

task, we designed alkene-indoles as a new class of axially chiral 
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alkene-heteroaryl frameworks (Scheme 1c). Nevertheless, there 
are great challenges in the catalytic asymmetric construction of 
axially chiral alkene-indole frameworks. For example, it is well 
known that both axially chiral alkenes and five-membered biaryls 
have low rotational barriers.[4g-4h,13-14] Accordingly, the integration 
of an alkene group with a five-membered indole ring will make 
the rotational barrier of alkene-indole frameworks extremely low, 
which will result in the very low configurational stability of such 
skeletons. Hence, it is a formidable challenge to hinder free 
rotation around the axis and generate the axial chirality of the 
alkene-indole framework. More importantly, even if the axial 
chirality of alkene-indole frameworks can be generated, how to 
construct such skeletons in a catalytic asymmetric manner and 
how to control the (E/Z)-selectivity as well as the 
enantioselectivity of the alkene-indole structures remain 
enormous challenges. 

To confront these challenges, we conceived a strategy for the 
catalytic asymmetric construction of axially chiral alkene-indole 
frameworks and avoiding free rotation around the axis (Scheme 2). 
Indolylmethanols have proven to be versatile reactants for 
constructing indole-containing scaffolds,[18-19] and based on our 
experience with indolylmethanols,[16c,17a,20] we envision that 
3-alkynyl-2-indolylmethanols as a new class of indolylmethanols 
can serve as building blocks for constructing alkene-indole 
frameworks. In detail, the incorporation of an alkyne functionality 
bearing a bulky terminal R group in the structure of 
2-indolylmethanol generates the desired C=C bond when using a 
nucleophile to attack the alkynyl group. In principle, in the 
presence of a chiral Brønsted acid (B-H*), 
3-alkynyl-2-indolylmethanols should act as 1,4-dielectrophiles 
that can be attacked by nucleophiles. When cyclic dinucleophiles 
are employed as reaction partners, a (4+n) cyclization will occur to 
construct the alkene-indole framework with axial chirality. This is 
because the steric congestion between the R group and the H 
atom as well as the constructed cyclic framework will lead to 
hindered rotation around the alkene-indole axis, thus avoiding the 
free rotation around the axis and generating the axial chirality of 
the alkene-indole framework. Although this strategy seems 
feasible, some challenging issues still remain, including (1) the 
design and synthesis of 3-alkynyl-2-indolylmethanols bearing 
suitable R/R1 groups to act as competent 1,4-dielectrophiles; (2) 
the selection of reactive dinucleophiles that can be easily 
activated by B*-H; and (3) controlling the regioselectivity of 
nucleophilic addition, the (Z/E)-selectivity of the generated alkene 
geometry and the enantioselectivity of the axially chiral 
alkene-indole framework. 
 

Scheme 2 Our strategy for constructing axially chiral alkene-indole 

frameworks 

 

To address these challenging issues, we designed a chiral 
phosphoric acid[21] (CPA)-catalyzed asymmetric (4+3) cyclization of 
3-alkynyl-2-indolylmethanols with 2-naphthols or phenols 

(Scheme 3). In the design of the 3-alkynyl-2-indolylmethanols, the 
t-Bu group was selected as a terminal bulky group for the alkyne 
functionality, which will generate steric congestion around the 
axis. In addition, the installation of two aromatic groups at the 
benzylic position of the 2-indolylmethanols will increase the 
reactivity of such reactants by stabilizing the carbocation 
intermediate. These structural features will make this class of 
3-alkynyl-2-indolylmethanols act as competent 1,4-dielectrophiles. 
In the design of the reaction, the selection of 2-naphthols or 
phenols as reactive 1,3-dinucleophiles is based on the 
consideration that these reactants can easily be activated by CPA 
to perform two nucleophilic additions on 
3-alkynyl-2-indolylmethanols, thus accomplishing the (4+3) 
cyclization to construct the axially chiral aryl-alkene-indole 
framework. CPA is a suitable B*-H because CPA can generate 
hydrogen-bonding or ion-pairing interactions with the two 
reaction partners, therefore controlling the regioselectivity, 
(Z/E)-selectivity and enantioselectivity of the reaction. 

 
Scheme 3 Design of catalytic asymmetric (4+3) cyclizations to construct 

axially chiral aryl-alkene-indole frameworks 

 

Herein, we report the design of a new class of axially chiral 
aryl-alkene-indole frameworks and the first catalytic asymmetric 
construction of such scaffolds by the strategy of organocatalytic 
(Z/E)-selective and enantioselective (4+3) cyclization of 
3-alkynyl-2-indolylmethanols with 2-naphthols or phenols 
(all >95:5 E/Z, up to 98% yield, 97% ee). 

Results and Discussion 

Initially, the reaction of 3-alkynyl-2-indolylmethanol 1a with 
2-naphthol 2a was employed to test the possibility of our design 
(Table 1). Gratifyingly, under the catalysis of CPA 4a in toluene at 
10 °C, the designed (4+3) cyclization smoothly occurred to give 
axially chiral aryl-alkene-indole product 3aa in a high yield of 87% 
and a good enantioselectivity of 86% ee (entry 1). The screening 
of BINOL-derived CPA 4 (entries 1-7) revealed that CPA 4b could 
catalyze the reaction with the highest enantioselectivity (entry 2). 
Changing the backbone of CPA 4b to H8-BINOL and SPINOL 
(entries 8-9) led to the discovery that H8-BINOL-derived CPA 5a 
was the best catalyst, which promoted the reaction with a higher 
enantioselectivity of 93% ee (entry 8). The subsequent evaluation 
of solvents (entries 8 and 10-12) found that the reaction could 
only occur in toluene and dichloroethane (entries 8 and 10), and 
toluene was better than dichloroethane in terms of controlling 
the reactivity and enantioselectivity. The variation in reaction 
temperature (entries 8 and 13-15) indicated that 30 °C was a more 
suitable reaction temperature than 10 °C with regard to the yield 
(entry 14 vs 8). Finally, slightly modulating the molar ratio of the 
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reactants (entries 16-18) led to the optimal reaction conditions 
(entry 17), which could offer axially chiral product 3aa in a high 
yield of 97% and an excellent enantioselectivity of 95% ee. 
Notably, in all cases, only the (E)-isomer of 3aa was observed, 
which implied that this reaction had a complete (E/Z)-selectivity. 

Table 1 Optimization of reaction conditions
a
 

 

entry Cat. solvent T (°C) yield (%)
b
 ee (%)

c
 

1 4a toluene 10 87 86 

2 4b toluene 10 88 88 

3 4c toluene 10 trace - 

4 4d toluene 10 69 87 

5 4e toluene 10 trace - 

6 4f toluene 10 trace - 

7 4g toluene 10 trace - 

8 5a toluene 10 91 93 

9 6a toluene 10 44 50 

10 5a DCE 10 69 77 

11 5a EtOAc 10 N.R. - 

12 5a CH3CN 10 N.R. - 

13 5a toluene -10 62 87 

14 5a toluene 30 96 93 

15 5a toluene 50 99 76 

16
d
 5a toluene 30 90 88 

17
e
 5a toluene 30 97 95 

18
f
 5a toluene 30 99 93 

a
Unless otherwise indicated, the reaction was carried out on a 0.1 mmol 

scale and catalyzed by 10 mol% 4-6 in solvent (1 mL) for 12 h, and the 

molar ratio of 1a:2a was 1:1.2. 
b
Isolated yield and only the (E)-isomer was 

observed in all cases.
 c
The ee value was determined by HPLC. 

d
The molar 

ratio of 1a:2a was 1:2. 
e
The molar ratio of 1a:2a was 1.2:1. 

f
The molar ratio 

of 1a:2a was 2:1. DCE = ClCH2CH2Cl. N.R. = No reaction. 

 
With the optimal reaction conditions known, we then studied 

the substrate scope of 3-alkynyl-2-indolylmethanols 1 for the 
construction of axially chiral aryl-alkene-indole frameworks. As 
listed in Table 2, this catalytic asymmetric (4+3) cyclization was 
amenable to a series of 3-alkynyl-2-indolylmethanols 1 with 
various R/Ar substituents at different positions, which gave rise to 
the axially chiral aryl-alkene-indole derivatives 3 in moderate to 
high yield, perfect (E/Z)-selectivity and excellent 
enantioselectivity. 

Table 2 Substrate scope of 3-alkynyl-2-indolylmethanols 1
a
 

 

entry R/Ar (1) 3 
yield 

(%)
b
 

E/Z
c
 

ee 

(%)
d
 

1 H/Ph (1a) 3aa 97 >95:5 95 

2 5-Me/Ph (1b) 3ba 69 >95:5 91 

3 5-OMe/Ph (1c) 3ca 56 >95:5 90 

4 5-Cl/Ph (1d) 3da 96 >95:5 94 

5 5-Br/Ph (1e) 3ea 87 >95:5 91 

6
e
 6-Cl/Ph (1f) 3fa 87 >95:5 89 

7 H/m-MeC6H4 (1g) 3ga 72 >95:5 90 

8 H/m-ClC6H4 (1h) 3ha 61 >95:5 89 

9 H/p-MeC6H4 (1i) 3ia 64 >95:5 93 

10 H/p-t-BuC6H4 (1j) 3ja 42 >95:5 90 

11 H/p-FC6H4 (1k) 3ka 83 >95:5 94 

12 H/p-ClC6H4 (1l) 3la 52 >95:5 90 

a
Unless otherwise indicated, the reaction was carried out on a 0.1 mmol 

scale in toluene (1 mL) at 30 °C for 12 h, and the molar ratio of 1:2a was 

1.2:1. 
b
Isolated yield. 

c
The E/Z ratio was determined by 

1
H NMR. 

d
The 

enantiomeric excess (ee) was determined by HPLC. 
e
Catalyzed by 40 mol% 

(S)-5a. 

 
Then, the generality of the 2-naphthols 2 for the construction 

of the axially chiral aryl-alkene-indole frameworks was examined. 
As shown in Table 3, a wide range of 2-naphthols 2 bearing either 
electron-donating or electron-withdrawing groups at different 
positions could serve as competent reaction partners to undergo 
the catalytic asymmetric (4+3) cyclization with 
3-alkynyl-2-indolylmethanol 1a, constructing the axially chiral 
aryl-alkene-indole scaffolds 3 in overall good yield, complete (E/Z) 
selectivity and high enantioselectivity. 

Table 3 Substrate scope of 2-naphthols 2
a
 

 

entry R (2) 3 
yield 

(%)
b
 

E/Z
c
 

ee 

(%)
d
 

1 6-Me (2b) 3ab 98 >95:5 93 

2 6-Et (2c) 3ac 75 >95:5 94 

3 6-OMe (2d) 3ad 64 >95:5 91 

4 6-Br (2e) 3ae 74 >95:5 92 

5
e
 6-CN (2f) ent-3af 76 >95:5 91 

6 6-p-OMeC6H4 (2g) 3ag 68 >95:5 97 
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7 7-OMe (2h) 3ah 84 >95:5 90 

8
f
 7-Br (2i) 3ai 79 >95:5 90 

9
g
 7-I (2j) 3aj 80 >95:5 89 

10 7-p-OMeC6H4 (2k) 3ak 97 >95:5 94 

11 7-Ph (2l) 3al 65 >95:5 94 

12 8-F (2m) 3am 55 >95:5 91 

a
Unless otherwise indicated, the reaction was carried out on a 0.1 mmol 

scale in toluene (1 mL) at 30 °C for 12 h, and the molar ratio of 1a:2 was 

1.2:1. 
b
Isolated yield. 

c
The E/Z ratio was determined by 

1
H NMR. 

d
The 

enantiomeric excess (ee) was determined by HPLC. 
e
The reaction was 

catalyzed by 30 mol% (R)-5a. 
f
The absolute configuration of product 3ai 

was determined to be (S) by single crystal X-ray diffraction analysis after 

recrystallization.
[22]

 
g
Catalyzed by 40 mol% (S)-5a. 

 
Apart from the 2-naphthols, several phenols 7 can also act as 

suitable 1,3-dinucleophiles to perform the catalytic asymmetric 
(4+3) cyclization with 3-alkynyl-2-indolylmethanols (Table 4), 
which afforded axially chiral aryl-alkene-indole derivatives 8 in 
acceptable yield, perfect (E/Z)-selectivity and excellent 
enantioselectivity. 

Table 4 Utilizing phenols 7 as substrates for the construction of axially 

chiral aryl-alkene-indole frameworks
a
 

 

a
Unless otherwise indicated, the reaction was carried out on a 0.1 mmol 

scale in toluene (1 mL) with MgSO4 (100 mg) at 30 °C for 12 h, and the 

molar ratio of 1:7 was 4:1. The yield refers to the isolated yield. The E/Z 

ratio was determined by 
1
H NMR, and the ee value was determined by 

HPLC. 
b
The molar ratio of 1:7 was 1.2:1 for 24 h. 

c
The molar ratio of 1e:7c 

was 2:1. 
 

To gain some insights into the catalytic asymmetric (4+3) 
cyclization, we performed some control experiments (Scheme 4). 
First, to investigate the possible activation mode of the chiral 
phosphoric acid on the two substrates, we employed the 
O-methyl-protected substrate 2n and N-methyl-protected 
substrate 1m for the reaction under standard conditions (Scheme 
4a). In both cases, no reaction occurred, and no one-step addition 
reaction to the alkynyl group of substrates 1 was observed. These 
results demonstrated that the OH group of substrates 2 and the 
NH group of substrates 1 played a crucial role in promoting the 
reaction, which might form hydrogen-bonding interactions with 
CPA during the reaction process. Second, to study the role of the 
diaryl groups in 3-alkynyl-2-indolylmethanols, substrates 1n and 
1o, bearing two aliphatic groups, were engaged in the reaction, 
and no reaction occurred (Scheme 4b). This outcome indicated 
that the two aromatic groups at the benzylic position are 
necessary for the high reactivity of the 

3-alkynyl-2-indolylmethanols, which might play an important role 
in stabilizing the carbocation intermediate (see page S190 of the 
Supporting Information for theoretical calculations). Therefore, 
these control experiments verified the structural features 
necessary when we began to design this new class of 
indolylmethanols for constructing axially chiral alkene-indole 
frameworks. 
 

Scheme 4  Control experiments 

 

 

From the point of the reaction mechanism, the (4+3) cyclization 
involves two nucleophilic additions of the 1,3-dinucleophile to the 
3-alkynyl-2-indolylmethanol. Therefore, in principle, there are two 
possible reaction pathways based on different sequences of the 
two nucleophilic additions. To better understand the reaction 
pathways and find the more possible one, we performed DFT 
calculations on the reaction and found two possible reaction 
pathways, A and B (Schemes 5 and 6), for the CPA-catalyzed (4+3) 
cyclization of 3-alkynyl-2-indolylmethanol 1a with 2-naphthol 2i 
(see page S132 of the Supporting Information) based on the 
previously reported theoretical calculations of CPA-catalyzed 
reactions.

[23] 

 
In possible reaction pathway A (Scheme 5), 

3-alkynyl-2-indolylmethanol 1a is suggested to transform into 
allene-iminium intermediate I via a transition state (TS-1) with an 
energy barrier of 10.51 kcal mol-1. Then, the CPA anion 
simultaneously activates both 2-naphthol 2i and intermediate I by 
hydrogen-bonding and ion-pairing interactions to promote the 
nucleophilic addition between them (TS-2), thus generating 
intermediate II with axial chirality. Intermediate II can easily 
isomerize into another intermediate, III, via TS-3 with a low 
energy barrier of 6.51 kcal mol-1 due to the force of 
rearomatization of the naphthol ring. Subsequently, CPA forms 
two hydrogen bonds with the two OH groups of intermediate III 
(TS-4) to generate carbocation intermediate IV via dehydration. 
Finally, activated again by the CPA anion, the intramolecular 
nucleophilic addition of intermediate IV (TS-5) gives rise to axially 
chiral product 3ai with the regeneration of the CPA catalyst. 
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Scheme 5  Possible reaction pathway A and calculated free energy profile 

 

 

 
 

The theoretical calculations rationalized our observations on 
the control experiments in Scheme 4. Namely, the OH group in 
substrates 2 and the NH group in substrates 1 could form 
hydrogen-bonding and ion-pairing interactions with CPA during 
the reaction process. In addition, the two aromatic groups at the 
benzylic position of 3-alkynyl-2-indolylmethanols 1 would stabilize 
the carbocation in intermediate IV, which is crucial for the 
reactivity of this new class of indolylmethanols. Overall, the 
calculated free energy profile of possible reaction pathway A is 
reasonable and feasible, which could explain the chemistry of the 
catalytic asymmetric (4+3) cyclization. Moreover, additional 
theoretical calculations and experiments also supported the role 
of the two aryl groups at the benzylic position and the possible 
reaction pathway A (see page S190 of the Supporting Information 
for details). 
 

However, in possible reaction pathway B (Scheme 6), the free 
energies of some steps are much higher than those in pathway A 

(see page S134 of the Supporting Information for detailed 
discussion). Therefore, these calculation results suggest that 
reaction pathway A has a higher probability than reaction 
pathway B. 
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Scheme 6  Possible reaction pathway B and calculated free energy profile 

 

 

 

 

 

To better understand the conformational stability of this new 
class of axially chiral aryl-alkene-indole scaffolds, we performed 
racemization studies on representative aryl-alkene-indoles 3aa 
and 3da (see page S38 of the Supporting Information for details). 
First, we investigated the effect of temperature on the 
racemization of 3aa and 3da (Scheme 7a), which indicated that 
this class of axially chiral aryl-alkene-indole scaffolds underwent 
the racemization process slowly at 40 °C or 50 °C. Second, we 
experimentally calculated the racemization barriers of 3aa and 
3da (Scheme 7b). It was found that their racemization barriers 
(28.0 kcal mol-1) are just slightly greater than 24 kcal mol-1, which 
is the required racemization barrier for isolating the individual 

atropisomers.[1f] Therefore, these results verified the formidable 
challenges in generating the axial chirality of aryl-alkene-indole 
frameworks due to the extremely low racemization barrier and 
the very low configurational stability of such skeletons. More 
importantly, the efficient control of the (Z/E)-selectivity and the 
enantioselectivity of products 3 manifested the superiority of our 
strategy for constructing axially chiral aryl-alkene-indole 
frameworks. 
 

 

 

 

 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

 

Chin. J. Chem. 2020, 38, XXX－XXX © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cjc.wiley-vch.de 7 

 Chin. J. Chem. 

Scheme 7  Racemization studies on axially chiral aryl-alkene-indole 

scaffolds 

 

In addition, one millimole scale synthesis of axially chiral 
aryl-alkene-indoles 3ae and 3ah demonstrated that this reaction 
could be scaled up (Scheme 8a). Moreover, product 3aj can be 
derived into compounds 9-12 with retained excellent 
(E/Z)-selectivity and good enantioselectivity (Scheme 8b). 
 
Scheme 8  One millimole scale reactions and derivation of product 3aj 

 

Finally, to investigate the potential bioactivity of this class of 
axially chiral aryl-alkene-indoles, compound 3ka was subjected to 
the evaluation of its cytotoxicity (Scheme 9, see page S41 of the 
Supporting Information for details). This compound displayed 
potent cytotoxicity toward several cancer cell lines, with IC50 
values ranging from 39.29 to 50.85 μg mL-1, which implied that 
this class of axially chiral aryl-alkene-indoles is promising to 
discover an application in medicinal chemistry. 

 

Scheme 9  Cytotoxicity of the axially chiral product 3ka 

 

Conclusions 

In summary, we have accomplished the design of a new class 
of axially chiral aryl-alkene-indole frameworks and the first 
catalytic asymmetric construction of such scaffolds by the strategy 
of organocatalytic (Z/E)-selective and enantioselective (4+3) 
cyclization of 3-alkynyl-2-indolylmethanols with 2-naphthols or 
phenols (all >95:5 E/Z, up to 98% yield, 97% ee). This reaction also 
represents the first catalytic asymmetric construction of axially 
chiral alkene-heteroaryl scaffolds, which will add a new member 
to the atropisomeric family. This approach has not only 
confronted the great challenges in constructing axially chiral 
alkene-heteroaryl scaffolds but also provided a powerful strategy 
for the construction of axially chiral aryl-alkene-indole frameworks 
in an enantioselective manner. In addition, this approach has 
realized the design and synthesis of 3-alkynyl-2-indolylmethanols 
as a new kind of indolylmethanols and has accomplished the first 
application of such reactants in catalytic asymmetric reactions. 
This reaction will not only contribute greatly to the chemistry of 
axial chirality and indolylmethanols but also serve as a robust 
protocol for constructing seven-membered heterocycles bearing 
axial chirality. 

Experimental 

General Procedure for the synthesis of products 3: 
To the mixture of 3-alkynyl-2-indolylmethanol 1 (0.12 mmol), 

2-naphthol 2 (0.1 mmol), catalyst (S)-5a (6.1 mg, 0.01 mmol) was 
added toluene (1 mL). Then, the reaction mixture was stirred at 
30 

o
C for 12 h. After the completion of the reaction which was 

indicated by TLC, the reaction mixture was directly purified 
through preparative thin layer chromatography on silica gel to 
afford pure product 3. 

General Procedure for the synthesis of products 8: 
To the mixture of 3-alkynyl-2-indolylmethanol 1 (0.4 mmol), 

phenol 7 (0.1 mmol), MgSO4 (100 mg), catalyst (S)-5a (18.3 mg, 
0.03 mmol) was added toluene (1 mL). Then, the reaction mixture 
was stirred at 30 oC for 12 h. After the completion of the reaction 
which was indicated by TLC, the reaction mixture was directly 
purified through preparative thin layer chromatography on silica 
gel to afford pure product 8. 
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