Sensors

Fluorescent Recognition of 1,2-Diamines by a 1,1'-Binaphthyl-Based Trifluoromethyl Ketone

Yimang Xu,^[a] Shanshan Yu,^{*[a]} Qi Chen,^[a] Xuemin Chen,^[a] Yinan Li,^[a] Xiaoqi Yu,^{*[a]} and Lin Pu^{*[a, b]}

Abstract: The fluorescent responses of a 1,1'-binaphthol (BINOL)-based trifluoromethyl aryl ketone toward a variety of amines have been studied. The aliphatic 1,2-diamines, especially ethylenediamine, can greatly enhance the fluorescence of this compound, but under the same conditions, other mono- and diamines cause much smaller fluorescent responses. This compound can be used as a fluorescent sensor for the detection of ethylenediamine at concentrations over micromolar levels. UV absorption and NMR spec-

Introduction

Aliphatic diamines are widely used building blocks in chemical synthesis with extensive applications in coordination chemistry, biochemistry, agrochemicals, dye manufacturing, and pharmaceutical industry. Among the aliphatic diamines, ethylenediamine (14) is a 1,2-diamine compound broadly used in both industrial manufacture and academic laboratories.^[1] It is used for the production of ethylenediaminetetraacetic acid (EDTA), organic flocculants, urea resins, and fatty bis-amides. It is also used in making pharmaceutical ingredients and synthetic pesticides, as an accelerator/curing agent in epoxy coatings/resins, and to construct formulations for use in the printed circuit board and metal finishing industries. The world annual production of 14 is over 500 000 tons. It is important to monitor the presence of this compound to minimize both occupational and environmental concerns. Fluorescence, as a simple and effective real-time analytical method, has been actively investigated for the detection of amines, diamines, and polyamines.^[2,3] However, fluorescent sensors capable of discriminating 1,2-diamines from other diamines are rare.^[4]

[a]	Y. Xu, Dr. S. Yu, Q. Chen, X. Chen, Y. Li, Prof. X. Yu, Prof. L. Pu
	Key Laboratory of Green Chemistry and Technology
	Ministry of Education, College of Chemistry
	Sichuan University, Chengdu 610064 (P.R. China)
	E-mail: yushanshan@scu.edu.cn
	xqyu@scu.edu.cn
[b]	Prof. L. Pu
	Department of Chemistry, University of Virginia
	McCormick Rd, CharlottesvilleVA 22904 (USA)

McCormick Rd., CharlottesvilleVA 22904 (USA) E-mail: Ip6n@virginia.edu

Supporting information for this article can be found under http://dx.doi.org/10.1002/chem.201601540.

Chem. Eur. J. 2016, 22, 1-8

Wiley Online Library

These are not the final page numbers! **77**

troscopic methods have been used to study the interactions of the sensor with ethylenediamine. These studies have demonstrated that the trifluoromethyl ketone of the sensor reacts with ethylenediamine much more favorably than with other amines. The hydroxyl groups of the sensor and those of the hemiaminal adducts formed in the presence of the amines are important for the highly selective fluorescent response.

The reversible reaction of the highly electrophilic trifluoromethyl ketones has been actively pursued for molecular recognition of amines.^[5] Recently, we reported that the 1,1'-binaphthol (BINOL)-based trifluoromethyl ketone 1 can be used for the fluorescent recognition of diamines.^[6] We found that this compound showed greatly enhanced fluorescence toward 1,2and 1,5-diamines, but much weaker response toward other diand monoamines. Thus, this compound can be used to selectively detect 1,2- and 1,5-diamines. We have conducted a structural modification of 1 and have achieved highly selective fluorescent recognition of 1,2-diamines, particularly 14, by using the newly developed fluorescent sensor. Herein, these results are reported.

Results and Discussion

1

Design and synthesis of a new 1,1'-binaphthyl-based trifluoromethyl ketone 4

Previously, we reported that when a solution of **1** in CH_2CI_2 was used to interact with aliphatic amines, diamines, such as 1,2-, 1,3-, 1,4-, and 1,5-diamines, generated much greater fluorescence enhancement than the monomer amines, such as 1-propylamine and 1-butylamine.^[6a] It was also found that **14** and 1,5-diaminopentane caused greater fluorescent enhance-

Scheme 1. Proposed reactions of 1 with ethylenediamine (14) and 1,5-diaminopentane in $\mathsf{CH}_2\mathsf{Cl}_2.$

ment than the other diamines (Scheme 1). It was proposed that fluorescence enhancement by 14 might be due to the formation of the hemiaminal intermediate 2 from the reaction with 1. Nucleophilic addition to the carbonyl groups of 1 breaks conjugation of the carbonyl groups with the naphthyl ring and disrupts the original intramolecular hydrogen bonds with the carbonyl groups, contributing to fluorescent enhancement. In addition, the hydrogen-bonding interaction provided by the central BINOL hydroxyl groups of 1, as shown in the structure of 2, should facilitate the reaction with 14 more favorably than with other amines. For the reaction with 1,5-diaminopentane, the two trifluoroacetyl groups of 1 could cooperate with each other to form the 1:1 adduct 3 as one of the possible products. This indicates that the distance between the two carbonyl groups of 1 could be important for the fluorescent recognition of diamines.

To further develop the selective fluorescent recognition of diamines, we have designed a structurally modified BINOLbased trifluoromethyl ketone **4**. Figure 1 shows an energyminimized molecular model of **4**. In this compound, one benzene ring is inserted between the central BINOL unit and each of the trifluoroacetyl groups. This structural change should increase the distance between the two trifluoroacetyl groups to make them more independent of each other in the reaction with amines. The *meta* substitution of the trifluoroacetyl groups on the benzene rings in **4** should also break conjugation between the electron-donating hydroxyl groups and the

Figure 1. Molecular model of 4.

Chem. Eur. J. **2016**, 22, 1–8

www.chemeurj.org

2

electron-withdrawing trifluoroacetyl groups. In addition, the arrangement of the functional groups of **4** should make it impossible to form intramolecular hydrogen bonds between the central hydroxyl groups and the carbonyl groups, as shown in the structure of **1**. It would be interesting to explore how these structural changes influence the fluorescent response of **4** toward amines.

Compound **4** is synthesized according to Scheme 2. Protection of (*S*)-BINOL with MOM groups gave **5** in 95% yield.^[7] Treatment of **5** with *n*BuLi followed by the addition of *i*PrOBPin produced **6** as a white solid in 85% yield.^[8] Treatment of 1,3-di-

Scheme 2. Synthesis of the BINOL derivative 4. MOM = methoxymethyl, *i*PrOBPin = 4,4,5,5-tetramethyl-1,3,2-dioxaborolane, DME = dimethoxyethane.

bromobenzene with *n*BuLi, followed by addition of ethyl trifluoroacetate, produced *m*-bromotrifluoroacetylbenzene **7** as a colorless liquid in 75% yield.^[9] The Suzuki coupling of **6** with **7** gave **8** as a white solid in 70% yield.^[8] The MOM groups of **8** were removed in the presence of HCl to generate the desired product **4** as a white solid in 90% yield. In the ¹H NMR spectrum of **4** in CDCl₃, the hydroxyl proton signal is at δ = 5.40 ppm, which is much more upfield than that of **1** at δ = 10.51 ppm. This indicates that, unlike **1**, there is no intramolecular hydrogen bond between the hydroxyl groups and carbonyl groups in **4** as we expect.

Interactions of 4 with amines

We studied the interaction of **4** with the structurally diverse amines listed in Figure 2. These included primary and secondary monoamines **9–13** and aliphatic diamines **14–17**.

Fluorescence and UV spectroscopic studies

Unlike BINOL, compound **4** gives very weak emission. When the solution of **4** $(1.0 \times 10^{-5} \text{ M} \text{ in } \text{CH}_2\text{Cl}_2)$ was treated with monoamines **9–13** $(1.0 \times 10^{-3} \text{ M})$, very little change in fluorescence was observed (Figure 3). When aliphatic diamines **14–**

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

N These are not the final page numbers!

Figure 2. Structures of various amines investigated.

Figure 3. a) Fluorescent spectra of 4 $(1.0 \times 10^{-5} \text{ m in CH}_2\text{Cl}_2)$ in the presence of amines **9–17** $(1.0 \times 10^{-3} \text{ m})$. b) Plots of fluorescent enhancement, $I_{373\text{nm}}/I_{or}$ with amines **9–17** $(1.0 \times 10^{-3} \text{ m})$. (λ_{exc} = 290 nm, slit: 5/5 nm.)

17, including 1,2-, 1,3-, 1,4-, and 1,5-diamines, were used under the same conditions, the diamine 14 caused a large fluorescence enhancement at $\lambda = 373$ nm with $l/l_0 = 125.3$, but the enhancement caused by the other diamines at $\lambda = 373$ nm were much smaller with $l/l_0 = 9.9$ for 15, 4.7 for 16, and 4.5 for 17. These experiments demonstrate that the new BINOL-based trifluoromethyl ketone 4 is a highly selective fluorescent sensor for the 1,2-diamine.

We studied the effect of the concentration of **14** on the fluorescence of **4**. As shown in Figure 4, in the diamine concentration range of $0-1.0 \times 10^{-3}$ M, the fluorescence intensity of **4** $(1.0 \times 10^{-5}$ M in CH₂Cl₂) at $\lambda = 373$ nm is linear with respect to the concentration of **14**. We further measured the fluorescence response of **4** in the presence of **14** in the concentration range of 5.0×10^{-7} – 1.0×10^{-5} M in CH₂Cl₂ (Figure S2 in the Supporting Information). It shows that **4** can be used to detect **14** at concentrations over micromolar levels.

We also explored the effect of the reaction time on the fluorescent response of **4** toward **14**. As shown in Figure S3 in the Supporting Information, the fluorescence measurements taken 30 s after mixing are very close to those taken after 4 h or 2 d. Thus, the reaction of **4** with **14** quickly led to fluorescent enhancement with only small changes over an extended reaction time.

Figure 4. a) Fluorescence spectra of **4** $(1.0 \times 10^{-5} \text{ m in CH}_2\text{Cl}_2)$ in the presence of **14.** b) Plots of I_{373nm} for **4** $(1.0 \times 10^{-5} \text{ m in CH}_2\text{Cl}_2)$ in the presence of varying concentrations of **14.** ($\lambda_{exc} = 290 \text{ nm}$, slit: 5/5 nm. The error bars are obtained with three independent measurements.)

The UV/Vis spectrum of **4** (1.0×10^{-5} m in CH₂Cl₂; Figure S5 in the Supporting Information) shows a strong absorption band at λ_{max} (ε) = 252 nm (1.110×10^5) and a weaker one at λ = 227 nm (6140). With the addition of varying concentrations of **14**, a slight decrease at λ_{max} (ε) = 252 nm (1.053×10^5) and a slight increase at λ = 227 nm (7980) were observed.

NMR spectroscopy study

We conducted ¹H and ¹⁹F NMR spectroscopic titrations of 4 with 0.5, 1.0, 2.0, and 3.0 equivalents of 14 in CDCl₃. The 10.0 mm solutions of 4 (0.5 mL) in CDCl₃ were prepared in an NMR tube. The 0.1 M solution of 14 (1 mL) in CDCl₃ was prepared in a small vial as a stock solution. The stock solutions of 14 at 25, 50, 100, and 150 μ L were added to solutions of 4 in CDCl₃ and the NMR spectra of these solutions were recorded. The ¹H NMR spectrum of **4** showed a characteristic singlet at $\delta =$ 8.47 ppm, which was assigned to the aromatic proton ortho to -COCF₃. This signal decreased with the addition of 14 as a new singlet signal at $\delta = 8.15$ ppm started to appear (Figure S7a in the Supporting Information). In the ¹⁹F NMR spectra, compound **4** gave a singlet ¹⁹F signal at $\delta = -71.22$ ppm (Figure S7b in the Supporting Information). With the addition of 14, signals at $\delta = -82.09$ (m) and -71.20 ppm appeared; these increased as the signal at $\delta = -71.22$ decreased. We also recorded the ¹⁹F NMR spectra of the above reaction mixtures after 12 d. A new signal at $\delta = -78.84$ ppm started to appear after the extended reaction time (Figure S8 in the Supporting Information).

We conducted the reaction of **4** with **14** in CH_2CI_2 at elevated temperature in the presence of 4 Å molecular sieves to ac-

Chem. Eur. J. 2016, 22, 1–8 www.chemeurj.org These are not the final page numbers! 77

3

celerate the formation of the final product. After the solution of **4** and **14** in CH₂Cl₂ was heated at reflux for 18 h, the diaminal product **18** was obtained and characterized. The ¹H NMR spectrum of **18** in CDCl₃ gives proton signals of the two aminal rings at δ =3.21 (d, *J*=5.3 Hz, 4H; CH₂), 3.11 (d, *J*= 4.8 Hz, 4H; CH₂), and 2.44 ppm (s, 4H; NH) and that of the BINOL hydroxyl signal at δ =5.49 ppm (s, 2H). The ¹⁹F NMR

spectrum of **18** gives a singlet at $\delta = -78.82$ ppm, which is the same as the second signal that appears in Figure S8 in the Supporting Information after the reaction of **4** with **14** for 12 d at room temperature. In other words, at room temperature, compound **18** was only slowly generated from the reaction of **4** with **14** over days.

Figure 5 compares the fluorescence spectrum of **18** with those of **4** and **8** at 1.0×10^{-5} M in CH₂Cl₂. It shows that the fluorescence intensity of **18** at $\lambda = 378$ nm is 372.0-fold that of **4** and 41.4-fold of that of **8**. The trifluoromethyl ketone groups of **4** and **8** greatly reduce their fluorescence. The greater fluorescence of **8** than that of **4** also indicates that the acidic protons of **4** can inhibit the fluorescence of the compound probably by excited-state proton transfer.^[10]

Figure 5. Fluorescence spectra of 4, 8, and 18 (1.0×10^{-5} m in CH₂Cl₂; λ_{exc} = 290 nm, slits: 5/5 nm).

Proposed reaction mechanism of 4 with 14

On the basis of the above experimental results and previous reports on the reaction of trifluoroacetyl groups with amines,^[5,6] a two-stage mechanism is proposed for the reaction of **4** with **14**. As shown in Scheme 3, in the first stage, diamine **14** adds to the electron-deficient carbonyl groups of **4** to generate the dihemiaminal **19**. The multiple signals at $\delta = -82.04$ ppm (m) in the ¹⁹F NMR spectrum (Figure S7b in the Supporting Information) can be assigned to the CF₃ groups of the diastereomers of **19** due to the formation of new chiral carbon centers. At elevated temperature or over an extended reaction time at room temperature, compound **19** was converted into the diaminal product **18**.

We have compared the ¹⁹F NMR spectra of **4** after treated with various diamines (3 equiv) in $CDCl_3$ for 1 h. As the results

Scheme 3. A two-stage reaction of 4 with 14.

Figure 6. ¹⁹F NMR spectra of 4 in $CDCI_3$ after being treated with various diamines (3.0 equiv) for 1 h.

in Figure 6 show, compound **4** reacted with 1,2-diamine **14** to form a significant amount of the corresponding hemiaminal product, but there was little reaction with the 1,3-, 1,4-, and 1,5-diamines. This contributes to the observed much greater fluorescence enhancement of **4** by **14**.

Interaction of 4 with 1,2-cylohexanediamine

We also studied the fluorescent responses of **4** toward the two enantiomers of *trans*-1,2-diaminocyclohexane (*R*,*R*)-/(*S*,*S*)-**20**. Similar to the interaction with **14**, both enantiomers of this 1,2-diamine greatly enhanced the fluorescence at $\lambda = 373$ nm, with *I*/*I*₀ of 66.4 and 65.7, respectively (Figure 7). The smaller fluorescence enhancement of **4** toward **20** than **14** could be attributed to the greater steric bulkiness of **20** relative to that of **14**, which makes the reaction of **20** less favorable. Unlike **1**, which shows a highly enantioselective fluorescent response toward this chiral diamine, the essentially non-enantioselective fluorescent response of **4** could be attributed to the greater

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

4

Figure 7. a) Fluorescent spectra of **4** (1.0×10^{-5} M in CH₂Cl₂) in the presence of two enantiomers (*R*,*R*)-/(*S*,*S*)-**20** (1.0×10^{-3} M) and **14** (1.0×10^{-3} M). b) Plots of fluorescent enhancement, *I*/*I*_o, for (*R*,*R*)-/(*S*,*S*)-**20** (1.0×10^{-3} M) and **14** (1.0×10^{-3} M). ($\lambda_{exc} = 290$ nm, slit: 5/5 nm.)

distance between the trifluoroacetyl groups and the chiral BINOL unit in **4**.

Comparison of 4 with 8 to probe the fluorescent response mechanism

To gain a further understanding of the fluorescent properties of **4**, we have compared this compound with its analogue, **8**. Figure 8 gives the fluorescent spectra of **4** and **8** in CH_2CI_2 . Compound **4** shows very weak emissions at $\lambda = 373$ and

Figure 8. Fluorescence spectra of 4 and 8 (1.0×10^{-5} M in CH₂Cl₂; λ_{exc} = 290 nm, slits: 5 nm/5 nm).

Chem. Eur. J. 2016, 22, 1-8

520 nm (also see Figure S2 in the Supporting Information). Protection of the BINOL hydroxyl groups of **4** in **8** increases the fluorescence intensity at $\lambda = 373$ nm by 9.0-fold. Because compound **8** does not show an emission at $\lambda = 520$ nm, this weak, long-wavelength emission of **4** can be attributed to the emission of deprotonated **4** generated by an excited-state proton transfer process.^[10] The excited-state proton transfer of **4** greatly reduces the fluorescence of **4** at $\lambda = 373$ nm in comparison with that of **8**.

We studied the fluorescent response of **8** in the presence of various amines. As the results in Figure 9 show, monoamines

Figure 9. a) Fluorescent spectra of 8 (1.0×10^{-5} m in CH₂Cl₂) in the presence of amines **9–17** (1.0×10^{-3} m). b) Plots of fluorescent enhancement, I_{373nm}/I_{or} for amines **9–17** (1.0×10^{-3} m; $\lambda_{exc} = 290$ nm, slit: 5/5 nm).

9–13 (1.0×10^{-3} M) caused little fluorescent enhancement for **8** (1.0×10^{-5} M in CH₂Cl₂). Diamines **14–17** caused various degrees of fluorescent enhancement for **8**, but 1,2-diamine **14** still gave the highest enhancement. It was found that **14** caused a large fluorescence enhancement at $\lambda = 373$ nm with $I/I_0 = 85.2$, but diamines **15**, **16**, and **17** gave lower I/I_0 values of 12.0, 33.5, and 19.9, respectively.

Because the two trifluoroacetyl groups of **8** are far away from each other, they should react with the diamines independently. The selective fluorescent enhancement of **8** toward the 1,2-diamine versus monoa-

mines and other diamines could be attributed to intramolecular hydrogen bonding between the NH₂ groups of an ethylenediamine unit and its adjacent hemiaminal hydroxyl group, as shown by **21**,

which can stabilize the nucleophilic addition product and facilitate the reaction.^[4a,11] As the distance between the two nitrogen atoms of the diamine units gets longer, it would be more difficult to generate such a hydrogen-bonding interaction.

These are not the final page numbers! **77**

www.chemeurj.org

A comparison of the results in Figures 9 and 3 demonstrates that 4 exhibits significantly higher selectivity than that of 8 in the fluorescent recognition of the 1,2-diamine over other diamines. This higher selectivity of 4 indicates that there should be additional factors besides the hydrogen-bonding interaction shown by 21. It is proposed that hydrogen-bonding interactions between the BINOL hydroxyl groups of 4 with the NH₂ groups of 14 should facilitate nucleophilic addition to the carbonyl groups to form 19 (Scheme 3). Because the distance between the BINOL hydroxyl groups of 4 and the carbonyl groups matches better with the chain length of 14 than with those of the other diamines, highly selective responses toward the 1,2-diamines are observed.

Figure 10 gives the HOMO and LUMO of 4 obtained by conducting a Hartree-Fock (HF) DFT self-consistent field (SCF) calculation (EDF2, 6-31G(D)) with the Spartan program. It shows that the HOMO of 4 is located on the central BINOL unit, but the LUMO is located on the benzene rings containing the tri-

HOMO

Figure 10. Calculated HOMO and LUMO of 4.

fluoroacetyl groups. This indicates that there should be a photoinduced electron transfer (PET) process for 4 between an electron-rich naphthol unit and an electron-deficient trifluoroacetyl benzene ring.^[12,5g] Thus, the weak fluorescence of **4** at $\lambda =$ 373 nm can be attributed to both excited-state proton transfer of the hydroxyl groups and the PET process. After 4 reacts with diamine 14 to form the aminal species, such as 19 shown in Scheme 3, the PET process is inhibited and the fluorescence of the BINOL unit is recovered to give the large fluorescence enhancement. Compound 8 should have a similar PET process between the hydroxyl-protected naphthol units and the trifluoroacetyl rings, but without excited-state proton transfer. The PET process of 8 is inhibited upon reaction with 14 to give the observed large fluorescence enhancement.

The UV spectrum of MOM derivative 8 is similar to that of 4 (Figure S4 in the Supporting Information). This is very different from what was observed when the UV spectrum of 1 was compared with that of its MOM derivative, in which the two hydroxyl groups of 1 are protected.^[6a] From the MOM derivative to the deprotected compound 1, all absorption bands undergo a redshift. In particular, the longest wavelength absorption is shifted from λ_{max} (ε) = 357 nm (3.5×10³) for the MOM derivative to $\lambda_{max} = 432 \text{ nm} (4.8 \times 10^3)$ for 1 in CH₂Cl₂. This long-wavelength absorption of 1 is attributed to a hydrogen-bonded donor-acceptor conjugation between the ortho-hydroxyl and carbonyl groups. Because there are neither hydrogen-bonding interactions nor conjugation between the donor and acceptor groups in 4, this compound gives shorter wavelength absorptions than those of 1, although it contains an extra benzene ring on each naphthalene unit. When 8 is treated with 14, the UV spectrum (Figure S6 in the Supporting Information) shows changes similar to those observed for the reaction of 4 with the diamine (Figure S5 in the Supporting Information).

Conclusions

We have demonstrated that a new BINOL-based trifluoromethyl ketone 4 can be used for the selective fluorescent recognition of aliphatic 1,2-diamines, especially 14, over other di- and monoamines. The observed large fluorescent enhancement of 4 by the 1,2-diamines enables this compound to detect 14 at low concentrations. NMR spectroscopic studies showed that the trifluoromethyl ketone of the sensor reacted with 14 much more easily than with other diamines; this contributed to the observed highly selective fluorescent response. Comparative studies of 4 and the hydroxyl-group protected 8 demonstrate that the highly selective fluorescent response of 4 toward the 1,2-diamine can be attributed to two types of hydrogen-bonding interactions provided by the BINOL hydroxyl groups of the sensor and the hemiaminal hydroxyl groups of the amine adduct.

Experimental Section

General

6

Unless otherwise noted, materials were obtained from commercial suppliers and were used without further purification. All solvents were either HPLC- or spectroscopic-grade in the optical spectroscopic studies.

Synthesis and characterization of 8

Under nitrogen, compound 5 (0.75 mmol, 0.19 g) and $[Pd(PPh_3)_4]$ (0.025 mmol, 0.029 g) were mixed in DME (20 mL) in a round-bottomed flask at room temperature. Compound 7 (0.25 mmol, 0.16 g) and a 2 м aqueous solution of Na₂CO₃ (3 mL) were added, with stirring, to the mixture. The resulting mixture was stirred and heated to reflux for 10 h, cooled to room temperature, and passed through a pad of Celite. After the solvent was evaporated, the residue was dissolved in CH₂Cl₂ (30 mL); washed with a saturated aqueous solution of NH₄Cl (15 mL), water (15 mL), and brine (3× 30 mL); and dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluted with petroleum ether/ethyl acetate (5:1) to afford 8 as a white solid (70%, 0.175 mmol, 0.125 g). $[\alpha]_D = 70.2$ (c = 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.45$ (s, 2 H), 8.17 (d, J =7.7 Hz, 2 H), 8.10 (d, J=7.5 Hz, 2 H), 8.00 (s, 2 H), 7.94 (d, J=8.1 Hz, 2H), 7.68 (t, J=7.8 Hz, 2H), 7.47 (t, J=7.2 Hz, 2H), 7.37-7.29 (m, 4H), 4.39 (d, J=5.8 Hz, 2H), 4.35 (d, J=5.9 Hz, 2H), 2.39 ppm (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.25$ ppm (s, 6 F);

www.chemeurj.org

© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

¹³C{¹H} NMR (101 MHz, CDCl₃): *δ* = 180.5 (q, *J* = 35.2 Hz), 151.1, 140.2, 137.0, 133.9, 133.7, 131.0, 130.82, 130.75, 130.2, 129.0, 128.9, 128.1, 127.0, 126.5, 126.3, 125.7, 116.7 (q, *J* = 192.6 Hz), 98.8, 56.0 ppm; HRMS: *m/z* calcd for $C_{40}H_{28}F_6O_6Na$ [*M*+Na]⁺: 741.1688; found: 741.1680.

Synthesis and characterization of 4

After compound $\boldsymbol{8}$ (0.175 mmol, 0.125 g) was dissolved in $CH_2Cl_2/$ MeOH (20 mL/20 mL), HCI (4 mL, 12 N in water) was added slowly, and the mixture was stirred at room temperature, overnight. A saturated aqueous solution of NaHCO3 was added to quench the reaction. The organic layer was separated, and the aqueous layer was extracted with dichloromethane (3×30 mL). The combined organic extracts were washed with brine $(3 \times 30 \text{ mL})$ and dried over Na₂SO₄. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluted with petroleum ether/ethyl acetate (5:1) to afford compound 4 as a white solid (90%, 0.158 mmol, 0.100 g). $[\alpha]_D = -71.2$ (c = 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl_3): $\delta\!=\!8.47$ (s, 2 H), 8.15–8.07 (m, 6 H), 7.98 (d, J= 7.9 Hz, 2 H), 7.67 (t, J=7.8 Hz, 2 H), 7.48-7.43 (m, 2 H), 7.42-7.36 (m, 2H), 7.24 (d, J=8.4 Hz, 2H), 5.37 ppm (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -71.22 \text{ ppm}$ (s, 6F); ¹³C(¹H) NMR (101 MHz, CDCl₃): $\delta =$ 180.5 (q, J=35.2 Hz), 150.1, 138.7, 136.8, 133.1, 132.1, 131.2, 130.0, 129.4, 129.2, 129.0, 128.8, 128.7, 128.2, 124.9, 124.0, 116.7 (q, J= 292.6 Hz), 111.8 ppm; HRMS: *m/z* calcd for C₃₆H₂₀F₆O₄ [*M*]⁻: 629.1188; found: 629.1182.

Synthesis and characterization of 18

After compound 4 (0.1 mmol, 0.063 g) was dissolved in CH₂Cl₂ (30 mL), dry 4 Å molecular sieves was added. Compound 14 (1 mmol, 0.060 g) was added, with stirring, to the mixture. The resulting mixture was stirred and heated at reflux for 18 h. It was then cooled to room temperature, and passed through a filter paper. After evaporation of the solvent, the residue was purified by column chromatography on silica gel eluted with petroleum ether/ ethyl acetate (1:1) to afford compound 18 as a white solid (32%, 0.032 mmol, 0.023 g). $[\alpha]_{D} = -30.2$ (c = 0.13, CHCl₃); ¹H NMR (400 MHz, CDCl₃): $\delta = 8.07$ (s, 2 H), 8.04 (s, 2 H), 7.93 (d, J = 8.0 Hz, 2H), 7.75 (d, J=7.7 Hz, 2H), 7.67 (d, J=7.8 Hz, 2H), 7.50 (t, J= 7.8 Hz, 2 H), 7.43–7.37 (m, 2 H), 7.37–7.30 (m, 2 H), 7.21 (d, J= 8.4 Hz, 2 H), 5.49 (s, 2 H), 3.21 (d, J=5.3 Hz, 4 H), 3.11 (d, J=4.8 Hz, 4H), 2.44 ppm (s, 4H); ¹⁹F NMR (376 MHz, CDCl₃) $\delta = -78.82$ ppm (s, 6F); ${}^{13}C{}^{1}H$ NMR (101 MHz, CDCl₃): $\delta = 150.2$, 138.6, 137.7, 133.0, 131.7, 130.3, 130.1, 129.5, 128.6, 128.2, 127.7, 127.5, 126.1, 124.6, 124.2, 112.3, 83.3 (q, J=28.6 Hz), 46.9 ppm; HRMS: m/z calcd for C₄₀H₃₂F₆O₄ [*M*]⁻: 713.2351; found: 713.2351.

Preparation of samples for fluorescent measurement for interactions with the diamines and monoamines

Stock solutions of 1.0 mm **4** and **8** in CH₂Cl₂ were freshly prepared for each measurement. For the fluorescent enhancement study, a solution of **4** or **8** (10^{-5} m, 2.5 mL) was mixed with various equivalents of solutions of the di- or monoamine (50 mm in CH₂Cl₂) in a 3.5 mL test tube. The resulting solution was allowed to stand at room temperature for 30 s and the fluorescent spectra were recorded within 1 h.

Acknowledgements

This work was financially supported by the National Science Foundation of China (grant nos. 21502127, 21232005, J1103315, and J1310008) and the National Program on Key Basic Research Project of China (973 Program, 2013CB328905).

Keywords: amines • fluorescence • molecular recognition • sensors • trifluoromethyl ketones

- a) K. Eller, E. Henkes, R. Rossbacher, H. Höke, Amines, Aliphatic in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim;
 b) R. Cary, S. Dobson, J. Delic, 1,2-Diaminoethane (Ethylenediamine): Concise International Chemical Assessment Document 15, World Health Organization, Geneva, 1999.
- [2] a) G. J. Mohr, Chem. Eur. J. 2004, 10, 1082–1090; b) E. K. Feuster, T. E. Glass, J. Am. Chem. Soc. 2003, 125, 16174–16175; c) G. Lu, J. E. Grossman, J. B. Lambert, J. Org. Chem. 2006, 71, 1769–1776; d) P. L. McGrier, K. M. Solntsev, S. Miao, L. M. Tolbert, O. R. Miranda, V. M. Rotello, U. H. F. Bunz, Chem. Eur. J. 2008, 14, 4503–4510; e) Y. Zhou, J. Yoon, Chem. Soc. Rev. 2012, 41, 52–67.
- [3] For fluorescent sensing of polyamines, see: a) B. Bao, L. Yuwen, X. Zheng, L. Weng, X. Zhu, X. Zhan, L. Wang, J. Mater. Chem. 2010, 20, 9628–9634; b) S. Koersten, G. J. Mohr, Chem. Eur. J. 2011, 17, 969–975; c) M. Ikeda, T. Yoshii, T. Matsui, T. Tanida, H. Komatsu, I. Hamachi, J. Am. Chem. Soc. 2011, 133, 1670–1673; d) A. Satrijo, T. M. Swager, J. Am. Chem. Soc. 2007, 129, 16020–16028; e) J. T. Fletcher, B. S. Bruck, Sens. Actuators B 2015, 207, 843–848.
- [4] a) K. Azuma, Y. Kinoshita, R. Monobe, T. Miyatake, S. I. Sasaki, *Tetrahedron* 2013, *69*, 1987–1993; b) M. Nakamura, T. Sanji, M. Tanaka, *Chem. Eur. J.* 2011, *17*, 5344–5349; c) Y. K. Kim, S. H. Son, T. S. Lee, *Mol. Cryst. Liq. Cryst.* 2014, *600*, 179–188.
- [5] For selected reports on using trifluoromethyl ketones in the molecular recognition of amines, see: a) G. J. Mohr, C. Demuth, U. E. Spichiger-Keller, Anal. Chem. 1998, 70, 3868–3873; b) G. J. Mohr, N. Tirelli, C. Lohse, U. E. Spichiger-Keller, Adv. Mater. 1998, 10, 1353–1357; c) E. Mertz, S. C. Zimmerman, J. Am. Chem. Soc. 2003, 125, 3424–3425; d) S. Reinert, G. J. Mohr, Chem. Commun. 2008, 2272–2274; e) M. Matsui, K. Yamada, K. Funabiki, Tetrahedron 2005, 61, 4671–4677; f) S.-I. Sasaki, Y. Kotegawa, H. Tamiaki, Tetrahedron Lett. 2006, 47, 4849–4852; g) D. Ryu, E. Park, D.-S. Kim, S. Yan, J. Y. Lee, B.-Y. Chang, K. H. Ahn, J. Am. Chem. Soc. 2008, 130, 2394–2395; h) S. Sambasivan, D.-S. Kim, K. H. Ahn, Chem. Commun. 2010, 46, 541–543.
- [6] a) S. S. Yu, W. Plunkett, M. Kim, E. Wu, M. Sabat, L. Pu, J. Org. Chem. 2013, 78, 12671–12680; b) S. S. Yu, W. Plunkett, M. Kim, L. Pu, J. Am. Chem. Soc. 2012, 134, 20282–20285.
- [7] a) H. Kitajima, Y. Aoki, K. Ito, T. Katsuki, Chem. Lett. 1995, 1113; b) P. J. Cox, W. Wang, V. Snieckus, Tetrahedron Lett. 1992, 17, 2253.
- [8] H.-B. Yu, Q. S. Hu, L. Pu, J. Am. Chem. Soc. 2000, 122, 6500-6501.
- [9] a) B. M. Trost, L. Debien, J. Am. Chem. Soc. 2015, 137, 11606-11609;
 b) T. Mayer, M. E. Maier, Eur. J. Org. Chem. 2007, 4711-4720.
- [10] a) M. Ofran, J. Feitelson, *Chem. Phys. Lett.* **1973**, *19*, 427–431; b) J. Lee,
 R. D. Griffin, G. W. Robinson, *J. Chem. Phys.* **1985**, *82*, 4920–4925; c) K.-Y.
 Law, J. Shoham, *J. Phys. Chem.* **1994**, *98*, 3114–3120.
- [11] E. Mertz, J. B. Beil, S. C. Zimmerman, Org. Lett. 2003, 5, 3127-3130.
- [12] A. P. de Silva, H. Q. N. Gunaratne, T. Gunnalaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.* **1997**, *97*, 1515–1566.

Received: April 2, 2016 Published online on

7

FULL PAPER

Sensors

Y. Xu, S. Yu,* Q. Chen, X. Chen, Y. Li, X. Yu,* L. Pu*

Fluorescent Recognition of 1,2-Diamines by a 1,1'-Binaphthyl-Based **Trifluoromethyl Ketone**

OH OH COCF₃ 4 Detecting amines: A trifluoromethyl

COCF₃

NH₂

ketone molecule is found to exhibit large fluorescent enhancement in the presence of 1,2-diamines, especially ethNH₂ large fluorescence enhancement

high sensitivity and selectivity

ylenediamine (see scheme). Other amines, including mono- and diamines, have much smaller effects on the fluorescence of this compound.