JOC The Journal of Organic Chemistry

Total Synthesis of (-)-Phomoarcherin C

Dattatraya Hanumant Dethe, and Boda VijayKumar

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b02206 • Publication Date (Web): 10 Oct 2019

Downloaded from pubs.acs.org on October 13, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Total Synthesis of (-)-Phomoarcherin C

Dattatraya H. Dethe*^a and Boda VijayKumar^a

*Department of Chemistry, Indian Institute of Technology, Kanpur, 208016, India.

*Email:ddethe@iitk.ac.in

ABSTRACT: A full account on the first total synthesis of chroman meroterpenoid, (-)phomoarcherin C has been described. Key synthetic transformations include phenyl boronic acid mediated 6π -electrocyclization reaction, a stereospecific hydrogenation driven by thermodynamic, conformational stability of the product and regioselective formylation. The strategy employed is considerably short, atom economical and can open the doors to provide access to various other natural products of the kind.

INTRODUCTION

Terpenoids constitute most diversified and the largest class of metabolites derived from plants and fungi.¹ Meroterpenoids, a subclass of terpenoids, are molecules with part of their structure derived from terpenoid unit. Like many other natural sources, fungi have been rich source of secondary metabolites including meroterpenoids.² For instance, endophytic fungi belonging to the genus *Phomopsis*, is an ample source of bioactive natural products.³ Recently, three new sesquiterpenes, phomoarcherins A-C (**1-3**), were isolated from *phomopsis archeri*.⁴ Phomoarcherins are tetracyclic terpenes containing an orcinol or an aromatic lactone moiety. All these phomoarcherins were tested and proven to show moderate to excellent anticancer properties. Most notably, phomoarcherin B (**2**) showed prominent activity against human cholongiocarcinoma cell lines, KKU-M139 (with IC₅₀ value 0.1 μ g/mL) and KKU-M156 (with IC₅₀ value 2.0 μ g/mL), which is very much comparable with the control drug, ellipticine. In addition, the compound showed prominent antimalarial activity with IC₅₀ value 0.79 μ g/mL.⁵ Phomoarcherins are tetracyclic skeletons containing a characteristic *trans*-A/B decalin system fused with a dihydrobenzopyran framework with *cis*-B/C ring junction (Figure 1).

Figure 1: Meroterpenoid families of natural products

Presence of a benzopyran fused mono/sesqui terpenoid unit with a *cis* stereochemistry at the B/C ring junction makes these natural products challenging and interesting targets for synthetic community. There are several reports addressing the synthesis of such type of molecular frameworks such as total syntheses of puupehenol (4) and puupehenone (5),⁶ (+)-*ent*-chromazonarol (6),⁷ (-)-chromazonarol (7),⁸ and hongoquercin A (8).⁹ We also have recently reported total synthesis of hongoquercins A (8) and B (9), (+)-8-*epi*-puupehediol (10) and (+)-*epi*-chromazonarol (11).¹⁰ But almost all of these methods are to construct the *trans*-B/C fused skeleton. To our knowledge, there are very few reports to synthesize such scaffolds. Although, they are indirect methods requiring more number of steps to achieve *cis*-B/C stereochemistry.¹¹ Therefore there has been an unmet need of developing novel strategy which provides a direct access to these kinds of molecules in a much efficient manner.

Scheme 1: Unsuccessful attempts towards the synthesis of phomoarcherin core

RESULTS AND DISCUSSION

In continuation to our ongoing research interest in total synthesis of natural products having tetrahydro benzopyran/chromane core,¹² we became interested to develop an efficient synthetic strategy that gives access to phomoarcherin family of natural products also. Typically, chromanes are outcomes of hetero Diels-Alder reaction (HDA) between *o*-quinone methide and an appropriate olefin.¹³ We have reasoned that an HDA between appropriate *o*-quinone methides

and olefins would be a perfect synthetic tool to achieve the core skeleton of the aforementioned natural products. *O*-quinone methides are transient and highly reactive due to their extreme tendency to undergo rearomatization reacting either by Michael addition fashion with nucleophiles or by a cycloaddition with 2π systems to yield benzopyrans.¹⁴

Scheme 2: Retrosynthetic analysis to execute 6π-electrocyclization

Scheme 3: Unsuccessful attempt of 6π -electrocyclization to give tetracyclic core

Table 1: Optimization of 6π-electrocyclization reaction

S. N.	Reagent	Additive	Solvent	Conc. mL/mm ol	Time (h)	Temp (°C)	Yield
1	Pyridine				24	115	trace
2	PhB(OH) ₂	CH ₃ CH ₂ CO ₂ H (20 mol%)	Toluene	5	24	110	20
3	PhB(OH) ₂	CH₃CO₂H (20 mol%)	Toluene	5	24	110	15
4	PhB(OH)₂	PhCO₂H (20 mol%)	Benzene	5	15	80	30
5	PhB(OH) ₂	PhCO₂H (20 mol%)	Toluene	5	15	110	35

6	PhB(OH)₂	PhCO₂H (20 mol%)	Xylene	5	15	140	33	
7	PhB(OH) ₂	PhCO₂H (50 mol%)	Toluene	5	15	110	40	
8	PhB(OH)₂	PhCO₂H (50 mol%)	Toluene	5	15	160 (seal tube)	40	
9	PhB(OH) ₂	PhCO₂H (50 mol%)	Toluene	0.5	15	110	60	

a = All the reaction were carried out taking 1 equivalent of PhB(OH)₂

Over the years, many research groups have been engaged in developing new and efficient strategies to generate *o*-quinone methides.¹⁵ One among such methods constitutes a Knoevenagel condensation of phenolic derivative and an aldehyde in basic medium to generate various *o*-quinone methides. In this respect, it was conceived that members of phomoarcherin family of natural products could be targeted by using terpenoids in combination with appropriate *o*-quinone methides by HDA strategy. Unfortunately, our initial attempts to operate HDA reactions between olefin **13**, prepared from a known ketone **12**,¹⁶ and precursors of *o*-quinone methides (**14a** or **14b**) were unsuccessful to generate the desired benzopyran products resulting in the decomposition of aryl partners (**14a** or **14b**) with the olefin left unreacted in the reaction mixture (Scheme 1). We attribute these results to the low reactivity of olefin **13** due to severe steric hindrance exerted by methyl groups from either sides of the double bond.

This prompted us to adopt a different strategy. In this context, we believed that an electrophilic activation property of aryl boronic acids¹⁷ may promote a $\delta\pi$ -electrocyclization¹⁸ between intermediate **16** and **17** through the formation of an intermediate with required $\delta\pi$ -electronic system (Scheme 2). Advantages with alkyl boronic acid catalysis are i) they are considerably less toxic, ii) they are mild *Lewis* acids with wide range of chemical properties and iii) most of them are air stable with extended shelf lives. Aryl boronic acids are known to be important in many crucial chemical transformations.¹⁹ Barrero *et al.* has reported an efficient synthesis of puupehedione and related compounds employing $\delta\pi$ -electrocyclization.²⁰ Therefore we have envisioned that aryl boronic acids can activate the carbonyl compounds enabling them to get attacked by a nucleophile such as ocinol derivative **16** in our case. Accordingly, compound **17** was prepared from olefin **13** through Vilsmeier-Haack formylation. Then a reaction was set up between enal **17** and orcinol derivative **16** using phenyl boronic acid (1 *equiv.*), benzoic acid (20 mol%) as co-catalyst in toluene at 110 °C (Scheme 3). There was no any reaction occurred

even after prolonged heating for up to 24 h resulting in unreacted starting compounds left over in the reaction mixture. This is might be due to the deactivation of compound **16** by electron withdrawing formyl group.

Scheme 4: Schematic explanation for the stereoselective hydrogenation

Scheme 5: Completion of total synthesis of phomoarcherin C (3)

Eventually, orcinol **18** was employed in the same reaction with enal **17** in presence of phenyl boronic acid (1 *equiv.*) and benzoic acid (20 mol%). This time, to our delight, a 7:3

diastereomeric mixture of annulation products **19a** and **19b** was formed in 30% combined yield (Table 1). Phenyl boronic acid might be activating the enal **17** to form a boronate intermediate which upon disproportionation forms an intermediate with perfect 6π -electronic system that readily underwent electrocyclization to give the cyclic products (**19a** and **19b**). The two isomers differ in stereochemistry at C-8 methyl group and were inseparable by silica gel column chromatography. In order to improve the yield, we sought to screen several bronsted acid and solvent systems, keeping the phenyl boronic acid constant (Table 1) and found that the reaction at high concentration was affording highest conversion rate with best yield i.e. 60%. We proceeded for next step with the mixture of diastereomers.

Compounds 19a and 19b were then subjected to a Pd-C hydrogenation protocol to reduce the double bond and also to deprotect the benzyl group in one-pot. Only two diastereomeric diols 20a and 20b were obtained instead of four. Formation of 20b is essentially because of the preferential α -face addition of hydrogen onto the double bond of **19a** which would be governed by the steric hindrance posed by both $C8-\beta$ -Me and $C10-\beta$ -Me present on either sides of the double bond.²¹ On the other hand, diastereomer **20a** might be forming through a preferential α face addition of hydrogen onto the double bond of 19a. In this case, addition of hydrogen could not be completely governed by the C10- β -Me. Because, among the two adjacent angular methyl groups, C8-Me is in α -face and the C10-Me is in β -face. At this juncture, the formation of 20a can be rationalised by the kinetic control of the reaction. If the hydrogen adds onto the double bond of the substrate **19a**, through β -face, it would generate a high energetic transition state with twist boat conformation in the ring-D. Therefore addition of the hydrogen onto the double bond of 19a was taking place preferentially through the α -face to produce the tetracyclic skeleton with a thermodynamically stable trans-anti-cis A/B/C system (Scheme 4). This observation confirms the stereochemistry and relative configuration of the major isomer 20a as 3S, 5R, 8S, 9R and 10S. At this stage, fortunately, the two diastereomers 20a and 20b were separated by careful silica gel column chromatography. In order to perform formylation on the aromatic ring, anticipating that both the free aliphatic and aromatic OH groups would possibly interfere, they were protected successively as acetyloxy and methoxy groups to get compound 22. A Vilsmeier-Haack formylation on the compound 22 afforded aldehyde 23 in 75% yield. BBr₃ mediated methoxy deprotection was always a disappointment resulting in either decomposition or benzopyran ring opening reaction of 23. Alternatively a reaction using excess of sodium ethyl

thiolate, to our delight, resulted in the deprotection of not only the methoxy group but also the acetyl group to afford dihydroxy compound 24 which was directly preceded for next step without further purification. IBX oxidation of 24 afforded the natural product, (-)-phomoarcherin C (3) in 65% yield (Scheme 5). Spectroscopic data and optical rotation of synthesized 3 was identical with those of isolated natural product (Tables S1-S3; see supporting information).

In conclusion, a structurally intriguing benzopyran natural, Phomoarcherin C has been synthesized for the first time in considerably concise route. A 6π -electrocyclization strategy catalysed by boronic acid-bronsted acid co-catalyst system was employed for the synthesis of the natural product in 9 steps from the known ketone **12** in 29.83 % overall yield. With the synthesis of this natural product, we have, in addition to confirming the structure of the molecule, also established its absolute configuration.

EXPERIMENTAL SECTION

General Information: All reactions were carried out under nitrogen atmosphere with dry solvents under anhydrous conditions unless otherwise mentioned. All the chemicals and reagents used were purchased commercially, and used without further purification. Anhydrous diethyl ether was prepared by distilling from sodium - benzophenone. Dichloromethane was distilled from calcium hydride. DMF was distilled from dry KOH. Yields refer to chromatographically pure material, unless otherwise stated. Reactions were monitored by Agilent Infinite Series LC-MS and thin layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV-light as a visualizing agent and *p*-anisaldehyde stain as coloring agent, and heat as developing agent. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography. NMR spectra were recorded on JEOL ECX 500 (¹H: 500 MHz, ¹³C: 125 MHz) in CDCl₃ having TMS 0.03% as internal standard. EI-MS/ESI-MS was recorded on a Waters Micromass Quattro Micro triplequadrupole mass spectrometer.

The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublet, ddd = doublet of a doublet of a doublet, dt = doublet of a triplet, td = triplet of a doublet, m = multiplet, br = broad.

Preparation of (38,8aR)-3-(benzyloxy)-4,4,7,8a-tetramethyl-1,2,3,4,4a,5,6,8a-octahydro naphthalene (13):

Ketone **12** (314 mg, 1 mmol) was dissolved in MeOH (5 mL) and cooled to 0 °C. NaBH₄ (113 mg, 3 mmol) was added in portion wise to the above mixture at the same temperature. Once the addition of NaBH₄ is over, the reaction mixture was stirred for 10 min at the same temperature and reaction progress was monitored by TLC. Methanol was evaporated under reduced pressure followed by the addition of ice cold water (10 mL) and DCM (10 mL). Organic layer was separated through separating funnel. Aqueous layer was extracted twice (2 x 10 mL) with DCM. Combined organic layers were washed with brine, dried over NaSO₄, evaporated to obtain the crude alcohol which was preceded for the next step without further purification.

The above crude alcohol was dissolved in pyridine (5 mL) and cooled to 0 °C, prior to the gentle addition of POCl₃ (0.28 mL, 3 mmol). Reaction mixture was slowly allowed to attain room temperature then refluxed for 5 h. Once the reaction is completed as monitored by TLC, crushed ice was added to quench unreacted POCl₃ followed by extracting the reaction mixture with DCM (2 x 10 mL). The combined organic layers were washed initially with 1N HCl to remove pyridine, then with brine. Organic layer was dried over NaSO₄, evaporated to get crude olefin **13** which was purified by silica gel column chromatography using hexane/EtOAc (99:1) to get pure olefin **13** as colorless oil. Yield = 149 mg (50% over two steps). R_f = 0.5 in 100% hexane; ¹H **NMR** (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 5.06 (d, *J* = 1.4 Hz, 1H), 4.68 (d, *J* = 11.9 Hz, 1H), 4.44 (d, *J* = 11.9 Hz, 1H), 2.96 (dd, *J* = 11.6, 4.4 Hz, 1H), 2.00 – 1.82 (m, 3H), 1.73 – 1.65 (m, 1H), 1.59 (s, 3H), 1.52 – 1.42 (m, 2H), 1.20 (td, *J* = 13.4, 3.9 Hz, 2H), 1.05 (d, *J* = 2.0 Hz, 1H), 1.01 (s, 3H), 0.94 (s, 3H), 0.86 (s, 3H); ¹³C **NMR** {¹H} (100 MHz, CDCl₃) δ 139.6, 135.2, 130.4, 128.3, 128.3, 127.6, 127.6, 127.3, 87.0, 71.6, 58.3, 50.7, 38.8, 37.9, 35.1, 32.0, 23.6, 23.3, 21.7, 18.9, 16.4; **HRMS (ESI)** *m/z* calcd. for C₂₁H₃₁O [M+H]⁺299.2375, found 299.2368.

Preparation of 6-(benzyloxy)-2,5,5,8a-tetramethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde (17):

To an ice cold DMF (1.9 mL, 50 mmol), was added slowly, POCl₃ (0.07 mL, 1.5 mmol) and the mixture was stirred vigorously under inert atmosphere at 0 °C for 30 minutes until a thick colorless syrup has formed. To this syrup, was added a solution of compound **13** (150 mg, 0.5 mmol) in 0.5 mL of dry DMF under inert atmosphere. The reaction mixture was stirred for 30

minutes at room temperature and reaction progress was monitored by TLC, after which, it was poured into crushed ice and then extracted with EtOAc twice (2x10 mL).

The combined organic layers were dried over NaSO₄, evaporated to get crude **17** which was purified by silica gel column chromatography using hexane/EtOAc (9:1) to get pure aldehyde **17** as colorless oil. Yield = 82 mg (51%). R_f = 0.5 in 10% EtOAc in hexane; ¹H NMR (400 MHz, CDCl₃) δ 10.04 (s, 1H), 7.35 – 7.32 (m, 5H), 4.69 (d, J = 11.9 Hz, 1H), 4.42 (d, J = 11.9 Hz, 1H), 2.95 (dd, J = 11.8, 4.4 Hz, 1H), 2.68 (dt, J = 13.4, 3.5 Hz, 1H), 2.33 – 2.25 (m, 2H), 2.04 (s, 3H), 1.90 (ddd, J = 10.6, 7.6, 3.6 Hz, 2H), 1.73 (ddd, J = 7.6, 4.0, 2.3 Hz, 2H), 1.64 – 1.56 (m, 2H), 1.19 (s, 3H), 1.02 (s, 3H), 0.88 (s, 3H); HRMS (ESI) *m*/*z* calcd. for C₂₁H₃₁O [M+H]⁺ 227.2324, found 227.2332.

Preparation of (3S,4aR,6aS,12aR,12bS)-4,4,6a,9,12b-pentamethyl-2,3,4,4a,5,6,6a,12, 12a,12b-decahydro-1*H*-benzo[a]xanthene-3,11-diol (20a) and (3S,4aR,6aR,12aR,12bS)-4,4,6a,9,12b-pentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1*H*-benzo[a]xanthene-3,11diol (20b):

A mixture of aldehyde **17** (326 mg, 1 mmol), orcinol **18** (196 mg, 1.5 mmol), PhB(OH)₂ (122 mg, 1 mmol) and PhCO₂H (61 mg, 0.5 mmol) were taken in 0.5 mL of dry toluene and refluxed for 15 h under nitrogen atmosphere. Once the aldehyde was consumed as monitored by TLC, reaction mixture was diluted with 2 mL of DCM, absorbed on silica gel and directly purified by column chromatography using hexane/EtOAc (99:1 to 95:5) to get 7:3 mixture of diastereomers **19a** and **19b** as colorless oil. Yield = 206 mg (60% combined yield for **19a** and **19b**). Yield = 149 mg (50% over two steps). $R_f = 0.5$ in 5% EtOAc-hexane. Since the diastereomers were inseparable by column chromatography, next reaction was done on the mixture of diastereomers.

A mixture of **19a** and **19b** was dissolved in EtOH at room temperature and added with 300 mg of Pd/C (10 %) (2 w/v with respect to the starting compound) and stirred under hydrogen pressure (applied with balloon) for 15 h. Once the reaction was completed as monitored by TLC, palladium charcoal was filtered off and the solvents were evaporated to get crude product. Purification was done by silica gel column chromatography using hexane/EtOAc (97:3 to 90:10) to get 71 mg of **20a**, Yield = 60%, and 30 mg of **20b**, Yield = 25%.). $R_f = 0.3$ in 20% EtOAchexane.

Spectroscopic data of major compound 20a: ; $[\alpha]_D^{28} = -4.22$ (c 1.02, CHCl₃); **IR (neat):** v_{max}/cm^{-1} 3345, 2925, 2853, 1626, 1590, 1461, 1350, 1166, 1133, 1064, 1018, 997, 823; ¹H NMR (400 MHz, CDCl₃) δ 6.21 (s, 1H), 6.14 (s, 1H), 3.24 (dd, J = 11.5, 4.6 Hz, 1H), 2.74 – 2.55 (m, 3H), 2.20 (s, 3H), 2.15 (d, J = 10.9 Hz, 1H), 1.91 (dt, J = 13.0, 3.5 Hz, 1H), 1.71 – 1.58 (m, 5H), 1.55 – 1.52 (m, 1H), 1.35 (d, J = 7.6 Hz, 1H), 1.16 (s, 3H), 1.07 (dd, J = 13.1, 3.8 Hz, 1H), 1.02 (s, 3H), 0.93 – 0.86 (m, 2H), 0.78 (s, 3H), 0.71 (s, 3H); ¹³C NMR {¹H} (100 MHz, CDCl₃) δ 155.9, 153.4, 137.1, 110.5, 107.6, 107.0, 79.4, 75.3, 54.7, 49.1, 41.0, 39.1, 38.5, 38.4, 28.9, 27.5, 27.3, 21.5, 18.3, 17.5, 16.0, 14.5; HRMS (ESI) *m/z* calcd. for C₂₂H₃₃O₃ [M+H]⁺ 345.2430, found 345.2422.

Preparation of (38,4aR,6a8,12aR,12b8)-11-methoxy-4,4,6a,9,12b-pentamethyl- 2,3,4,4a,5, 6, 6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-3-ol (21) :

Major diastereomer **20a** (70 mg, 0.2 mmol) was dissolved in acetone, added with K₂CO₃ (84 mg, 0.6 mmol) followed by MeI (0.04 mL, 0.6 mmol) at room temperature. The reaction mixture was slowly heated to reflux for 5h under nitrogen atmosphere. Once the reaction is completed as monitored by TLC, reaction mixture was filtered to get clear solution which was then evaporated under reduced pressure to get crude compound. Purification of the crude compound was done by silica gel column chromatography using hexane/EtOAc (97:3 to 95:5) to get **21** as a colorless oil. Yield = 66 mg (92%). R_f = 0.5 in 20% EtOAc-hexane. ; [α]_D²⁸ = -4.65 (c 1.02, CHCl₃); **IR** (neat): v_{max} /CM⁻¹ 3359, 2928, 1618, 1587, 1496, 1463, 1352, 1327, 1303, 1277, 1225, 1165, 1133, 1112, 1022, 1002, 948, 934, 909, 888, 843, 811, 670, 580; ¹H NMR (400 MHz, CDCl₃) δ 6.23 (d, *J* = 15.0 Hz, 2H), 3.79 (s, 3H), 3.23 (dd, *J* = 11.5, 4.8 Hz, 1H), 2.71 (d, *J* = 18.4 Hz, 1H), 2.55 (dd, *J* = 18.4, 8.2 Hz, 1H), 2.26 (s, 3H), 2.18 – 2.10 (m, 1H), 1.92 (dt, *J* = 13.1, 3.5 Hz, 1H), 1.72 – 1.44 (m, 7H), 1.31 (d, *J* = 8.1 Hz, 1H), 1.15 (s, 3H), 1.02 (s, 3H), 0.93 – 0.84 (m, 1H), 0.78 (s, 3H), 0.70 (s, 3H); ¹³C NMR {¹H} (100 MHz, CDCl₃) δ 157.3, 155.4, 136.7, 110.6, 108.5, 103.0, 79.4, 75.2, 55.6, 54.7, 49.2, 41.0, 39.1, 38.5, 38.4, 28.8, 27.5, 27.2, 22.0, 18.3, 17.7, 16.0, 14.5. HRMS (ESI) *m*/*z* caled. for C₂₃H₃₅O₃ [M+H]⁺ 359.2586, found 359.2589.

Preparation of (38,4aR,6a8,12aR,12b8)-11-methoxy-4,4,6a,9,12b-pentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-3-yl acetate (22):

Compound 21 (66 mg, 0.18 mmol) was dissolved in dry DCM (2 mL) and added with pyridine (0.09 mL, 1.1 mmol), acetic anhydride (0.1 mL, 1.1 mmol) and catalytic amount of N.Ndimethyl amino pyridine at room temperature. The reaction mixture was then stirred for 15 h under nitrogen atmosphere. Once the reaction was completed, as monitored by TLC, it was cooled to 0 °C and 1N HCl (5 mL) was added to the mixture. Two layers were separated. The aqueous layer was extracted twice with DCM (2 x 5 mL). Combined organic fractions were washed with brine, dried over NaSO₄ and evaporated under reduced pressure to get crude compound. Purification of the crude compound was done by silica gel column chromatography using hexane/EtOAc (99:1 to 95:5) to get 22 as a colorless oil. Yield = 72 mg (93%). $R_f = 0.5$ in 10% EtOAc-hexane; $[\alpha]_D^{28} = -4.0$ (c 1.02, CHCl₃); **IR (neat):** v_{max}/CM^{-1} 3; ¹H NMR (400 MHz, CDCl₃) δ 6.24 (s, 1H), 6.20 (s, 1H), 4.49 (dd, J = 11.5, 4.8 Hz, 1H), 3.79 (s, 3H), 2.69 (d, J = 11.5, 4.8 Hz, 1H), 3.79 (s, 3H), 2.69 (d, J = 11.5, 4.8 Hz, 1H), 3.79 (s, 3H), 2.69 (d, J = 11.5, 4.8 Hz, 1H), 3.79 (s, 3H), 3.79 18.4 Hz, 1H), 2.56 (dd, J = 18.4, 8.1 Hz, 1H), 2.26 (s, 3H), 2.18 – 2.10 (m, 1H), 2.04 (s, 3H), 1.92 (dt, J = 13.2, 3.4 Hz, 1H), 1.73 – 1.62 (m, 2H), 1.51 – 1.55 (m, 2H), 1.32 (d, J = 8.0 Hz, 1H), 1.15 (s, 3H), 1.10 (dd, J = 13.4, 3.9 Hz, 1H), 1.02 – 0.93 (m, 2H), 0.89 (s, 3H), 0.85 (s, 3H), 0.72 (s, 3H); ¹³C NMR {¹H} (100 MHz, CDCl₃) δ 171.4, 157.3, 155.4, 136.7, 110.6, 108.5, 103.0, 81.3, 75.2, 55.6, 54.8, 49.1, 40.9, 38.3, 38.2, 38.0, 28.8, 27.2, 23.8, 22.0, 21.7, 18.2, 17.8, 17.1, 14.5; **HRMS (ESI)** m/z calcd. for C₂₅H₃₇O₄ [M+H]⁺ 401.2692, found 401.2688.

Preparation of (38,4aR,6a8,12aR,12b8)-8-formyl-11-methoxy-4,4,6a,9, 12b-pentamethyl-2,3,4,4a,5,6,6a,12,12a,12b-decahydro-1H-benzo[a]xanthen-3-yl acetate (23):

Dry DMF (0.02 mL, 0.27 mmol) was taken in a round bottom flask under nitrogen atmosphere and cooled to 0 °C. Distilled POCl₃ (0.025 mL, 0.27 mmol) was added slowly to the dry DMF with vigorous stirring at 0 °C and kept stirring for 30 min at the same temperature to get thick colorless syrup. Then compound **22** (72 mg, 0.18 mmol) in dry DMF (2 mL) was added to the above syrup at 0 °C. Reaction mixture was gradually warmed to room temperature and then heated at 110 °C for 6 h. Once the starting compound was consumed completely as shown in TLC, crushed ice was added to cease the reaction and the mixture was extracted thrice with EtOAc (3x5 mL). Combined organic fractions were washed with brine, dried over NaSO₄ and evaporated under reduced pressure to get crude aldehyde. Purification of the crude compound was done by silica gel column chromatography using hexane/EtOAc (95:5 to 90:10) to get **23** as a colorless oil. Yield = 55 mg (72%). $R_f = 0.3$ in 10% EtOAc-hexane; $[\alpha]_D^{28} = -5.6$ (c 1.02, CHCl₃); **IR (neat):** v_{max}/CM^{-1} 2925, 2852, 1732, 1674, 1603,1570,1463, 1394, 1371, 1342, 1312, 1280, 1245, 1217, 1167, 1085, 1028, 1005, 936, 886, 803, 555; ¹H NMR (400 MHz, CDCl₃) δ 10.52 (s, 1H), 6.24 (s, 1H), 4.52 (dd, J = 11.6, 4.7 Hz, 1H), 3.88 (s, 3H), 2.72 (d, J = 18.4 Hz, 1H), 2.63 (d, J = 8.0 Hz, 1H), 2.59 (s, 3H), 2.26 – 2.21 (m, 1H), 2.07 (s, 3H), 1.95 – 1.91 (m, 1H), 1.73 – 1.69 (m, 2 H), 1.61 – 1.57 (m, 3H), 1.39 (d, J = 8.0 Hz, 1H), 1.22 (s, 3H), 1.16 (d, J = 3.6 Hz, 1H), 1.02 (d, J = 10.6 Hz, 1H), 0.93 (s, 3H), 0.88 (s, 3H), 0.75 (s, 3H); ¹³C NMR {¹H} (100 MHz, CDCl₃) δ 191.6, 171.4, 161.1, 160.3, 141.5, 117.5, 109.1, 105.6, 81.1, 76.5, 55.8, 54.6, 48.4, 40.6, 38.3, 38.1, 38.0, 28.8, 27.3, 23.8, 22.7, 21.7, 18.1, 17.7, 17.2, 14.5; HRMS (ESI) m/z calcd. for C₂₆H₃₇O₅ [M+H]⁺ 429.2641, found 429.2647.

Preparation of phomoarcherin C (3):

To a mixture of NaH (26 mg, 0.65 mmol) in dry DMF at 0 °C under nitrogen atmosphere, was added EtSH (0.055 mL, 0.77 mmol) and stirred for 30 min at the same temperature. A solution of compound **23** (55 mg, 0.13 mmol) in dry DMF was slowly added to the above sodium ethane thiolate mixture at 0 °C and allowed to warm gradually to room temperature. Then the reaction mixture was heated 140 °C for 3 h. Once the reaction was completed as indicated by TLC, it was cooled down to 0 °C and was quenched by adding crushed ice. Reaction mixture was extracted thrice with EtOAc (3x5 mL) and the combined organic fractions were washed with brine (2x5 mL), dried over NaSO₄ and evaporated to get crude compound **24** which was preceded for the next step without purification.

The above crude compound **24** was dissolved in EtOAc (2 mL) and added with IBX (108 mg, 0.38 mmol) at room temperature under nitrogen atmosphere. The reaction mixture was refluxed for 2 h. Once the reaction was completed as shown in TLC, it was cooled to room temperature and the solids were filtered off. The clear solution obtained so was evaporated under reduced pressure and purified by silica gel column chromatography using hexane/EtOAc (95:5 to 90:10) to get **Phomoarcherin C (3)** as a colorless oil. Yield = 31 mg (65% over two steps). R_f = 0.6 in 20% EtOAc-hexane; $[\alpha]_D^{28}$ = -2.6 (c 1.02, CHCl₃); **IR (neat):** v_{max} /CM⁻¹ 2924, 2853, 1695, 1647, 1584, 1510, 1449, 1424, 1385, 1324, 1238, 1083, 1014, 813, 520; ¹H NMR (400 MHz, CDCl₃) δ 10.47 (s, 1H), 6.23 (s, 1H), 2.76 (s, 2H), 2.56 (m, 1H), 2.52 (s, 3H), 2.47 – 2.39 (m, 1H), 2.30 – 2.23 (m, 1H), 2.17 – 2.09 (m, 1H), 1.85 – 1.76 (m, 1H), 1.67 (dd, *J* = 13.4, 3.4 Hz, 1H), 1.54 – 1.48 (m, 3H), 1.26 (s, 3H), 1.14 (s, 3H), 1.05 (s, 3H), 0.84 (s, 3H); ¹³C NMR {¹H} (100 MHz, CDCl₃)

CDCl₃) δ 217.3, 191.0, 160.8, 158.3, 141.6, 116.8, 110.4, 106.9, 76.1, 54.1, 47.3, 47.1, 39.7, 38.4, 37.6, 34.1, 26.8, 26.7, 21.9, 21.6, 19.0, 17.4, 14.0; **HRMS (ESI)** *m/z* calcd. for C₂₃H₃₁O₄ [M+H]⁺ 371.2222, found 371.2229.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI:

Copies of 1H and 13C spectra for all products and table of results from kinetics NMR experiments

AUTHOR INFORMATION

Corresponding Author

* Email: ddethe@iitk.ac.in

Notes

The authors declare no competing financial interest.

Present Addresses

^aDepartment of Chemistry, Indian Institute of Technology, Kanpur, 208016, India.

.Conflicts of interest

There are no conflicts to declare.

ACKNOWLEDGMENT

BVK thanks Nagabhushana and Manmohan Shukla for helping in the synthesis and obtaining pure ¹³C spectrum of the starting compound. Department of Chemistry, Indian Institute of Technology, Kanpur is greatly acknowledged for providing infra structure and facilities

REFERENCES:

a) Chen, F.; Tholl, D.; Bohlmann, J.; Pichersky, E.; The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. *Plant J.* 2011, 66 (1), 212 –229. b) Breitmaier, E.; Terpenes:

Flavors, Fragrances, Pharmaca, Pheromones WILEY-VCH, Weinheim, 2006; c) Dewick, P.M.; Medicinal natural products: a biosynthetic approach, 3rd ed., Wiley, Hoboken, 2008.

- 2. Strobel, G.; Daisy, B.; Castillo, U.; Harper, J.; Natural products from endophytic microorganisms. *J. Nat. Prod.* **2004**, *67* (2), 257–268.
- Gunatilaka, A. A. L.; Natural products from plant-associated microorganisms: distribution, structural diversity, bioactivity, and implications of their occurrence. *J. Nat. Prod.* 2006, *69* (3), 509–526.
- Hemtasin, C.; Kanokmedhakul, S.; Kanokmedhakul, K.; Hahnvajanawong, C.; Soytong, K.; Prabpai, S.; Kongsaeree, P.; Cytotoxic pentacyclic and tetracyclic aromatic sesquiterpenes from Phomopsis archeri. *J. Nat. Prod.* 2011, 74 (4), 609–613.
- 5. Reinhold, V. N.; Bruni, R. J.; Aromatic hydroxylation of ellipticine in rats: Lack of an NIH shift. *Biomed. Mass. Spectrom.* **1976**, *3* (6), 335-9.
- Alvarez-Manzaneda, E. J.; Chahboun, R.; Perez, I. B.; Cabrera, E.; Alvarez E.; Alvarez-Manzaneda, R.; First enantiospecific synthesis of the antitumor marine sponge metabolite (-)-15-oxopuupehenol from (-)-sclareol. *Org. Lett.*, 2005, 7 (8), 1477-1480.
- 7. a) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Herrador, M. M.; Chahboun, R.; Galera, P.; Synthesis and antitumoral activities of marine ent-chromazonarol and related compounds. *Bioorg. Med. Chem. Lett.*, 1999, 9 (16), 2325-2328. b) Wang, H.-S.; Li, H.-J.; Zhang, Z.-G.; Wu, Y.-C.; Divergent Synthesis of Bioactive Marine Meroterpenoids by Palladium-Catalyzed Tandem Carbene Migratory Insertion. *Eur. J. Org. Chem.*, 2018, 2018 (17), 915-925. c) Huang, J. H.; Lei, X. G.; A nature-inspired concise synthesis of (+)-ent-chromazonarol. *Sci. China: Chem.*, 2013, 56 (3), 349-353.
- H. Ishibashi, K. Ishihara and H. Yamamoto, A New Artificial Cyclase for Polyprenoids: Enantioselective Total Synthesis of (-)-Chromazonarol,(+)-8-e pi-Puupehedione, and (-)-11
 '-Deoxytaondiol Methyl Ether. J. Am. Chem. Soc., 2004, 126 (36), 11122-11123.
- Fernández, A., Alvarez, E., Alvarez-Manzaneda, R., Chahboun, R., Alvarez-Manzaneda, E.; A short synthetic route towards merosesquiterpenes with a benzoxanthene skeleton. *Chem. Comm.*, 2014, *50* (86), 13100-13102.
- 10. Dethe, D. H.; Murhade, G. M.; Dherange B. D.; Sau, S. K.; Enantiospecific Syntheses of Hongoquercins A and B and Chromazonaro. *Eur. J. Org. Chem.*, **2017**, *2017* (7), 1143-1150.

11. a) Alvarez-Manzaneda, E. J.; Chahboun, R.; Perez, I. B.; Cabrera, E.; Alvarez E.; Alvarez-Manzaneda, R.: First enantiospecific synthesis of the antitumor marine sponge metabolite (-)-15-oxopuupehenol from (-)-sclareol. Org. Lett., 2005, 7 (8), 1477-1480. b) Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.; Haidour, A.; Ramos, J. M.; Alvarez-Manzaneda, R.; Tapia, R.; Es-Samti, H.; Fernandez A.; Barranco, I.; A Convenient Enantiospecific Route towards Bioactive Merosesquiterpenes by Cationic-Resin-Promoted Friedel–Crafts Alkylation with α , β -Enones. Eur. J. Org. Chem., 2009, 2009 (8), 1139-1143. c) Boulifa, E.; Fernandez, A.; Alvarez, E.; Alvarez-Manzaneda, R.; Mansour, A. I.; Chahboun R.; Alvarez-Manzaneda, E.; Synthesis of the putative structure of 15oxopuupehenoic acid. J. Org. Chem., 2014, 79 (21), 10689-10695. d) Wang, H.-S.; Li, H.-J.; Wang, J.-L.; Wu, Y.-C.; Protecting-group-free synthesis of haterumadienone-and puupehenone-type marine natural products. Green Chem., 2017, 19 (9), 2140-2144. e) Wang, H.-S.; Li, H.-J.; Nan, X.; Luo, Y.-Y.; Wu, Y.-C.; Enantiospecific Semisynthesis of Puupehedione-Type Marine Natural Products. J. Org. Chem., 2017, 82 (23), 12914-12919. f) Kato, M., Matsumura, Y., Heima, K., Yoshikoshi, A.; A search for new synthetic routes toward siccanin. Bull. Chem. Soc. Jp., 1988, 61 (6), 1991-1998. g) Chan, N.Y., Seung, H.B., Sung, D.C., No, Y.P.; Alkylation of Orcinol with Nerol in Modified Lewis Acid. Bull. Korean Chem. Soc., 1992, 13 (5), 457-458. h) Kato, M., Matsumura, Y., Heima, K., Fukamiya, N., Kabuto, C., Yoshikoshi, A.; Total synthesis of dl-siccanin and dlsiccanochromene E., Tetrahedron, 1987, 43 (4), 711-722. i) Kato, M., Heima, K., Matsumura, Y. and Yoshikoshi, A.; Total synthesis of racemic siccanin. J. Am. Chem. Soc., 1981, 103 (9), 2434-2435. j) Maiti, S., Sengupta, S., Giri, C., Achari, B., Banerjee, A.K.; Enantiospecific synthesis of 8-epipuupehedione from (R)-(-)-carvone. Tetrahedron Lett. 2001, 42 (12), 2389-2391. k) Barrero, A. F., del Moral, J. F. Q., Herrador, M. M., Arteaga, P., Cortés, M., Benites, J., Rosellón, A., Mild and rapid method for the generation of o-quinone methide intermediates. Synthesis puupehedione of analogues. Tetrahedron, 2006, 62 (25), 6012-6017.

12. a) Dethe, D. H.; Erande, R. D.; Mahapatra, S.; Das, S.; Vijay Kumar, B.; Protecting group free enantiospecific total syntheses of structurally diverse natural products of the tetrahydrocannabinoid family. *Chem. Commun.* **2015**, *51* (14), 2871 b) Dethe, D. H.; Murhade, G. M.; Dherange, B. D.; Sau, S. K.; Enantiospecific Syntheses of Hongoquercins A

and B and Chromazonarol. *Eur. J. Org. Chem.* **2017**, *2017* (7), 1143–1150 c) Dethe, D. H.; Dherange, B D.; Das, S.; Biomimetic total syntheses of callistrilones A, B, and D. *Org. Lett.* **2018**, *20* (3), 680–683. d) Dethe, D. H.; Vijay Kumar, B.; Maiti, R.; Biomimetic total syntheses of chromane meroterpenoids, guadials B and C, guapsidial A and psiguajadial D. *Org. Biomol. Chem.*, **2018**, *16* (26), 4793-4796.

- a) Heravi, M. M.; Ahmadi, T.; Ghavidel, M.; Heidari, B.; Hamidi, H.; Recent applications of the hetero Diels–Alder reaction in the total synthesis of natural products *RSC Adv.*, 2015, 5 (123), 101999–102075. b) Brulíková, L.; Harrison, A.; Miller, M. J.; Hlaváč, J.; Stereo-and regioselectivity of the hetero-Diels–Alder reaction of nitroso derivatives with conjugated dienes. *Beilstein J. Org. Chem.* 2016, *12* (1), 1949–1980.
- 14. a) Quinone Methides (Ed.: S. E. Rokita), Wiley, New York, 2009. b) Weinert, E. E.; Dondi, R.; Colloredo-Melz, S.; Frankenfield, K. N.; Mitchell, C. H.; Freccero, M.; Rokita, S. E.; Substituents on quinone methides strongly modulate formation and stability of their nucleophilic adducts. J. Am. Chem. Soc. 2006, 128 (36), 11940-11947; c) Doria, F.; Richter, S. N.; Nadai, M.; Colloredo- Mels, S.; Mella, M.; Palumbo, M.; Freccero, M.; BINOL-Amino Acid Conjugates as Triggerable Carriers of DNA-Targeted Potent Photocytotoxic Agents. J. Med. Chem. 2007, 50 (26), 6570 - 6579; d) Antonio, M. D.; Doria, F.; Richter, S. N.; Bertipaglia, C.; Mella, M.; Sissi, C.; Palumbo, M.; Freccero, M.; Quinone methides tethered to naphthalene diimides as selective G-quadruplex alkylating agents. J. Am. Chem. Soc. 2009, 131 (36), 13132 -13141; e) Wang, H.; Rokita, S. E.; Dynamic Cross-Linking Is Retained in Duplex DNA after Multiple Exchange of Strands. Angew. Chem. 2010, 122 (34), 6093 - 6096; f) Wang, H.; Rokita, S. E.; Dynamic Cross-Linking Is Retained in Duplex DNA after Multiple Exchange of Strands. Angew. Chem. Int. Ed. 2010, 49 (34), 5957 - 5960. g) R. W. Van De Water, T. R. R. Pettus, o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 2002, 58 (27), 5367 - 5405; h) Pathak, T. P.; Sigman, M. S.; Applications of ortho-quinone methide intermediates in catalysis and asymmetric synthesis. J. Org. Chem. 2011, 76 (22), 9210 - 9215.
- 15. a) Wang, Z.; Sun, J.; Enantioselective [4+ 2] Cycloaddition of o-Quinone Methides and Vinyl Sulfides: Indirect Access to Generally Substituted Chiral Chromanes. *Org. Lett.* 2017, *19* (9), 2334–2337. b) Rodriguez, R.; Adlington, R. M.; Moses, J. E.; Cowley, A.; Baldwin, J. E.; A new and efficient method for o-quinone methide intermediate generation: application

to the biomimetic synthesis of (\pm) -alboatrin. Org. Lett. 2004, 6 (20), 3617-3619. c) Bharate, S. B.; Singh, I. P.; A two-step biomimetic synthesis of antimalarial robustadials A and B. Tetrahedron Lett., 2006, 47 (39), 7021–7024. d) Kraus, G. A.; Nguyen, T.; Bae, J.; Hostetter, J.; Steadham, E.; Synthesis and antitubercular activity of tricyclic analogs of puupehenone. Tetrahedron, 2004, 60, 4223-4225. e) Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. I.; Jacob, M. R.; Khan, I. A.; Singh, I. P.; Biomimetic synthesis, antimicrobial, antileishmanial and antimalarial activities of euglobals and their analogues. Bioorganic Med. Chem. 2006, 14 (6), 1750–1760. f) Chiba, K.; Hirano, T.; Kitano, Y.; Tada, M.; Montmorillonite-mediated hetero-Diels-Alder reaction of alkenes and o-quinomethanes generated in situ by dehydration of o-hydroxybenzyl alcohols. Chem. Commun. 1999, 691-692. g) Bharate, S. B.; Singh, I. P.; A two-step biomimetic synthesis of antimalarial robustadials A and B. Tetrahedron Lett. 2006, 47 (39), 7021-7024. h) Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob, M. R.; Khan, I. A.; Singh, I. P.; Biomimetic synthesis, antimicrobial, antileishmanial and antimalarial activities of euglobals and their analogues. Bioorganic Med. Chem. 2006, 14 (6), 1750–1760. i) A. Sakakura, M. Sakuma and K. Ishihara, Chiral Lewis base-assisted Brønsted acid (LBBA)-catalyzed enantioselective cyclization of 2-geranylphenols. Org. Lett., 2011, 13 (12), 3130-3133.

- 16. a) Kende, A. S.; Deng, W.-P.; Zhong, M.; Guo, X.-C.; Enantioselective Total Synthesis and Structure Revision of Spirodihydrobenzofuranlactam 1. Total Synthesis of Stachybotrylactam. *Org. Lett.*, 2003, 5 (10), 1785-1788. b) Deng, W.-P.; Zhong, M.; Guo, X.-C.; Kende, A. S.; Total synthesis and structure revision of Stachybotrys Spirolactams. *J. Org. Chem.*, 2003, 68 (19), 7422-7427.
- 17. a) Hall, D. G.; Boronic acid catalysis. *Chem. Soc. Rev.*, 2019, 48, 3475-3496. b) Mo, X.; Yakiwchuk, J.; Dansereau, J.; McCubbin, J. A.; Hall, D. G.; Unsymmetrical diarylmethanes by ferroceniumboronic acid catalyzed direct Friedel–Crafts reactions with deactivated benzylic alcohols: enhanced reactivity due to ion-pairing effects. *J. Am. Chem. Soc.*, 2015, 137 (30), 9694–9703. c) Dimakos, V.; Singh, T.; Taylor, M. S.; Boronic acid/Brønsted acid co-catalyst systems for the synthesis of 2 H-chromenes from phenols and α, β-unsaturated carbonyls. *Org. Biomol. Chem.*, 2016, 14 (28), 6703-6711. d) Bissada, S.; Lau, C. K.; Bernstein, M. A.; Dufresne, C.; One-pot synthesis of precocene I and II and a formal

synthesis of robustadial A and B via 2-phenyl-4 H-1, 3, 2-benzodioxaborin. *Can. J. Chem.*, **1994**, *72* (8), 1866-1869.

- a) Kurdyumov, A. V.; Hsung, R. P.; An unusual cationic [2+ 2] cycloaddition in a divergent total synthesis of hongoquercin A and rhododaurichromanic acid A. J. Am. Chem. Soc. 2006, 128 (19), 6272-6273. b) Dai, M.; Danishefsky, S. J.; A concise synthesis of the cortistatin core. Tetrahedron lett. 2008, 49 (47), 6610-6612. c) Hua, D. H.; Huang, X.; Chen, Y.; Battina, S. K.; Tamura, M.; Noh, S. K.; Koo, S. I.; Namatame, I.; Tomoda, H.; Perchellet, E. M.; Perchellet, J. P.; Total syntheses of (+)-chloropuupehenone and (+)-chloropuupehenol and their analogues and evaluation of their bioactivities. J. Org. Chem. 2004, 69 (18), 6065-6078.
- 19. a) Kirchhoff, J. H.; Netherton, M. R.; Hill I. D.; Fu, G. C.; Boronic acids: new coupling partners in room-temperature Suzuki reactions of alkyl bromides. Crystallographic characterization of an oxidative-addition adduct generated under remarkably mild conditions. J. Am. Chem. Soc., 2002, 124 (46), 13662-13663. b) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R.; Stereospecific Pd-catalyzed cross-coupling reactions of secondary alkylboron nucleophiles and aryl chlorides. J. Am. Chem. Soc., 2014, 136 (40), 14027-14030. c) M. Follmann, F. Gaul, T Schäfer, S. Kopec and P. Hamley, Petasis boronic Mannich reactions of electron-poor aromatic amines under microwave conditions. Synlett, 2005, 2005 (6), 1009-1011. d) Frauenlob, R.; Carcía, C.; Bradshaw, G. A.; Burke, H. M.; Bergin, E.; A copper-catalyzed petasis reaction for the synthesis of tertiary amines and amino esters. J. Org. Chem., 2012, 77 (9), 4445-4449. e) Quach, T. D.; Batey, R. A.; Ligand-and base-free copper (II)-catalyzed C- N bond formation: Cross-coupling reactions of organoboron compounds with aliphatic amines and anilines. Org. Lett., 2003, 5 (23), 4397-4400. f) Rossi, S. A.; Shimkin, K. W.; Xu, Q.; Mori-Quiroz, L. M.; Watson, D. A.; Selective formation of secondary amides via the copper-catalyzed cross-coupling of alkylboronic acids with primary amides. Org. Lett., 2013, 15 (9), 2314-2317. g) Liebeskind, L. S.; Srogl, J.; Thiol ester- boronic acid coupling. A mechanistically unprecedented and general ketone synthesis. J. Am. Chem. Soc. 2000, 122 (45), 11260-11261.
- Barrero, A. F., Alvarez-Manzaneda, E. J., Chahboun, R., Cortés, M., Armstrong, V.; Synthesis and antitumor activity of puupehedione and related compounds. *Tetrahedron*, 1999, 55(52), 15181-15208.

1	
c	
2	
3	
4	
-	
5	
6	
7	
/	
8	
٥	
9	
10	
11	
10	
12	
13	
1/	
14	
15	
16	
17	
17	
18	
10	
19	
20	
21	
21	
22	
23	
24	
24	
25	
26	
20	
27	
28	
20	
29	
30	
21	
31	
32	
22	
22	
34	
35	
55	
36	
37	
20	
20	
39	
10	
40	
41	
42	
42	
43	
44	
15	
45	
46	
47	
47	
48	
49	
50	
51	

21. Hua, D.H.; Huang, X.; Chen, Y.; Battina, S. K.; Tamura, M.; Noh, S. K.; Koo, S. I.; Namatame, I.; Tomoda, H.; Perchellet, E. M.; Perchellet, J. P.; Total syntheses of (+)-chloropuupehenone and (+)-chloropuupehenol and their analogues and evaluation of their bioactivities. *J. Org. Chem.***2004**, *69* (18), 6065-6078.