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ABSTRACT 

A sequentially Pd(II)/Cu(II)-catalyzed dimerization of indoles with subsequent oxidative 

cycloaromatization with alkynes give rise to the formation of  strongly violet to blue solution and solid 

state emissive indolo[3,2-a]carbazoles in a domino fashion under mild conditions and in moderate to 

good yields. Upon protonation the absorption bands are significantly red-shifted with concomitant 

quenching of the fluorescence. The site of protonation was scrutinized by NMR studies of the 

protonated species and confirmed by DFT calculations. The obtained chromophores of the 

acidochromicity of the title compounds are rarely described apocyanine dyes. The relevant absorption 

bands can be unambiguously assigned by TDDFT calculations. 
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1. Introduction 

The steadily growing quest for novel functional organic materials, such as chromophores, fluorophores 

and electrophores [1], with heterocyclic core structures is an ongoing challenge for synthetic chemistry 

and in recent years the concepts of multicomponent processes [2] and domino reactions [3] have 

opened new opportunities for modular syntheses of these targets. These functional π-systems are 

underlying molecular entities in molecule based electronics such as organic light-emitting diodes 

(OLEDs) [4], dye-sensitized solar cells (DSSCs) [5], and organic photovoltaics (OPVs) [6], or bio and 

environmental analytics [7]. Particularly interesting are sensitive dyes which undergo changes in their 

absorption and/or emission properties by external stimuli such as light [8], heat [9], current [10], 

mechanical pressure [11], solvent polarity [12] or pH changes [13]. The latter phenomenon is called 

halo- or acidochromism founding the principle of pH indicators [14] and smart inks [15]. In addition, 

fluorohalochromic dyes, which are both fluorescent and halochromic have as dual readout 

chromophores advantages such as high sensitivity and fast read-outs using relatively simple and 

inexpensive instruments, for instance by ratiometric intensity analysis at a certain wavelengths [16]. 

With respect to intensity, for instance fluorescent chemosensors, in particular fused nitrogen 

heterocycles, are either quenched (turn OFF) or induced (turn ON) upon protonation. 

First indolocarbazoles [17] were first mentioned in the late 1950s [18], but received attention only 30 

years later, when biologically active natural products such as the alkaloids K-252a [19] or 

staurosporine [20] were isolated. Ever since this scaffold has not only been used for the development 

of potential novel drugs [21] but increasingly for conceptualizing functional materials [22]. Out of five 

possible isomers, indolo[3,2-a]carbazoles have scarcely been studied, but in the last few years some 

methods have been developed starting from hydrazines [23], 2,3-biindolyls [24], and indoles [25]. 

Very recently, Kumar's group has disclosed a Pd-catalyzed [2 + 2 + 2] annulation of indoles or 

azaindoles with alkynes, starting with indoles dimerization to give 2,3-biindolyls, which subsequently 

cyclizes with alkynes giving indolo[3,2-a]carbazoles (Scheme 1a), however, substrates with strongly 

electron withdrawing groups were not converted [26]. About the same time, motivated by our interest 

in sequentially bimetallically Pd/Cu-catalyzed processes [27] as a rapid entry to multicomponent 

syntheses of heterocycles in a one-pot fashion [28], we probed the reaction of indoles and alkynes at 
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lower temperatures in the presence of Pd(II) and Cu(II) catalysts to give intensively luminescent 

indolo[3,2-a]carbazoles (Scheme 1b). 

 

Scheme 1. Approaches to the domino synthesis of indolo[3,2-a]carbazoles. 

As part of our program to explore diversity oriented one-pot syntheses of functional chromophores by 

multicomponent [1] and domino reactions [3], we have reported domino syntheses of protochromic 

“ON–OFF–ON” luminescent 2-styryl quinolines [29] and “OFF–ON” cation-induced fluorescent 2,4-

diarylpyrano[2,3-b]indoles [30]. Herein, we report a modified pseudo-three-component synthesis of 

electronically interesting indolo[3,2-a]carbazoles, a class of tetracyclic fused indoles and discuss their 

hitherto unexplored photophysical properties and acidochromicity. 

2. Results and discussion 

2.1. Synthesis 

The reaction of 1-methylindole (1a) (R1 = H) and tolane (2a) (R2 = R3 = Ph) in DMSO in the presence 

of catalytic amounts of Pd(OAc)2 and Cu(OAc)2 · H2O as an oxidant under oxygen atmosphere was 

selected as a model system and optimized (for the optimization, see Supp Inf Table S1). Unlike 

Kumar's work, whose optimization was initiated at 80 °C by variation of the cooxidant, we started the 

domino reaction at room temp with a stoichiometric amount of Cu(OAc)2 · H2O and then successively 

increased the reaction temperature and reduced the amount of copper oxidant to find that at 50 ° C and 
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in the presence of catalytic amounts of Cu(II) salts, the best result was achieved, whereas without 

cooxidant as well as at 80 °C significantly less yield was observed. Kumar, on the other hand, who had 

also experimented with Cu(OAc)2, found out that omitting the cooxidant at 80 °C led to more product 

but could not reproduce the yield at lower temperatures [26]. As such, we decided to synthesize and 

discuss only electronically interesting indolo[3,2-a]carbazole with our conditions, a modified, milder 

variant of Kumar's method, and therefore the preparative studies were performed with electron-rich 

and electron-poor 1-methyl indoles 1 and alkynes 2 to give 5,12-dimethyl-indolo[3,2-a]carbazoles 3 in 

moderate to good yields in the sense of a domino reaction representing a quadruple CH-

functionalization (Scheme 2). All title compounds 3 were isolated as colorless solids which fluoresce 

violet to blue both in solution and in the solid state. The structural assignment was unambiguously 

corroborated by extensive 1H and 13C NMR and IR spectroscopy, and mass spectrometry, and the 

molecular composition was verified by combustion analyses. 

 

Scheme 2. Pseudo-three-component domino synthesis of indolo[3,2-a]carbazoles 3 by oxidative 

Pd/Cu-catalyzed quadruple CH-functionalization of indoles 1 with alkynes 2. 

With this protocol electron-donating methoxy substituents can be introduced either via the indole or 

the alkyne (Table 1, entries 2 and 3), as well as the strongly electron withdrawing cyano groups after a 

prolonged reaction time of 24 h (Table 1, entries 5 and 6), in contrast to Kumar’s method [26]. While 

the methoxy substituent can be simultaneously incorporated via both starting materials (Table 1, entry 

4), this transformation does not work with the cyano group. 

In addition to Kumar’s work, the triisopropyl-protected alkyne 2d was selectively transformed into the 

simply phenylated indolocarbazole 3g (Table 1, entry 7). To the best of our knowledge, only one 

method has been developed for 7-phenylindolo[3,2-a]carbazoles to date, starting from indoles and β-

nitrostyrenes that are reacted with tin and manganese salts for prolonged reaction times to give only 
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low yields [31]. Here, the selectivity is very likely affected by the steric hindrance of the TIPS 

substituent which is cleaved off in the course of the reaction. Kumar [26] proposed a mechanistic 

rationale that commences with an electrophilic palladation, followed by subsequent migration [32], 

insertion of the second indole and reductive elimination [33] to form 2,3-biindolyls. The subsequent 

palladium-catalyzed oxidative cycloaromatization of the intermediate with alkyne via dual CH-

activation leads to the title compounds 3 [24]. In our approach, the addition of catalytic amounts of 

copper acetate allows to lower the reaction temperature, presumably due to a more efficient 

reoxidation of the palladium catalyst, comparable to Wacker oxidations [34]. 

Table 1. Pseudo-three-component domino synthesis of indolo[3,2-a]carbazoles 3.  

entry indole 1 alkyne 2 indolo[3,2-a]carbazole 3 (yield)[b] 

1[c] R1 = H (1a) R2 = R3 = Ph (2a) 

 3a (72%) 

2[c] R1 = OMe (1b) 2a 

 3b (73%) 

3[c] 1a R2 = R3 = p-MeOC6H4 (2b) 

 3c (68%) 

4[c] 1b 2b 

 3d (60%) 
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5[d] R1 = CN (1c) 2a 

 3e (58%) 

6[d] 1a R2 = R3 = p-NCC6H4 (2c) 

 3f (51%) 

7[c][e] 1a R2 = Ph, R3 = SiiPr3 (2d) 

 3g (68%) 
[a] Reaction conditions: indole 1 (0.50 mmol), alkyne 2 (0.25 mmol), Pd(OAc)2 (0.05 mmol), 
Cu(OAc)2 · H2O (0.125 mmol), DMSO (5 mL), 50 °C under O2.[b] Isolated yield. [c] Reaction time: 8 
h. [d] Reaction time: 24 h. [e] 0.50 mmol of 2d.  

 

2.2. Photophysical properties 

Already previous studies on substituted indolo[3,2-a]carbazoles indicated interesting photophysical 

properties [24]. With a small library of 5,12-dimethyl-indolo[3,2-a]carbazoles in hand we decided to 

assess the substitution effects on the optical properties. All derivatives were characterized by 

quantitative absorption and emission spectroscopy as well as relative fluorescence quantum yields ΦF 

were determined (Table 2). 

Table 2. Selected photophysical properties of indolo[3,2-a]carbazoles 3 (recorded in CH2Cl2 at T = 
293 K).  

entry compound λmax,abs [nm] (ε [L·mol-1·cm-1]) [a] 
λmax,em [nm] [b] 

(Φf )
[c] 

Stokes shift ∆ν ̃ 
[cm-1] [d] 

1 3a 
250 (41100), 295 (53600), 354 (10100), 370 

(16000) 
390 (0.50) 1400 

2 3b 
253 (47400), 282 (44700), 311 (41200), 349 

(11400), 365 (14900) 
395 (0.45) 2100 

3 3c 
253 (46100), 296 (59100), 354 (11000), 370 

(17600) 
389 (0.52) 1300 

4 3d 
249 (44900), 303 (50700), 365 (10500), 383 

(16900) 
403 (0.48) 1300 

5 3e 298 (80900), 358 (10300), 375 (17100) 391 (0.52) 2400 

6 3f 
244 (55500), 292 (44400), 355 (11400), 372 

(15200) 
436 (0.29) 4000 

7 3g 251 (39300), 295 (45200), 350 (9200), 366 407 (0.54) 2800 
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(11800) 
[a] c(3) = 10-5

 M. [b] c(3) = 10-7
 M, λexc = 280 nm. [c] Recorded at λexc = 280 nm, c(3) = 10-7

 M, 

determined with 2,5-diphenyloxazole as a standard in cyclohexane, (ΦF=1.00 [35]). [d] ∆ν ̃  = λmax(abs)
-1 

- λmax(em)
-1. 

Generally, the absorption characteristics of all compounds are quite similar, whereby the longest 

wavelength absorption band appears at around 370 nm. The compounds 3a-g show a strong blue 

luminescence in solution (dichloromethane) (Figure 1), with Stokes shifts in a range from 1300 to 

4000 cm-1. The emission maximum of the derivatives 3a-c and 3e can all be found at around 390 nm 

(Figure 2). The tetramethoxy substituted indolo[3,2-a]carbazole 3d is slightly bathochromic shifted 

emission maximum at 403 nm, also the unsymmetrically substituted indolo[3,2-a]carbazole 3g 

displays a slight red-shift to 407 nm in comparison to compound 3a. For the cyano-substituted 

derivative 3f substantial bathochromic shift to 436 nm is determined. 

 

Figure 1. Visual impression of indolocarbazoles 3 under daylight (top) and hand-held UV lamp 

(bottom) in dichloromethane (c(3) = 10-5 M, λexc = 365 nm). 
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Figure 2. Normalized UV/Vis absorption (recorded in CH2Cl2, T = 293 K, c(3) = 10-5, bold line) and 

emission bands (recorded in CH2Cl2, T = 293 K, c(3) = 10-7, λexc(3a) = 294 nm, λexc(3c,f,g) = 280 nm, 

dashed line) of indolocarbazoles 3a,c,f,g. 

Furthermore, relative fluorescence quantum yields [36] were measured with 2,5-diphenyloxazole as a 

standard in cyclohexane (ΦF = 1.00 [35]). The compounds 3a-e and 3g show a similar distinctive 

fluorescence in dichloromethane with quantum yields ranging from 45 to 54%. Interestingly, only the 

p-cyanophenyl substitution in positions R2 and R3 (3f) leads to a significant decrease in fluorescence 

(ΦF = 29%). 

Most remarkably, the addition of trifluoroacetic acid clearly changes the absorption and emission 

spectra of the indolocarbazoles 3, which is a consequence of a selective protonation of the carbazole 

core (vide infra). This acidochromism was studied by absorption spectroscopy for all indolo[3,2-

a]carbazoles 3 (Table 3). 
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Table 3. Comparison of absorption maxima of non-protonated 3 and protonated indolo[3,2-
a]carbazoles 3-H+.  

entry compound λmax,abs [nm] (ε [L·mol-1·cm-1]) [a] acidochromicity shift [cm-1] [c] 
3 3-H+[b] 

1 3a 
250 (41100), 295 (53600), 
354 (10100), 370 (16000) 

277 (31400), 297 
(30100), 367 (6300), 

479 (12200) 
6200 

2 3b 
253 (47400), 282 (44700), 
311 (41200), 349 (11400), 

365 (14900) 

297 (40500), 363sh 
(8000), 499 (8300) 

7400 

3 3c 
253 (46100), 296 (59100), 
354 (11000), 370 (17600) 

278 (27800), 300 
(23400), 399sh (5800), 

482 (10200) 
6300 

4 3d 
249 (44900), 303 (50700), 
365 (10500), 383 (16900) 

287sh (25500), 301 
(28500), 506 (9000) 

6300 

5 3e 
298 (80900), 358 (10300), 

375 (17100) 
301 (68700), 358 

(10400), 375 (15600) 
0 

6 3f 
244 (55500), 292 (44400), 
355 (11400), 372 (15200) 

280 (38200), 289 
(38500), 372 (11600) 

0 

7 3g 
251 (39300), 295 (45200), 
350 (9200), 366 (11800) 

277 (21400), 295 
(22400), 368 (4300), 

466 (9300) 
5900 

[a] Recorded in CH2Cl2, T = 293 K, c = 10-5 M. [b] Transferred into the cell (3 mL), addition of 200 

µL trifluoroacetic acid (TFA). [c] ∆ν ̃  = λmax(abs[3])
-1 - λmax(abs[3-H+])

-1. 

All free bases give colorless solutions, whereby after addition of trifluoroacetic acid (TFA) the 

methoxy and phenyl derivates 3a-d and 3g became yellow to red solutions (Figure 3). Interestingly, in 

the protonation studies with cyano-substituted indolo[3,2-a]carbazoles 3e and 3f no significant change 

in the absorption spectra was detected. Presumably by strongly electron withdrawing cyano groups 

their basicity is too low. 
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Figure 3. Visual color impression of indolocarbazoles 3 under daylight (top) and hand-held UV lamp 

(bottom) after the addition of TFA (recorded in CH2Cl2, c(3) = 10-4 M, λexc = 365 nm). 

In all other absorption spectra of the conjugated indolocarbazole salts of 3a-d and 3g, a new red-

shifted absorption maximum forms between 466 and 506 nm. Thereby the tetramethoxy substituted 

indolo[3,2-a]carbazole 3d shows the largest bathochromic shift with an absorption maximum at 

506 nm. Moreover, the acidochromic shifts of compounds 3a-d and 3g range from 5900 (3g) to 7400 

cm-1 (3b). The protonation has also an interesting effect on the emission properties of the indolo[3,2-

a]carbazoles. The fluorescence of all compounds, including the cyano-substituted derivatives, is 

noticeably quenched after addition of an excess amount of TFA. The process can be reversed by 

adding triethylamine and all solutions are colorless again as prior to the treatment with TFA, and they 

fluoresce violet to blue under the hand-held UV lamp. 

In addition, we photometrically determined the pKa value of the conjugated base of 3a. Therefore, 

trifluoroacetic acid was chosen as a suitable acid because it is completely dissociated in 

dichloromethane. For the pKa determination by absorption spectroscopy, the pH-value was 
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successively lowered from 1.58 to 0.28 and the corresponding absorption spectra were recorded 

(Figure 4). With successive addition of TFA, the maxima at 354 and 370 nm of 3a disappear and a 

new red-shifted maximum at 480 nm was detected for the protonated species 3a-H+. From these 

titrations a pKa value of 0.75 for 3a-H+ was determined (for experimental details, see Supp Inf). 

 

Figure 4. Absorption spectra of 3a in the presence of increasing amounts of TFA (recorded in CH2Cl2, 

c(3a) =  10-5 m, T = 293 K). 

Furthermore, the fluorescence quenching of 3a after addition of trifluoroacetic acid was quantitatively 

monitored (Figure 5). 
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Figure 5. Emission spectra of 3a in the presence of increasing aliquots of TFA (recorded in CH2Cl2, 

c(3a) = 10-7 m, T = 293 K, λexc = 294 nm). 

The Stern-Volmer plot of F0/F against the concentration of TFA reveals a linear correlation (Figure 6) 

and the Stern-Volmer constant Ksv was determined to 49.940 Lmol-1. The Stern-Volmer constant Ksv 

correlates by definition of steady-state quenching to the pKa value of 3a. The pKa is calculated 

therefrom to 1.97, which is in reasonably good agreement with pKa value determined by absorption 

spectroscopy. 
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Figure 6. Stern-Volmer plot of 3a (c0(3a) = 10-7 m in CH2Cl2, T = 293 K, λmax(em) = 390 nm; F0/F = 

0.52932 + 49.904[H+]; r2 = 0.97826). 

 

2.3. NMR protonation studies 

Intrigued by the observed acidochromocity of the title compounds 3, NMR studies were performed to 

localize the protonation site of indolo[3,2-a]carbazoles 3. The 1H NMR spectra of 3a and 3a-H+ reveal 

that upon protonation only a single new species was formed, supported by the appearance of a single 

set of signals, accompanied by an additional singlet at δ 5.37 arising from the trifluoroacetic acid 

proton (Figure 7). 2D NMR experiments, such as NOESY and HMBC, allowed the unambiguous 

assignment of position 6 as the site of protonation (for details and spectra, see Supp Inf). In principle, 

most of the signals of the protonated species 3a-H+ are shifted to lower field, where increased 

deshielding indicates the formation of a resonance stabilized cation. For instance, the methyl protons 

at position 5 are shifted from δ 3.26 (3a) to 3.73 (3a-H+). The protonation of 3a to 3a-H+ also causes a 

significant change in the molecular geometry supported by the splitting the phenyl proton resonances. 

The resonances of 6-Ph (blue circles, Figure 7) split into a doublet and two triplets, which is indicative 

of the free rotation of the phenyl ring, whereas for 7-Ph (orange circles, Figure 7) split into five 
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broaden signals that appear between δ 6.59 and 7.72. This phenyl ring obviously is considerably 

restricted in its rotational freedom and therefore splits into five chemically inequivalent signals. 

 

Figure 7. Partial 1H NMR spectra (600 MHz, 293 K, CD2Cl2) of 3a before (a) and after (b) the addition 

of 75 equiv of CF3CO2H. 

 

2.4. Calculated electronic structure 

Ground state geometries of all structures 3 and 3a-H+ were optimized using the Gaussian09 program 

package [37], the PBE0 hybrid-functional by Perdew, Burke and Ernzerhof [38] and the 6-311G(d,p) 

basis set [39]. The optimized geometries were confirmed as minima by analytical frequency analyses. 
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Excitation energies were calculated with TDDFT [40] methods implemented in the Gaussian09 

program package [37], PBE0 [38], and the 6-311+G(d,p) basis set [39]. The polarizable continuum 

model (PCM) with dichloromethane as a solvent was applied for the calculations each [41]. The 

Mulliken population analysis was extracted from the Gaussian09 calculation outputs by the help of the 

Multiwfn software [42]. 

The site of protonation in structure 3a-H+, experimentally assigned by NMR experiments, was further 

corroborated by DFT calculations also to gain a deeper insight into the observed acidochromism. All 

ground state geometries and excitation energies of the protonated species 3a-H+ and 3a were calculated 

(for details, see Supp Inf). We hypothesized that in addition to the two indolyl nitrogen atoms, the 

three β-positions of the indoles are potential sites of protonation, i.e. a total of five different 

protonation sites have to be considered (Figure 8). The calculations on the different protonated species 

3a-H+ reveal in agreement with the NMR spectroscopic study that protonation at position 6 forms the 

thermodynamically most stable cation (Table 4). Moreover, the position bearing the largest HOMO 

coefficient in the non-protonated compound 3a was protonated (Table 4). 

 

Figure 8. Potential protonation sites of 3a. 

Table 4. Relative free enthalpies (PBE0/6-311G(d,p) PCM CH2Cl2) of 3a-H+ protonated in all tested 
positions and the corresponding HOMO-coefficients of non-protonated 3a.  

position i 5 6 7a 12 12b 

∆∆G(position i → position 6) [kcal/mol] +8.81 0 +9.11 +6.00 +13.30 

HOMO coefficients of 3a [%] 13.28 15.52 13.64 5.63 0.26 
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For the structure 3a-H+ with protonation at position 6 the UV/Vis spectrum was calculated on the 

TDDFT level of theory. The first states S1, S2, and S3 nicely reproduce the experimentally observed 

absorption bands (Table 5). While the longest wavelength absorption band (S1) can be described as a 

HOMO→LUMO transition (99%), the following bands consist of HOMO-2→LUMO (S2, 94 %) and 

HOMO→LUMO+1 transitions (S3, 84%) (for full details, see Supp Inf). 

Table 5. Comparison of calculated UV/Vis-absorption of 3a-H+ (PBE0/6-311+G(d,p) PCM CH2Cl2), 
protonated in position 6, and experimental UV/Vis-absorption of 3a-H+.  

λmax, exp
[a]

 [nm] λmax, calc
[b]

 [nm] oscillator strength FMO contribution 

479 458 0.245 HOMO → LUMO (99 %) 

367 360 0.162 
HOMO-2 → LUMO (94 %) 

HOMO→LUMO+1 (3 %) 

297 288 0.544 

HOMO-7 → LUMO (7 %) 

HOMO-2 → LUMO (3 %) 

HOMO → LUMO+1 (84 %) 

277 256 0.387 

HOMO-8 → LUMO (20 %) 

HOMO-5 → LUMO+1 (2 %) 

HOMO-1 → LUMO+1 (47 %) 

HOMO-1 → LUMO+2 (9 %) 

HOMO → LUMO+2 (8 %) 

HOMO → LUMO+7 (3 %) 

HOMO → LUMO+8 (3 %) 

[a] Recorded in CH2Cl2, c(3a) = 10-5 M, pH = 0.25, T = 293 K. [b] PBE0/6-311+G(d,p) with PCM 

(CH2Cl2). 

Based upon the spectroscopic and computational studies supporting the protonation of structure 3a at 

position 6 resonance structures of 3a-H+ can be assigned, suggesting that the formed chromophore is 

an apocyanine (Figure 9). An apocyanine is a rare type of cyanine where the two terminal nitrogen 

atoms are conjugatively linked without methine groups, i.e. only quaternary sp2-hybridized carbon 

centers [43]. This special topology rationalizes the bathochromic shift upon protonation (Figure 10). 

As seen from the NMR studies both phenyl groups are no longer parallel to each other and the 

substituent at position 7 planarizes with the indolocarbazole and participates in the conjugation with 

the apocyanine system. 
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Figure 9. Resonance structures of a closed apocyanine system (red) arising from protonation of 

compound 3a. 

 

Figure 10. Jablonski diagram before (left) and after (right) protonation of 3a and assignment of the 

FMO-transitions in the longest wavelength absorption bands (PBE0/6-311+G(d,p) PCM CH2Cl2, 

isosurface value at 0.04 a.u.). 
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3. Conclusion 

In summary starting from indoles and alkynes we have disclosed an efficient and mild sequentially 

Pd(II)/Cu(II)-catalyzed pseudo-three-component domino reaction to give indolo[3,2-a]carbazoles even 

with strongly electron withdrawing groups. In addition, with a TIPS-protected alkyne as a substrate, it 

was possible to selectively obtain the mono-phenylated 7-phenylindolo[3,2-a]carbazole via in situ 

desilylation. The study of the electronic properties of the indolocarbazoles revealed in addition to the 

known fluorescence, to the best of our knowledge a hitherto unknown acidochromism of this class of 

compounds, indicating that the title compounds are reversibly pH-sensitive. The protonation site was 

unambiguously localized by NMR spectroscopy and confirmed by quantum chemical calculations. 

Protonation generates a rarely described intensively orange to red apocyanine system. Syntheses and 

applications of these novel electronically interesting apocyanine dyes are currently underway.  

 

4. Experimental 

4.1. General considerations 

All reactions were carried out in flame-dried Schlenk tubes by using syringes under an oxygen 

atmosphere. Oxygen was used from a bottle of Air Liquide (ALPHAGAZTM 1 O2, 99.998 %). Indoles 

1b [44] and 1c [32], as well as alkynes 2b [45], 2c [45], and 2d [46] were synthesized according to 

literature procedures as indicated. Commercial grade reagents were purchased from Sigma Aldrich, 

Alfa Aesar, ABCR, Fluorochem and ACROS and used as supplied without further purification. Crude 

mixtures were adsorbed on Celite® 545 (0.02-0.20 mm) from Carl Roth GmbH Co.KG. The 

purification of products was performed on silica gel 60 M (0.04–0.063 mm) from Macherey–Nagel by 

using the flash technique under a pressure of 2 bar. For TLC silica gel coated aluminium plates (60, 

F254) from Merck were employed. The spots were detected with UV light at 254  or 365 nm. 1H, 13C, 

and DEPT NMR spectra were recorded at 293 K on 300 MHz (Bruker AVIII) or 600 MHz 

(BrukerAvance III-600) and the resonances of the residues of non-deuterated CD2Cl2 were locked as 

internal standards (CD2Cl2: 
1H δ = 5.32 ppm, 13C δ = 54.00 ppm). The multiplicities of signals are 

abbreviated as follows: s = singlet, d = doublet, t = triplet, dd = doublet of doublets, ddd = doublet of 
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doublets of doublets and m = multiplet. The assignments of Cquat, CH, CH2 and CH3 nuclei are based 

on DEPT spectra. IR spectra were recorded on a Shimadzu IR Affinity-1 with ATR technique. The 

intensities of IR signals are abbreviated as s (strong), m (medium) and w (weak). EI mass spectra were 

recorded on Triple-Quadrupole mass spectrometer TSQ 7000 (Finnigan MAT). Absorption spectra 

were recorded in CH2Cl2 high performance liquid chromatography (HPLC) grade at 293 K on Perkin 

Elmer UV/VIS/ NIR Lambda 19 spectrometer. Emission spectra were recorded in CH2Cl2 HPLC 

grade at 293 K on a Perkin Elmer LS55 spectrometer. The melting points (uncorrected) were measured 

on a Büchi Melting Point B-540. The elemental analyses were carried out on a Perkin Elmer Series II 

Analyser 2400 at the Institute for Pharmaceutical and Medicinal Chemistry at Heinrich-Heine-

University Düsseldorf. 

 

4.2. General procedure (GP) for the domino synthesis of indolo[3,2-a]carbazoles 3 

Palladium(II)acetate (11.2 mg, 50.0 µmol, 10 mol%), copper(II)acetate monohydrate (24.9 mg, 125 

µmol, 25 mol%), indole 1 (500 µmol, 1.00 equiv) and/or alkyne 2 (250 µmol, 0.50 equivs), if solid, 

were placed in a Schlenk tube, which was evacuated and flushed with oxygen three times. Then, 

indole 1 (500 µmol, 1.00 eq.) and/or alkyne 2 (250 µmol, 0.50 equivs), if present as a liquid, and 

DMSO (5 mL) were added. The reaction mixture was stirred until complete conversion (8 or 24 h, 

monitored by TLC, eluent: n-hexane/ethyl acetate) at 50 °C under an oxygen atmosphere. After 

cooling to room temp, the solvent was removed under reduced pressure, the product mixture adsorbed 

on Celite® and purified by column chromatography on silica gel (eluent: n-hexane/dichloromethane). 

Table 6. Experimental details of the domino synthesis of indolo[3,2-a]carbazoles 3.  

entry indole 1 alkyne 2 
indolo[3,2-a]carbazoles 3 

(yield) 

1 65.6 mg (0.50 mmol) of 1-
methylindole (1a) 

44.6 mg (0.25 mmol) of tolane (2a) 78.7 mg (72%) of 3a 

2 80.6 mg (0.50 mmol) of 5-
methoxy-1-methylindole (1b) 

44.6 mg (0.25 mmol) of 2a 90.8 mg (73%) of 3b 

3 65.6 mg (0.50 mmol) of 1a 
57.1 mg (0.25 mmol) of 1,2-bis(4-

methoxyphenyl)ethyne (2b) 
85.0 mg (68%) of 3c 

4 80.6 mg (0.50 mmol) of 1b 57.1 mg (0.25 mmol) of 2b 83.3 mg (60%) of 3d 

5 
78.1 mg (0.50 mmol) of 1-

methyl-indole-5-carbonitrile 
(2c) 

44.6 mg (0.25 mmol) of 2a 70.0 mg (58%) of 3e 

6 65.6 mg (0.50 mmol) of 1a 
57.1 mg (0.25 mmol) of 4,4'-(ethyne-

1,2-diyl)dibenzonitrile (2c) 
62.5 mg (51%) of 3f 
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7 65.6 mg (0.50 mmol) of 1a 
129 mg (0.50 mmol) of 

triisopropyl(phenylethynyl)silane (2d) 
61.5 mg (68%) of 3g 

 

4.2.1. 5,12-Dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2-a]carbazole (3a) 

According to the GP compound 3a (78.7 mg, 72%) was obtained as a colorless solid. Mp 141–142 °C 

(lit. 140–142 °C [26]). 1H NMR (CD2Cl2, 600 MHz): δ  3.14 (s, 3 H), 4.39 (s, 3 H), 6.32 (d, J = 7.9 

Hz, 1 H), 6.76 (t, J = 7.5 Hz, 1 H), 7.10–7.15 (m, 5 H), 7.15–7.25 (m, 7 H), 7.32 (d, J = 8.1 Hz, 1 H), 

7.37 (t, J = 7.6 Hz, 2 H), 8.54 (d, J = 8.1 Hz, 1 H). 13C NMR (CD2Cl2, 151 MHz): δ 33.3 (CH3), 36.0 

(CH3), 107.6 (Cquat), 109.5 (CH), 109.7 (CH), 115.5 (Cquat), 118.9 (Cquat), 119.7 (2xCH), 121.3 (Cquat), 

121.5 (CH), 123.2 (CH), 124.3 (CH), 124.9 (CH), 124.9 (Cquat), 127.2 (CH), 127.2 (CH), 127.8 (CH), 

128.4 (CH), 130.9 (CH), 133.0 (CH), 136.1 (Cquat), 137.4 (Cquat), 139.4 (Cquat), 139.8 (Cquat), 140.9 

(Cquat), 142.4 (Cquat), 142.9 (Cquat). EI-MS (70 eV, m/z (%)): 436 ([M]+, 100), 421 ([M-CH3]
+, 15), 406 

([M-2x(CH3)]
+, 9), 203 (16), 202 (17), 201 (11), 196 (11). IR (ATR): ν ̃ [cm-1] 3044 (w), 1580 (m), 

1570 (m), 1558 (m), 1441 (m), 1329 (m), 1315 (m), 1256 (m), 1024 (m), 968 (m), 918 (m), 768 (m), 

752 (m), 729 (s), 718 (s). Anal. calcd. for C32H24N2 (436.6): C 88.04, H 5.54, N 6.42; Found: C 88.11, 

H 5.55, N 6.20. 

4.2.2. 2,9-Dimethoxy-5,12-dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2-a]carbazole (3b) 

According to the GP compound 3b (90.8 mg, 73%) was obtained as a colorless solid. Mp 197–198 °C 

(lit. 160–165 °C [26]). 1H NMR (CD2Cl2, 600 MHz): δ  3.19 (s, 3 H), 3.88 (s, 3 H), 3.94 (s, 3 H), 4.41 

(s, 3 H), 6.29 (d, J = 8.2 Hz, 1 H), 6.48 (dd, J = 8.6, 2.1 Hz, 1 H), 6.86 (s, 1 H), 6.91–6.94 (m, 1 H), 

6.95 (d, J = 2.1 Hz, 1 H), 7.20–7.25 (m, 5 H), 7.26–7.33 (m, 5 H), 8.47 (d, J = 8.8 Hz, 1 H). 13C NMR 

(CD2Cl2, 151 MHz): δ 33.4 (CH3), 35.9 (CH3), 56.1 (CH3), 56.1 (CH3), 93.7 (CH), 94.2 (CH), 107.6 

(CH), 107.9 (Cquat), 108.1 (CH), 115.1 (Cquat), 115.8 (Cquat), 118.8 (Cquat), 119.0 (Cquat), 122.1 (CH), 

123.9 (CH), 125.4 (CH), 127.1 (CH), 127.7 (CH), 128.4 (CH), 131.1 (CH), 132.9 (CH), 134.1 (Cquat), 

136.7 (Cquat), 139.2 (Cquat), 139.6 (Cquat), 141.0 (Cquat), 143.9 (Cquat), 144.2 (Cquat), 158.4 (Cquat), 158.6 

(Cquat). EI-MS (70 eV, m/z (%)): 497 ([MH]+, 100), 482 ([M-CH3]
+, 14), 453 (12), 438 (11), 395 (11), 

248 (22), 196 (11), 189 (12), 97 (13), 85 (10), 83 (12), 71 (13), 69 (12), 57 (18), 55 (12). IR (ATR): ν ̃ 

[cm-1] 3019 (w), 1585 (w), 1393 (m), 1219 (m), 1086 (s), 1032 (m), 982 (m), 802 (s), 706 (s). Anal. 

calcd. for C34H28N2O2 (496.6): C 82.23, H 5.68, N 5.64; Found: C 81.97, H 5.53, N 5.62. 
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4.2.3. 6,7-Bis(4-methoxyphenyl)-5,12-dimethyl-5,12-dihydroindolo[3,2-a]carbazole (3c) 

According to the GP compound 3c (85.0 mg, 68%) was obtained as a colorless solid. Mp 334–335 °C 

(dec.). 1H NMR (CD2Cl2, 300 MHz): δ  3.28 (s, 3 H), 3.80 (s, 3 H), 3.84 (s, 3 H), 4.51 (s, 3 H), 6.53 

(d, J = 7.9 Hz, 1 H), 6.76–6.81 (m, 2 H), 6.84–6.92 (m, 2 H), 7.11–7.15 (m, 2 H), 7.16–7.20 (m, 2 H), 

7.29–7.36 (m, 2 H), 7.42–7.51 (m, 3 H), 8.64 (d, J = 8.1 Hz, 1 H). 13C NMR (CD2Cl2, 75 MHz): δ 33.4 

(CH3), 36.1 (CH3), 55.8 (CH3), 55.8 (CH3), 107.7 (Cquat.), 109.5 (CH), 109.8 (CH), 113.4 (CH), 114.0 

(CH), 116.1 (Cquat.), 119.2 (Cquat.), 119.7 (CH), 119.8 (CH), 121.5 (Cquat.), 121.7 (CH), 123.2 (CH), 

124.3 (CH), 124.9 (CH), 125.3 (Cquat.), 131.8 (Cquat.), 132.0 (CH), 133.4 (Cquat.), 133.9 (CH), 136.4 

(Cquat.), 137.5 (Cquat.), 140.4 (Cquat.), 142.6 (Cquat.), 143.1 (Cquat.), 159.1 (Cquat.), 159.1 (Cquat.). EI-MS (70 

eV, m/z (%)): 496 ([M]+, 100), 196 (12), 189 (12). IR (ATR): ν ̃ [cm-1] 2951 (w), 2932 (w), 2900 (w), 

1518 (m), 1449 (m), 1315 (m), 1282 (m), 1240 (s), 1177 (m), 1030 (m), 826 (m), 781 (m), 739 (s). 

Anal. calcd. for C34H28N2O2 (496.6): C 82.23, H 5.68, N 5.64; Found: C 82.29, H 5.55, N 5.59. 

4.2.4. 2,9-Dimethoxy-6,7-bis(4-methoxyphenyl)-5,12-dimethyl-5,12-dihydroindolo[3,2-

a]carbazole (3d) 

According to the GP compound 3d (83.3 mg, 60%) was obtained as a colorless solid. Mp 238–239 °C. 

1H NMR (CD2Cl2, 300 MHz): δ  3.23 (s, 3 H), 3.50 (s, 3 H), 3.78 (s, 3 H), 3.79 (s, 3 H), 3.97 (s, 3 H), 

4.44 (s, 3 H), 5.92 (d, J = 2.6 Hz, 1 H), 6.77 (d, J = 8.6 Hz, 2 H), 6.86 (d, J = 8.6 Hz, 2 H), 6.92 (dd, J 

= 8.8, 2.6 Hz, 1 H), 7.08–7.20 (m, 5 H), 7.34 (t, J = 8.7 Hz, 2 H), 8.11 (d, J = 2.4 Hz, 1 H). 13C NMR 

(CD2Cl2, 75 MHz): δ 33.4 (CH3), 36.2 (CH3), 55.7 (CH3), 55.9 (CH3), 55.9 (CH3), 56.8 (CH3), 104.9 

(CH), 107.4 (CH), 107.7, 110.0 (CH), 110.2 (CH), 112.9 (CH), 113.3 (CH), 113.4 (CH), 114.0 (CH), 

118.9 (Cquat), 121.8 (Cquat), 125.9 (Cquat), 131.7 (Cquat), 132.2 (CH), 133.4 (Cquat), 133.9 (CH), 136.4 

(Cquat), 137.8 (Cquat), 138.1 (Cquat), 138.3 (Cquat), 141.0 (Cquat), 154.3 (Cquat), 154.4 (Cquat), 159.1 (Cquat), 

159.2 (Cquat). EI-MS (70 eV, m/z (%)): 556 ([M]+, 100), 541 ([M-CH3]
+, 21), 278 (15), 247 (9), 196 

(8). IR (ATR): ν̃ [cm-1] 3063 (w), 2830 (w), 2359 (w), 2342 (w), 1518 (m), 1508 (m), 1487 (m), 1448 

(m), 1375 (w), 1302 (m), 1244 (s), 1233 (s), 1213 (s), 1175 (s), 1150 (s), 1105 (m), 1030 (s), 978 (m), 

935 (m), 874 (m), 849 (m), 831 (m), 808 (m), 781 (s), 756 (m), 729 (m), 687 (m). Anal. calcd. for 

C36H32N2O4 (556.7): C 77.68, H 5.79, N 5.03. Found: C 77.39, H 5.87, N 4.96. 
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4.2.5. 5,12-Dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2-a]carbazole-2,9-dicarbonitrile (3e) 

According to the GP compound 3e (70.0 mg, 58%) was obtained as a colorless solid. Mp 381–383 °C 

(dec.). 1H NMR (CD2Cl2, 300 MHz): δ 3.31 (s, 3 H), 4.55 (s, 3 H), 6.64–6.67 (m, 1 H), 7.19–7.23 (m, 

2 H), 7.25–7.30 (m, 5 H), 7.34–7.41 (m, 3 H), 7.51 (d, J = 8.6 Hz, 1 H), 7.55–7.59 (m, 1 H), 7.61 (dd, 

J = 8.5, 1.5 Hz, 1 H), 7.75 (dd, J = 8.6, 1.5 Hz, 1 H), 8.93 (d, J = 1.2 Hz, 1 H). 13C NMR (CD2Cl2, 

75 MHz): δ 33.9 (CH3), 36.2 (CH3), 103.1 (Cquat), 103.1 (Cquat), 107.4 (Cquat), 110.4 (CH), 110.8 (CH), 

116.0 (Cquat), 120.7 (Cquat), 120.9 (Cquat), 121.1 (Cquat), 121.3 (Cquat), 124.9 (Cquat), 126.6 (CH), 127.9 

(CH), 128.0 (CH), 128.1 (CH), 128.1 (CH), 128.2 (CH), 128.5 (CH), 129.0 (CH), 130.6 (CH), 132.8 

(CH), 137.8 (Cquat), 138.0 (Cquat), 138.3 (Cquat), 139.7 (Cquat), 141.2 (Cquat), 144.2 (Cquat), 144.3 (Cquat). 

EI-MS (70 eV, m/z (%)): 486 ([M]+, 100), 471 ([M-CH3]
+, 11), 236 (15), 228 (11), 227 (12), 214 (10). 

IR (ATR): ν̃ [cm-1] 3065 (w), 2916 (w), 2802 (w), 2214 (m), 1576 (m), 1489 (m), 1441 (m), 1300 (m), 

1261 (m), 976 (w), 935 (w), 820 (s), 704 (s). Anal. calcd. for C34H22N4 (486.6): C 83.93, H 4.56, N 

11.51; Found: C 83.85,  4.40, N 11.34. 

4.2.6. 4,4'-(5,12-Dimethyl-5,12-dihydroindolo[3,2-a]carbazole-6,7-diyl)dibenzonitrile (3f) 

According to the GP compound 3f (62.5 mg, 51%) was obtained as a colorless solid. Mp 323–324 °C. 

1H NMR (CD2Cl2, 300 MHz): δ 3.27 (s, 3 H), 4.52 (s, 3 H), 6.46 (d, J = 7.9 Hz, 1 H), 6.92 (ddd, J = 

8.1, 7.1, 1.0 Hz, 1 H), 7.31–7.41 (m, 6 H), 7.45–7.56 (m, 5 H), 7.62 (d, J = 8.3 Hz, 2 H), 8.67 (d, J = 

8.1 Hz, 1 H). 13C NMR (CD2Cl2, 75 MHz): δ 34.0 (CH3), 36.1 (CH3), 108.6 (Cquat), 109.9 (CH), 110.1 

(CH), 111.7 (Cquat), 111.9 (Cquat), 115.0 (Cquat), 116.8 (Cquat), 119.2 (Cquat), 119.4 (Cquat), 120.3 (CH), 

120.3 (CH), 121.2 (CH), 123.5 (CH), 124.3 (Cquat), 125.0 (CH), 125.6 (CH), 131.9 (CH), 132.0 (CH), 

132.7 (CH), 133.6 (CH), 133.9 (Cquat), 138.2, (Cquat) 139.4 (Cquat), 142.7 (Cquat), 143.1 (Cquat), 144.4 

(Cquat), 145.5 (Cquat). EI-MS (70 eV, m/z (%)): 486 ([M]+, 100), 471 ([M-CH3]
+, 14), 236 (15). IR 

(ATR): ν ̃  [cm-1] 2990 (w), 2899 (w), 2365 (w), 2361 (w), 2231 (w), 1589 (m), 1585 (m), 1474 (m), 

1389 (m), 1319 (m), 1258 (m), 1179 (m), 1092 (m), 1016 (m), 995 (m), 974 (m), 864 (m), 781 (m), 

746 (m), 731 (s), 689 (m). Anal. calcd. for C34H22N4 (486.6): C 83.93, H 4.56, N 11.51. Found: C 

83.98, H 4.52, N 11.53. 
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4.2.7. 5,12-Dimethyl-7-phenyl-5,12-dihydroindolo[3,2-a]carbazol (3g) 

According to the GP compound 3g (61.5 mg, 68%) was obtained as a colorless solid. Mp 192–194 °C. 

1H NMR (CD2Cl2, 300 MHz): δ  3.94 (s, 3H), 4.53 (s, 3 H), 6.98 (ddd, J = 8.0, 7.0, 1.1 Hz, 1 H), 7.19 

(s, 1 H), 7.26 (d, J = 7.9 Hz, 1 H), 7.29–7.40 (m, 2 H), 7.48–7.61 (m, 6 H), 7.66–7.70 (m, 2 H), 8.63 

(d, J = 8.2 Hz, 1 H). 13C NMR (CD2Cl2, 75 MHz): δ 30.2 (CH3), 35.6, (CH3) 104.1 (Cquat), 104.1 

(Cquat), 106.6 (Cquat), 109.4 (CH), 109.5 (CH), 119.6 (CH), 119.7 (CH), 121.6 (CH), 121.7 (Cquat), 

123.4 (CH), 124.3 (CH), 124.6 (Cquat), 124.9 (CH), 125.6 (Cquat), 128.2 (CH), 129.0 (CH), 130.1 (CH), 

138.7 (Cquat), 141.5 (Cquat), 142.0 (Cquat), 142.2 (Cquat), 142.8 (Cquat). EI-MS (70 eV, m/z (%)): 360 

([M] +, 100), 345 ([M-CH3]
+, 20), 330 ([M-2x(CH3)]

+, 10), 180 (12), 172 (32), 165 (18). IR (ATR): ν ̃ 

[cm-1] 2984 (w), 2970 (w), 2901 (w), 1591 (w), 1558 (m), 1479 (m), 1448 (m), 1435 (m), 1408 (m), 

1348 (m), 1317 (s), 1250 (m), 1231 (m), 1190 (m), 1119 (m),1057 (m), 1024 (m), 972 (m), 960 (m), 

921 (w), 885 (m), 841 (m), 820 (m), 773 (m), 756 (m), 742 (s), 727 (s), 708 (s), 696 (s), 650 (m). Anal. 

calcd. for C26H20N2 (360.5): C 86.64, H 5.59, N 7.77. Found: C 86.93, H 5.74, N 7.87. 
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Highlights 

The urgency and relevance of our contribution for a broad readership of organic, dye and 

materials chemists is justified by the following aspects: 

1) Our general approach is the concept of modular one-pot syntheses of functional 

dyes, predominantly fluorophores. Indolo[3,2-a]carbazoles are accessible by a 

Pd/Cu-catalyzed oxidative four-fold CH-activation that proceeds in a pseudo-

threecomponent domino reaction.  

2) During our methodological studies we not only noticed that the title compounds are 

intensively violet to blue emissive in solution and in the solid state, but also 

acidochromic, i.e. a significant red shift of the absorption bands with concomitant 

fluorescence quenching. 

3) By comprehensive NMR studies the site of protonation as assessed, showing that 

the protonated species falls into the rarely occurring class of apocyanines. The site of 

protonation was additionally corroborated by DFT calculations on various 

conceivable isomers.  

4) The isosbestic points in the protonated absorption spectra as well as the static 

fluorescence quenching (Stern-Vollmer plot) furthermore allows determining the pKa 

of conjugated acids of the title compounds, i.e. apocyanines. 

5) The elucidation of the electronic structure by DFT and TD DFT calculations using 

the PBEh1PBE functional reveals that the longest wavelength chromogenic 

absorption band can be indeed assigned to dominant cyanine like HOMO-LUMO 

transitions.  


