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ABSTRACT

A sequentially Pd(Il)/Cu(ll)-catalyzed dimerizatiorof indoles with subsequent oxidative
cycloaromatization with alkynes give rise to thenfiation of strongly violet to blue solution andido
state emissive indolo[3@carbazoles in a domino fashion under mild condgi@and in moderate to
good yields. Upon protonation the absorption baads significantly red-shifted with concomitant
qguenching of the fluorescence. The site of proionatvas scrutinized by NMR studies of the
protonated species and confirmed by DFT calculatiofihe obtained chromophores of the
acidochromicity of the title compounds are raredgctibed apocyanine dyes. The relevant absorption

bands can be unambiguously assigned by TDDFT ediousk.



1. Introduction

The steadily growing quest for novel functionalamg materials, such as chromophores, fluorophores
and electrophores [1], with heterocyclic core dtrtes is an ongoing challenge for synthetic chesnist
and in recent years the concepts of multicompopeotesses_[2] and domino reactions [3] have
opened new opportunities for modular syntheseshe$d targets. These functiormakystems are
underlying molecular entities in molecule basedctebmics such as organic light-emitting diodes
(OLEDS) [4], dye-sensitized solar cells (DSSCs) fB]d organic photovoltaics (OPVSs) [6], or bio and
environmental analytics [7]. Particularly interegtiare sensitive dyes which undergo changes in thei
absorption and/or emission properties by extertidudi such as light [8], heat [9], current [10],
mechanical pressure [11], solvent polarity [12]pbt changes [13]. The latter phenomenon is called
halo- or acidochromism founding the principle of pidicators [14] and smart inks [15]. In addition,
fluorohalochromic dyes, which are both fluorescemid halochromic have as dual readout
chromophores advantages such as high sensitivily fast read-outs using relatively simple and
inexpensive instruments, for instance by ratiorndtiiensity analysis at a certain wavelengths [16].
With respect to intensity, for instance fluorescaftemosensors, in particular fused nitrogen
heterocycles, are either quenched (turn OFF) arded (turn ON) upon protonation.

First indolocarbazoles [17] were first mentionedhe late 1950s [18], but received attention orily 3
years later, when biologically active natural produsuch as the alkaloids K-252a [19] or
staurosporine_[20] were isolated. Ever since tbaffeld has not only been used for the development
of potential novel drugs [21] but increasingly tmmceptualizing functional materials [22]. Out ivief
possible isomers, indolo[3&)learbazoles have scarcely been studied, but idagtefew years some
methods have been developed starting from hydraZi28], 2,3-biindolyls [24], and indoles [25].
Very recently, Kumar's group has disclosed a Pdigatd [2 + 2 + 2] annulation of indoles or
azaindoles with alkynes, starting with indoles diizegtion to give 2,3-biindolyls, which subsequently
cyclizes with alkynes giving indolo[3@carbazoles (Scheme 1a), however, substrates wahgly
electron withdrawing groups were not converted [2&Jout the same time, motivated by our interest
in sequentially bimetallically Pd/Cu-catalyzed peses [27] as a rapid entry to multicomponent

syntheses of heterocycles in a one-pot fashion [28]probed the reaction of indoles and alkynes at
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lower temperatures in the presence of Pd(ll) andlCuaatalysts to give intensively luminescent

indolo[3,2-a]carbazoles (Scheme 1b).

a) Kumar's work

X Pd(OAc),
2 R1m
NP N

X | DMSO
R? 80°C,4h, O,

+

R3—R4

b) Our modification R2

: o
m Pd(Il)/Cu(ll) O N
) _
N DMSO, 50 °C, O, N
+ Me Me

Scheme 1Approaches to the domino synthesis of indologarbazoles.

As part of our program to explore diversity orightene-pot syntheses of functional chromophores by
multicomponent [1] and domino reactions [3], we énaeported domino syntheses of protochromic
“ON-OFF-ON” luminescent 2-styryl quinolines [29]dafOFF—ON" cation-induced fluorescent 2,4-
diarylpyrano[2,3b]indoles [30]. Herein, we report a modified pseuliee-component synthesis of
electronically interesting indolo[3,@lcarbazoles, a class of tetracyclic fused indotes$ discuss their

hitherto unexplored photophysical properties andaatromicity.

2. Results and discussion

2.1. Synthesis

The reaction of 1-methylindold4) (R' = H) and tolane2a) (R* = R* = Ph) in DMSO in the presence
of catalytic amounts of Pd(OAcand Cu(OAg) - H,O as an oxidant under oxygen atmosphere was
selected as a model system and optimized (for gienzation, see Supp Inf Table S1). Unlike
Kumar's work, whose optimization was initiated @t°€ by variation of the cooxidant, we started the
domino reaction at room temp with a stoichiomeanoount of Cu(OAg)- HO and then successively

increased the reaction temperature and reduceahtbent of copper oxidant to find that at 50 ° C and
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in the presence of catalytic amounts of Cu(ll) ssalbe best result was achieved, whereas without
cooxidant as well as at 80 °C significantly lessdgiwas observed. Kumar, on the other hand, who had
also experimented with Cu(OA¢Yound out that omitting the cooxidant at 80 °@ te more product
but could not reproduce the yield at lower tempees [26]. As such, we decided to synthesize and
discuss only electronically interesting indolo[&J2arbazole with our conditions, a modified, milder
variant of Kumar's method, and therefore the ppar studies were performed with electron-rich
and electron-poor 1-methyl indolésaind alkyneg to give 5,12-dimethyl-indolo[3,2}carbazoles3 in
moderate to good vyields in the sense of a domiractien representing a quadruple CH-
functionalization (Scheme 2). All title compoun8svere isolated as colorless solids which fluoresce
violet to blue both in solution and in the solidtst The structural assignment was unambiguously
corroborated by extensivid and*C NMR and IR spectroscopy, and mass spectrometny, tlae

molecular composition was verified by combustioalgses.

10 mol% Pd(OAc),

R’ 25 mol% Cu(OAc),-H,0
m + R2—=——RS®
N DMSO, 50 °C, 8-24 h, O,

1 2 3 (7 examples 51-73%)

Scheme 2.Pseudo-three-component domino synthesis of ind@e[@arbazoles3 by oxidative
Pd/Cu-catalyzed quadruple CH-functionalizationmafalesl with alkynes2.

With this protocol electron-donating methoxy suibstints can be introduced either via the indole or
the alkyne (Table 1, entries 2 and 3), as welhasstrongly electron withdrawing cyano groups adter
prolonged reaction time of 24 h (Table 1, entriem8 6)-in-contrast-to-Kumars-method{26]. While
the methoxy substituent can be simultaneously parated via both starting materials (Table 1, entry
4), this transformation does not work with the aygmnoup.

In addition to Kumar's work, the triisopropyl-prated alkyne2d was selectively transformed into the
simply phenylated indolocarbazoByg (Table 1, entry 7). To the best of our knowledgely one
method has been developed for 7-phenylindoloilcarbazoles to date, starting from indoles 8nd

nitrostyrenes that are reacted with tin and manggusalts for prolonged reaction times to give only
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low vyields [31]. Here, the selectivity is very lilgeaffected by the steric hindrance of the TIPS
substituent which is cleaved off in the course la# teaction. Kumar_[26] proposed a mechanistic
rationale that commences with an electrophilic guidtion, followed by subsequent migration [32],
insertion of the second indole and reductive elation [33] to form 2,3-biindolyls. The subsequent
palladium-catalyzed oxidative cycloaromatization tbe intermediate with alkyne via dual CH-
activation leads to the title compoun8$24]. In our approach, the addition of catalytinaunts of
copper acetate allows to lower the reaction tentpexa presumably due to a more efficient
reoxidation of the palladium catalyst, comparabl&acker oxidations [34].

Table 1.Pseudo-three-component domino synthesis of ind@effgarbazoles.

entry indolel alkyne2 indolo[3,2a]carbazole3 (yield)™

Ph Ph

Me
10 R'=H (1a) R =R = Ph Qa) O O N
N

Ph Ph

P R' = OMe (Lb) 2a
MeO  3b(73%)
MeQO OMe
3l la R? = R* = p-MeOGH, (2b) O Me
N

MeQ OMe

MeO
4[0] 1b 2b O O N,Me
N

MeO 3d (60%)



5 R'= CN (1o 2a

NC 3e(58%)

NC CN

6 la R?= R = p-NCCgH, (20) O Me
N

\
MG O 3f (51%)

O Me
Zclle] 1a R? = Ph, R = SiPr; (2d) O \
be L
Me 39 (68%)

[a] Reaction conditions: indolé@ (0.50 mmol), alkyne2 (0.25 mmol), Pd(OAg) (0.05 mmol),
Cu(OAc), - HO (0.125 mmol), DMSO (5 mL), 50 °C undeg.[d] Isolated yield. [c] Reaction time: 8
h. [d] Reaction time: 24 h. [e] 0.50 mmol 2d.

2.2.  Photophysical properties

Already previous studies on substituted indolof@@arbazoles indicated interesting photophysical
properties [24]. With a small library of 5,12-dirhgt-indolo[3,2-a]carbazoles in hand we decided to
assess the substitution effects on the optical gotigs. All derivatives were characterized by
quantitative absorption and emission spectroscepyell as relative fluorescence quantum yiefgls
were determined (Table 2).

Table 2.Selected photophysical properties of indolo[8]@arbazoles3 (recorded in CKCL, at T =
293 K).

[B] D

entry compound Amaxaps [NM] (€[L-mol ™ cmi']) Am(a%[;}? : StoE:eni_ﬁmfﬂv
1 3a 250 (41100), 295(:52388)0), 354 (1010850 390 (0.50) 1400

253 (47400), 282 (44700), 311 (41200), 349

2 3b (11400),365 (14900) 395 (0.45) 2100
3 ac 253 (46100), 296( 1(5238)0), 354 (110080 389 (0.52) 1300
4 2 249 (44900), 3032 1(2838)0), 365 (1050863 403 (0.48) 1300
5 3e 298 (80900), 358 (10300375 (17100) 391 (0.52) 2400
5 af 244 (55500), 292( 1(;;138)0), 355 (11408)2 436 (0.29) 4000
7 39 251 (39300), 295 (45200), 350 (920866 407 (0.54) 2800
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(11800)

[a] c(3) = 10° M. [b] ¢(3) = 10’ M, Aexe = 280 nm. [c] Recorded ak,. = 280 nm,c(3) = 107 M,
determined with 2,5-diphenyloxazole as a standaaytlohexane,®-=1.00 [35]). [d]Av = Amax(abs)'l

- Arvexgemy -

Generally, the absorption characteristics of allnpounds are quite similar, whereby the longest
wavelength absorption band appears at around 370rhe compound8a-g show a strong blue
luminescence in solution (dichloromethane) (Figlyewith Stokes shifts in a range from 1300 to
4000 cnt. The emission maximum of the derivati@s-cand 3e can all be found at around 390 nm
(Figure 2). The tetramethoxy substituted indolof8@arbazole3d is slightly bathochromic shifted
emission maximum at 403 nm, also the unsymmetyicallibstituted indolo[3,2jcarbazole 3g
displays a slight red-shift to 407 nm in comparigoncompound3a. For the cyano-substituted

derivative3f substantial bathochromic shift to 436 nm is detagdi

Figure 1. Visual impression of indolocarbazol@sunder daylight (top) and hand-held UV lamp

(bottom) in dichloromethan&(@) = 10° M, Ae = 365 nm).
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Figure 2. Normalized UV/Vis absorption (recordeddH,Cl,, T = 293 K,c¢(3) = 10°, bold line) and
emission bands (recorded in @b, T = 293 K,c(3) = 107, Aexc(38) = 294 nm Ae(3c,f,9 = 280 nm,
dashed line) of indolocarbazolda,c,f,g

Furthermore, relative fluorescence quantum yieBf§ jvere measured with 2,5-diphenyloxazole as a
standard in cyclohexane® = 1.00 [35]). The compound3a-e and 3g show a similar distinctive
fluorescence in dichloromethane with quantum yie&dsging from 45 to 54%. Interestingly, only the
p-cyanopheny! substitution in positiond &d R (3f) leads to a significant decrease in fluorescence
(@ = 29%).

Most remarkably, the addition of trifluoroaceticicaclearly changes the absorption and emission
spectra of the indolocarbazol@swhich is a consequence of a selective protonaifahe carbazole
core (vide infra). This acidochromism was studisddbsorption spectroscopy for all indolo[3,2-

ajcarbazoles (Table 3).



Table 3. Comparison of absorption maxima of non-protonaedand protonated indolo[3,2-
aJcarbazoles-H".

entry compound

. -1 <11y [a]
A”??X'abs [nm] (&[L-mol™-cni ) acidochromicity shift [cn]

3_H+[b]
277 (31400), 297
250 (41100), 295 (53600),
1 3a (30100), 367 (6300), 6200
354 (10100)370(16000) 75900
253 (47400), 282 (44700),
2 3b 311 (41200), 349 (11400), %ggo(oél)ofggzéggg)sh 7400
365 (14900) :
278 (27800), 300
253 (46100), 296 (59100),
3 3¢ (23400), 399sh (5800), 6300
354 (11000)370 (17600) Y 10200,
. o 249 (44900), 303 (50700), 287sh (25500), 301 6300
365 (10500)383(16900)  (28500),506(3000)
. o 298(80900), 358 (10300), 301 (68700), 358 o
375(17100) (10400),375(15600)
3 a 244 (55500), 292 (44400), 280 (38200), 289 o
355 (11400)372(15200)  (38500).372(11600)
277 (21400), 295
7 39 251 (39300), 295 (45200), ;44 368 (4300), 5900

350 (9200)366(11800) 466(9300)

[a] Recorded in CECl,, T = 293 K, ¢ = 16 M. [b] Transferred into the cell (3 mL), additiof 200
uL trifluoroacetic acid (TFA). [chv = )Imax(abs[gl)'l - Amax(abqa.m])'l.

All free bases give colorless solutions, wherebierafddition of trifluoroacetic acid (TFA) the
methoxy and phenyl derivat8a-d and3g became yellow to red solutions (Figure 3). Intenggdy, in
the protonation studies with cyano-substituted loj@y2-ajcarbazolesse and 3f no significant change
in the absorption spectra was detected. Presuntgbbtrongly electron withdrawing cyano groups

their basicity is too low.



Figure 3. Visual color impression of indolocarb&s® under daylight (top) and hand-held UV lamp
(bottom) after the addition of TFA (recorded in £, ¢(3) = 10* M, Ao = 365 nm).

In all other absorption spectra of the conjugatedbiocarbazole salts &a-d and 3g, a new red-
shifted absorption maximum forms between 466 ar@irb0. Thereby the tetramethoxy substituted
indolo[3,2-a]carbazole3d shows the largest bathochromic shift with an gtsom maximum at
506 nm. Moreover, the acidochromic shifts of compisB8a-d and 3g range from 59003g) to 7400
cmi* (3b). The protonation has also an interesting effecth® emission properties of the indolo[3,2-
ajcarbazoles. The fluorescence of all compoundsludtieg the cyano-substituted derivatives, is
noticeably quenched after addition of an excessuamof TFA. The process can be reversed by
adding triethylamine and all solutions are colslagain as prior to the treatment with TFA, ang the
fluoresce violet to blue under the hand-held UVpgam

In addition, we photometrically determined thi€,pvalue of the conjugated base 3d Therefore,
trifluoroacetic acid was chosen as a suitable doatause it is completely dissociated in

dichloromethane. For the Kp determination by absorption spectroscopy, the pldesr was
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successively lowered from 1.58 to 0.28 and theespwnding absorption spectra were recorded
(Figure 4). With successive addition of TFA, theximaa at 354 and 370 nm &a disappear and a
new red-shifted maximum at 480 nm was detectedtHer protonated specie&&a-H". From these

titrations a [, value of 0.75 foBa-H" was determined (for experimental details, see Suip

wavenumber [cm™']

30000 27000 24000 21000 18000
0,4 PEETY FR R RN RIS UTAT AT Ur AU S S U I U0 Y AT ST S W ST S YA [N T YO ST S TN S T ST ST T Y ST ST S 0,4

——O0TFA
——pH1.58
0,3 4 —pH128| [~ 0,3
——pH 1.11
pH0.98
pH0.88
pH0.80| [
pH0.74
pH 0.68
pH0.63
pHo58| [~ 0,2
pH 0.54
pH 0.50
——pH 047

absorption [a.u.]
o
N
1
absorption [a.u.]

g
N
|

0,0 -

T 7 T T T T T
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wavelength [nm]

Figure 4. Absorption spectra 8&in the presence of increasing amounts of TFA (dedin CHCI,,
c(3a) = 10°m, T =293 K).
Furthermore, the fluorescence quenchin@after addition of trifluoroacetic acid was quaatiiely

monitored (Figure 5).
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Figure 5. Emission spectra 8& in the presence of increasing aliquots of TFAdrded in CHCI,,
c(3a) = 10’ m, T = 293 K, dec = 294 nm).

The Stern-Volmer plot dfFy/F against the concentration of TFA reveals a lirsgarelation (Figure 6)
and the Stern-Volmer constaig, was determined to 49.940 LrfolThe Stern-Volmer constait,
correlates by definition of steady-state quenchimghe K, value of 3a The (K, is calculated
therefrom to 1.97, which is in reasonably good agrent with K, value determined by absorption

spectroscopy.
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Figure 6. Stern-Volmer plot da (co(3a) = 10" m in CHCl,, T = 293 K, Amaxemy = 390 nm;Fo/F =

0.52932 + 49.904[H; r* = 0.97826).

2.3. NMR protonation studies

Intrigued by the observed acidochromocity of tlike tompounds, NMR studies were performed to
localize the protonation site of indolo[3szarbazoles. The'H NMR spectra oBa and3a-H' reveal
that upon protonation only a single new species faased, supported by the appearance of a single
set of signals, accompanied by an additional single) 5.37 arising from the trifluoroacetic acid
proton (Figure 7). 2D NMR experiments, such as NOE®d HMBC, allowed the unambiguous
assignment of position 6 as the site of protonaffondetails and spectra, see Supp Inf). In pplegi
most of the signals of the protonated spedasH’ are shifted to lower field, where increased
deshielding indicates the formation of a resonastabilized cation. For instance, the methyl protons
at position 5 are shifted fro@3.26 @a) to 3.73 Ba-H"). The protonation aBato 3a-H" also causes a
significant change in the molecular geometry sufgabby the splitting the phenyl proton resonances.
The resonances of 6-Ph (blue circles, Figure 1) ispd a doublet and two triplets, which is indiva

of the free rotation of the phenyl ring, whereas 7ePh (orange circles, Figure 7) split into five
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broaden signals that appear betwee6.59 and 7.72. This phenyl ring obviously is cdesably

restricted in its rotational freedom and therefgplits into five chemically inequivalent signals.

a)
2110 ||
| 12-Me
5-Me

3

11 J

1 CD,Cl,
u l’ | ‘h | ‘ | || | “ l‘l
N J ‘\_ lL.—_/ R | S J k
2/'3/4 10 11 5-Me
‘ [ 12-Me
|
1, | ’ |
W
v \‘|
1 ‘ | 9 8
|
)Il‘\,_ _ uﬁ" Vllk ‘h\zlljx_,‘lll - J’ilk J’l e N ,JlLJ'L* J“\ *,_J |\
“s7 86 85 ”7:5 T37 76 75 74 73 72 . €9 68 67 66 65 6'4’;'4 ’ s'zﬂa's 45 ”3'5 "37 35 35 34 33 32 34
oM

Figure 7. PartialH NMR spectra (600 MHz, 293 K, GDI,) of 3a before (a) and after (b) the addition

of 75 equiv of CECO,H.

2.4.  Calculated electronic structure
Ground state geometries of all structuBeand3a-H" were optimized using the Gaussian09 program
package [37], the PBEO hybrid-functional by PerdBwrke and Ernzerhof [38] and the 6-311G(d,p)

basis set [39]. The optimized geometries were omefil as minima by analytical frequency analyses.
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Excitation energies were calculated with TDDFT [4@fthods implemented in the Gaussian09
program package [37], PBEQ [38], and the 6-311+§j(basis set_[39]. The polarizable continuum
model (PCM) with dichloromethane as a solvent wagliad for the calculations each [41]. The
Mulliken population analysis was extracted from @eussian09 calculation outputs by the help of the
Multiwfn software [42].

The site of protonation in structuda-H’, experimentally assigned by NMR experiments, wathér
corroborated by DFT calculations also to gain gpdeénsight into the observed acidochromism. All
ground state geometries and excitation energi@segbrotonated speci@a-H" and3a were calculated
(for details, see Supp Inf). We hypothesized thaaddition to the two indolyl nitrogen atoms, the
three B-positions of the indoles are potential sites obtpnation, i.e. a total of five different
protonation sites have to be considered (Figurd@i®.calculations on the different protonated sggeci
3a-H' reveal in agreement with the NMR spectroscopicysthdt protonation at position 6 forms the
thermodynamically most stable cation (Table 4). dbwer, the position bearing the largest HOMO

coefficient in the non-protonated compowaiwas protonated (Table 4).

pos. 6

pos. 12 pos. 12b

Figure 8. Potential protonation sites3at

Table 4.Relative free enthalpies (PBE0/6-311G(d,p) PCM,Cl of 3a-H'" protonated in all tested
positions and the corresponding HOMO-coefficieritsan-protonate®@a.

position i 5 6 7a 12 12b
AAG(position i— position 6) [kcal/mol] +8.81 0 +9.11 +6.00 +13.30
HOMO coefficients oBBa [%] 13.28 15.52 13.64 5.63 0.26
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For the structura-H" with protonation at position 6 the UV/Vis spectrwas calculated on the
TDDFT level of theory. The first states, &, and 3 nicely reproduce the experimentally observed
absorption bands (Table 5). While the longest wength absorption band {jScan be described as a
HOMO—LUMO transition (99%), the following bands consitHOMO-2—LUMO (S,, 94 %) and
HOMO—LUMO+1 transitions (§ 84%) (for full details, see Supp Inf).

Table 5.Comparison of calculated UV/Vis-absorption3#-H" (PBE0/6-311+G(d,p) PCM GEl,),
protonated in position 6, and experimental UV/Mis@rption of3a-H".

Arrese exp ™ [NM] Arex, calc [nm] oscillator strength FMO contribution

479 458 0.245 HOMO — LUMO (99 %)
HOMO-2 - LUMO (94 %)
HOMO - LUMO+1 (3 %)
HOMO-7 — LUMO (7 %)

297 288 0.544 HOMO-2 — LUMO (3 %)
HOMO - LUMO+1 (84 %)
HOMO-8 — LUMO (20 %)
HOMO-5 — LUMO+1 (2 %)
HOMO-1 - LUMO+1 (47 %)

277 256 0.387 HOMO-1 — LUMO+2 (9 %)
HOMO - LUMO+2 (8 %)
HOMO - LUMO+7 (3 %)
HOMO - LUMO+8 (3 %)

367 360 0.162

[a] Recorded in CkCl,, c(3a) = 10° M, pH = 0.25,T = 293 K. [b] PBE0/6-311+G(d,p) with PCM
(CH,CL).

Based upon the spectroscopic and computationalestsdpporting the protonation of struct@eeat
position 6 resonance structures3afH" can be assigned, suggesting that the formed clploone is

an apocyanine (Figure 9). An apocyanine is a ngoe bf cyanine where the two terminal nitrogen
atoms are conjugatively linked without methine g®ui.e. only quaternary Shybridized carbon
centers [43]. This special topology rationalizes bBathochromic shift upon protonation (Figure 10).
As seen from the NMR studies both phenyl groupsrerdonger parallel to each other and the
substituent at position 7 planarizes with the indafbazole and participates in the conjugation with

the apocyanine system.
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Figure 9. Resonance structures of a closed apooyasystem (red) arising from protonation of

compound3a.

E[eV]
A

LUMO
protonation
So e 81* So e 81‘
3.64 eV (341 nm) 2.71 eV (458 nm)

Figure 10. Jablonski diagram before (left) andraftght) protonation ofda and assignment of the
FMO-transitions in the longest wavelength absorptitands (PBEO0/6-311+G(d,p) PCM &3,

isosurface value at 0.04 a.u.).
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3. Conclusion

In summary starting from indoles and alkynes weehdisclosed an efficient and mild sequentially
Pd(I1)/Cu(ll)-catalyzed pseudo-three-component daneaction to give indolo[3,dlcarbazoles even
with strongly electron withdrawing groups. In adatit with a TIPS-protected alkyne as a substrate, i
was possible to selectively obtain the mono-pheagla’-phenylindolo[3,2]carbazole via in situ
desilylation. The study of the electronic propertid the indolocarbazoles revealed in additiorht t
known fluorescence, to the best of our knowledd@ttaerto unknown acidochromism of this class of
compounds, indicating that the title compoundsraversibly pH-sensitive. The protonation site was
unambiguously localized by NMR spectroscopy andfiomed by quantum chemical calculations.
Protonation generates a rarely described intensiw@nge to red apocyanine system. Syntheses and

applications of these novel electronically interesaipocyanine dyes are currently underway.

4. Experimental

4.1. General considerations

All reactions were carried out in flame-dried Seietubes by using syringes under an oxygen
atmosphere. Oxygen was used from a bottle of Ajuide (ALPHAGAZ™ 1 O,, 99.998 %). Indoles
1b [44] and1c [32], as well as alkyne2®b [45], 2c [45], and2d [46] were synthesized according to
literature procedures as indicated. Commercial gyr@dgents were purchased from Sigma Aldrich,
Alfa Aesar, ABCR, Fluorochem and ACROS and usesugplied without further purification. Crude
mixtures were adsorbed on Celite® 545 (0.02-0.20 nrom Carl Roth GmbH Co.KG. The
purification of products was performed on silichd @@ M (0.04—0.063 mm) from Macherey—Nagel by
using the flash technique under a pressure of 2HmrTLC silica gel coated aluminium plates (60,
F.s,) from Merck were employed. The spots were detewiigill UV light at 254 or 365 nniH, °C,
and DEPT NMR spectra were recorded at 293 K on Bz (Bruker AVII) or 600 MHz
(BrukerAvance 111-600) and the resonances of treidiees of non-deuterated gI), were locked as
internal standards (GBl,: 'H = 5.32 ppm,**C = 54.00 ppm). The muiltiplicities of signals are

abbreviated as follows: s = singlet, d = doublet ttiplet, dd = doublet of doublets, ddd = doulaét
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doublets of doublets and m = multiplet. The assigmi® of G, CH, CH and CH nuclei are based
on DEPT spectra. IR spectra were recorded on ad&lzmIR Affinity-1 with ATR technique. The
intensities of IR signals are abbreviated as srigly, m (medium) and w (weak). El mass spectra were
recorded on Triple-Quadrupole mass spectrometer T@I@ (Finnigan MAT). Absorption spectra
were recorded in CJ€l, high performance liquid chromatography (HPLC) grad 293 K on Perkin
Elmer UV/VIS/ NIR Lambda 19 spectrometer. Emissgpectra were recorded in gE, HPLC
grade at 293 K on a Perkin Elmer LS55 spectrom&ter.melting points (uncorrected) were measured
on a Buchi Melting Point B-540. The elemental asatywere carried out on a Perkin Elmer Series Il
Analyser 2400 at the Institute for Pharmaceuticadl &Medicinal Chemistry at Heinrich-Heine-

University Disseldorf.

4.2.  General procedure (GP) for the domino synthesis ahdolo[3,2-a]carbazoles 3
Palladium(ll)acetate (11.2 mg, 50u0nol, 10 mol%), copper(ll)acetate monohydrate (24¢) 125
umol, 25 mol%), indolel (500 pmol, 1.00 equiv) and/or alky@e(250 umol, 0.50 equivs), if solid,
were placed in a Schlenk tube, which was evacuateti flushed with oxygen three times. Then,
indole 1 (500 umol, 1.00 eq.) and/or alkyn2 (250umol, 0.50 equivs), if present as a liquid, and
DMSO (5 mL) were added. The reaction mixture wasest until complete conversion (8 or 24 h,
monitored by TLC, eluentn-hexane/ethyl acetate) at 50 °C under an oxygerosihere. After
cooling to room temp, the solvent was removed uneduced pressure, the product mixture adsorbed
on Celité€ and purified by column chromatography on silich(gient:n-hexane/dichloromethane).

Table 6.Experimental details of the domino synthesis oblofB,2-a]Jcarbazoles.

entry indolel alkyne2 indolo[3,2-a]carbazoles8

(yield)
65.6 mg (0.50 mmol) of 1-
1 methylindole (a) 44.6 mg (0.25 mmol) of tolan@) 78.7 mg (72%) o8a
80.6 mg (0.50 mmol) of 5-
2 methoxy-1-methylindolelf) 44.6 mg (0.25 mmol) dta 90.8 mg (73%) o8b
57.1 mg (0.25 mmol) of 1,2-bis(4-
3 65.6 mg (0.50 mmol) afa methoxyphenylethyneb) 85.0 mg (68%) o8¢
4 80.6 mg (0.50 mmol) datb 57.1 mg (0.25 mmol) dtb 83.3 mg (60%) o8d
78.1 mg (0.50 mmol) of 1-
5 methyl-indole-5-carbonitrile 44.6 mg (0.25 mmol) dta 70.0 mg (58%) o8e
(20)
6  656mg(0.50 mmolyafa 2/ M9 (0.25 mmol) of 4,4-(ethyne- ¢, 5\ 5194) of

1,2-diyl)dibenzonitrile 2c)

19



129 mg (0.50 mmol) of

7 65.6 mg (0.50 mmol) afa triisopropyl(phenylethynyl)silane2)

61.5 mg (68%) o8g

4.2.1. 5,12-Dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2a]carbazole (3a)

According to the GP compourgh (78.7 mg, 72%) was obtained as a colorless sulpi141-142 °C
(lit. 140142 °C [26])*H NMR (CD,Cl,, 600 MHz):J 3.14 (s, 3 H), 4.39 (s, 3 H), 6.32 (b 7.9
Hz, 1 H), 6.76 (t) = 7.5 Hz, 1 H), 7.10-7.15 (m, 5 H), 7.15-7.25 {nt), 7.32 (dJ = 8.1 Hz, 1 H),
7.37 (t,J = 7.6 Hz, 2 H), 8.54 (d] = 8.1 Hz, 1 H)*C NMR (CDCl,, 151 MHz):J33.3 (CH), 36.0
(CHs), 107.6 (Gua), 109.5 (CH), 109.7 (CH), 115.5 (&), 118.9 (Gua), 119.7 (2xCH), 121.3 (G,
121.5 (CH), 123.2 (CH), 124.3 (CH), 124.9 (CH), 2C,..), 127.2 (CH), 127.2 (CH), 127.8 (CH),
128.4 (CH), 130.9 (CH), 133.0 (CH), 136.14($, 137.4 (Gua), 139.4 (Gua), 139.8 (Gua), 140.9
(Cqua)» 142.4 (Guad, 142.9 (Gua). EI-MS (70 eV,miz (%)): 436 ([M], 100), 421 ([M-CH]", 15), 406
(IM-2x(CH3)]*, 9), 203 (16), 202 (17), 201 (11), 196 (11). IRTE: v [cm™] 3044 (w), 1580 (m),
1570 (m), 1558 (m), 1441 (m), 1329 (m), 1315 (nM@54. (m), 1024 (m), 968 (m), 918 (m), 768 (m),
752 (m), 729 (s), 718 (s). Anal. calcd. fopid,,N, (436.6): C 88.04, H 5.54, N 6.42; Found: C 88.11,
H 5.55, N 6.20.

4.2.2. 2,9-Dimethoxy-5,12-dimethyl-6,7-diphenyl-5,12-dihybindolo[3,2-a]carbazole (3b)
According to the GP compourgb (90.8 mg, 73%) was obtained as a colorless sElpl197-198 °C
(lit. 160165 °C [26])'H NMR (CD.Cl,, 600 MHz):5 3.19 (s, 3 H), 3.88 (s, 3 H), 3.94 (s, 3 H), 4.41
(s, 3 H), 6.29 (dJ = 8.2 Hz, 1 H), 6.48 (dd] = 8.6, 2.1 Hz, 1 H), 6.86 (s, 1 H), 6.91-6.94 (nH),
6.95 (d,J = 2.1 Hz, 1 H), 7.20=7.25 (m, 5 H), 7.26—7.33 fnt), 8.47 (d,) = 8.8 Hz, 1 H)**C NMR
(CD,Cl,, 151 MHz): & 33.4 (CH), 35.9 (CH), 56.1 (CH), 56.1 (CH), 93.7 (CH), 94.2 (CH), 107.6
(CH), 107.9 (Gua), 108.1 (CH), 115.1 (), 115.8 (Gua), 118.8 (Gua), 119.0 (Gua), 122.1 (CH),
123.9 (CH), 125.4 (CH), 127.1 (CH), 127.7 (CH), #26CH), 131.1 (CH), 132.9 (CH), 134.14(9),
136.7 (Gua), 139.2 (Guay, 139.6 (Gua), 141.0 (Gua), 143.9 (Guap, 144.2 (Gua), 158.4 (Gua), 158.6
(Cqua)- EI-MS (70 eV, mz (%)): 497 ([MH]', 100), 482 ([M-CH]*, 14), 453 (12), 438 (11), 395 (11),
248 (22), 196 (11), 189 (12), 97 (13), 85 (10)(83), 71 (13), 69 (12), 57 (18), 55 (12). IR (ATR):
[cm™] 3019 (w), 1585 (w), 1393 (m), 1219 (m), 1086 (K)32 (m), 982 (m), 802 (s), 706 (s). Anal.

calcd. for G4H2gN0, (496.6): C 82.23, H 5.68, N 5.64; Found: C 81195,.53, N 5.62.
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4.2.3. 6,7-Bis(4-methoxyphenyl)-5,12-dimethyl-5,12-dihydrimdolo[3,2-a]carbazole (3c)
According to the GP compour8t (85.0 mg, 68%) was obtained as a colorless selEi334-335 °C
(dec.).*H NMR (CD.Cl,, 300 MHz):d 3.28 (s, 3 H), 3.80 (s, 3 H), 3.84 (s, 3 H), 4513 H), 6.53
(d,J=7.9 Hz, 1 H), 6.76-6.81 (m, 2 H), 6.84-6.92 Inh), 7.11-7.15 (m, 2 H), 7.16—7.20 (m, 2 H),
7.29-7.36 (m, 2 H), 7.42—7.51 (m, 3 H), 8.64J¢,8.1 Hz, 1 H)*C NMR (CD.Cl,, 75 MHz): 533.4
(CHs), 36.1 (CH), 55.8 (CH), 55.8 (CH), 107.7 (Gua), 109.5 (CH), 109.8 (CH), 113.4 (CH), 114.0
(CH), 116.1 (Gua), 119.2 (Guar), 119.7 (CH), 119.8 (CH), 121.5 {(), 121.7 (CH), 123.2 (CH),
124.3 (CH), 124.9 (CH), 125.3 {G), 131.8 (Gua), 132.0 (CH), 133.4 (G.), 133.9 (CH), 136.4
(Cquat), 137.5 (Guar), 140.4 (Guar), 142.6 (Guar), 143.1 (Guar), 159.1 (Guar), 159.1 (Guar)- EI-MS (70
eV, m'z (%)): 496 ([M], 100), 196 (12), 189 (12). IR (ATR}:[cm] 2951 (w), 2932 (w), 2900 (w),
1518 (m), 1449 (m), 1315 (m), 1282 (m), 1240 (77 (m), 1030 (m), 826 (m), 781 (m), 739 (s).
Anal. calcd. for G4H2gN-0, (496.6): C 82.23, H 5.68, N 5.64; Found: C 8212%.55, N 5.59.
4.2.4. 2,9-Dimethoxy-6,7-bis(4-methoxyphenyl)-5,12-dimettyb,12-dihydroindolo[3,2-
ajcarbazole (3d)
According to the GP compouradl (83.3 mg, 60%) was obtained as a colorless sdlji238—-239 °C.
'H NMR (CD.Cl,, 300 MHz):d 3.23 (s, 3 H), 3.50 (s, 3 H), 3.78 (s, 3 H), 338 H), 3.97 (s, 3 H),
4.44 (s, 3H),5.92 (d=2.6 Hz, 1 H), 6.77 (d] = 8.6 Hz, 2 H), 6.86 (dl = 8.6 Hz, 2 H), 6.92 (dd}
= 8.8, 2.6 Hz, 1 H), 7.08-7.20 (m, 5 H), 7.34)(£ 8.7 Hz, 2 H), 8.11 (dl = 2.4 Hz, 1 H)*C NMR
(CD,Cl,, 75 MHz): 0 33.4 (CH), 36.2 (CH), 55.7 (CH), 55.9 (CH), 55.9 (CH), 56.8 (CH), 104.9
(CH), 107.4 (CH), 107.7, 110.0 (CH), 110.2 (CH)2BL(CH), 113.3 (CH), 113.4 (CH), 114.0 (CH),
118.9 (Gua)s 121.8 (Gua), 125.9 (Gua), 131.7 (Gua), 132.2 (CH), 133.4 (G.), 133.9 (CH), 136.4
(Caue: 137.8 (Gua), 138.1 (Gua). 138.3 (Gua). 141.0 (Gua), 154.3 (Gua), 154.4 (Gua). 159.1 (Gua),
159.2 (Gua). EI-MS (70 eV, m/Z%)): 556 ([M], 100), 541 ([M-CH]*, 21), 278 (15), 247 (9), 196
(8). IR (ATR): v [cm™] 3063 (w), 2830 (w), 2359 (w), 2342 (w), 1518 (08 (m), 1487 (m), 1448
(m), 1375 (w), 1302 (m), 1244 (s), 1233 (s), 12493 1175 (s), 1150 (s), 1105 (m), 1030 (s), 978 (m)
935 (m), 874 (m), 849 (m), 831 (m), 808 (m), 78), &6 (m), 729 (m), 687 (m). Anal. calcd. for

CseH32N20, (556.7): C 77.68, H 5.79, N 5.03. Found: C 7713%,87, N 4.96.
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4.2.5. 5,12-Dimethyl-6,7-diphenyl-5,12-dihydroindolo[3,2a]carbazole-2,9-dicarbonitrile (3e)
According to the GP compour8#® (70.0 mg, 58%) was obtained as a colorless soll.381-383 °C
(dec.).*H NMR (CD.Cl,, 300 MHz):93.31 (s, 3 H), 4.55 (s, 3 H), 6.64—-6.67 (m, 1 H19-7.23 (m,

2 H), 7.25-7.30 (m, 5 H), 7.34-7.41 (m, 3 H), 7(81) = 8.6 Hz, 1 H), 7.55-7.59 (m, 1 H), 7.61 (dd,
J=8.5, 1.5 Hz, 1 H), 7.75 (dd,= 8.6, 1.5 Hz, 1 H), 8.93 (d,= 1.2 Hz, 1 H)*C NMR (CD.Cl,,

75 MHz): 533.9 (CH), 36.2 (CH), 103.1 (Gua), 103.1 (Gua), 107.4 (Gua), 110.4 (CH), 110.8 (CH),
116.0 (Gua), 120.7 (Guap, 120.9 (Guay, 121.1 (Gua), 121.3 (Gua), 124.9 (Guay, 126.6 (CH), 127.9
(CH), 128.0 (CH), 128.1 (CH), 128.1 (CH), 128.2 (C#28.5 (CH), 129.0 (CH), 130.6 (CH), 132.8
(CH), 137.8 (Guap, 138.0 (Guap, 138.3 (Gua), 139.7 (Gua), 141.2 (Guap, 144.2 (Guay, 144.3 (Gua)-
EI-MS (70 eV,m/z (%)): 486 ([M[', 100), 471 ([M-CH]*, 11), 236 (15), 228 (11), 227 (12), 214 (10).
IR (ATR): v [cm’] 3065 (w), 2916 (w), 2802 (w), 2214 (m), 1576 (189 (m), 1441 (m), 1300 (m),
1261 (m), 976 (w), 935 (w), 820 (s), 704 (s). Arallcd. for G4H..N4 (486.6): C 83.93, H 4.56, N
11.51; Found: C 83.85, 4.40, N 11.34.

4.2.6. 4,4'-(5,12-Dimethyl-5,12-dihydroindolo[3,2a]carbazole-6,7-diyl)dibenzonitrile (3f)
According to the GP compourdd (62.5 mg, 51%) was obtained as a colorless Sdli323-324 °C.
'H NMR (CD.Cl,, 300 MHz):33.27 (s, 3 H), 4.52 (s, 3 H), 6.46 (= 7.9 Hz, 1 H), 6.92 (ddd, =
8.1, 7.1, 1.0 Hz, 1 H), 7.31-7.41 (m, 6 H), 7.4567m, 5 H), 7.62 (d) = 8.3 Hz, 2 H), 8.67 (d] =
8.1 Hz, 1 H)*C NMR (CD,Cl,, 75 MHz): 534.0 (CH), 36.1 (CH), 108.6 (Gua), 109.9 (CH), 110.1
(CH), 111.7 (Gua), 111.9 (Gua), 115.0 (Gua), 116.8 (Gua), 119.2 (Gua), 119.4 (Gua), 120.3 (CH),
120.3 (CH), 121.2 (CH), 123.5 (CH), 124.3,(§, 125.0 (CH), 125.6 (CH), 131.9 (CH), 132.0 (CH),
132.7 (CH), 133.6 (CH), 133.9 (&), 138.2, (Gua) 139.4 (Gua), 142.7 (Gua), 143.1 (Gua), 144.4
(Cqua)» 145.5 (Gua). EI-MS (70 eV, m/z(%)): 486 ([MT, 100), 471 (IM-CH]*, 14), 236 (15). IR
(ATR): v [cm™] 2990 (w), 2899 (w), 2365 (W), 2361 (w), 2231 (WK89 (M), 1585 (m), 1474 (m),
1389 (m), 1319 (m), 1258 (m), 1179 (m), 1092 (n®1a (m), 995 (m), 974 (m), 864 (m), 781 (m),
746 (m), 731 (s), 689 (m). Anal. calcd. fog8,,N, (486.6): C 83.93, H 4.56, N 11.51. Found: C

83.98, H 4.52, N 11.53.
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4.2.7. 5,12-Dimethyl-7-phenyl-5,12-dihydroindolo[3,2a]carbazol (3g)

According to the GP compourgdy (61.5 mg, 68%) was obtained as a colorless S@l192-194 °C.
'H NMR (CD,Cl,, 300 MHz):J 3.94 (s, 3H), 4.53 (s, 3 H), 6.98 (ddds 8.0, 7.0, 1.1 Hz, 1 H), 7.19
(s, 1 H), 7.26 (dJ = 7.9 Hz, 1 H), 7.29-7.40 (m, 2 H), 7.48-7.61 6nH), 7.66—7.70 (m, 2 H), 8.63
(d, J = 8.2 Hz, 1 H)."*C NMR (CDCl,, 75 MHz): § 30.2 (CH), 35.6, (CH) 104.1 (Gua), 104.1
(Cqua), 106.6 (Gua), 109.4 (CH), 109.5 (CH), 119.6 (CH), 119.7 (CHP1.6 (CH), 121.7 (Gu).
123.4 (CH), 124.3 (CH), 124.6 {G), 124.9 (CH), 125.6 (), 128.2 (CH), 129.0 (CH), 130.1 (CH),
138.7 (Gua), 141.5 (Gua), 142.0 (Gua), 142.2 (Gua), 142.8 (Gua)- EI-MS (70 eV, m/z(%)): 360
(IM]*, 100), 345 ([M-CH]", 20), 330 ([M-2x(CH)]*, 10), 180 (12), 172 (32), 165 (18). IR (ATR):
[cm®] 2984 (w), 2970 (W), 2901 (w), 1591 (w), 1558 (%79 (m), 1448 (m), 1435 (m), 1408 (m),
1348 (m), 1317 (s), 1250 (m), 1231 (m), 1190 (m)19 (m),1057 (m), 1024 (m), 972 (m), 960 (m),
921 (w), 885 (m), 841 (m), 820 (m), 773 (m), 756,(#42 (s), 727 (s), 708 (s), 696 (s), 650 (mM).lAna

calcd. for GgHzoN; (360.5): C 86.64, H 5.59, N 7.77. Found: C 861935,74, N 7.87.
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Highlights

The urgency and relevance of our contribution for a broad readership of organic, dye and
materials chemists is justified by the following aspects:

1)

2)

3)

4)

5)

Our general approach is the concept of modular one-pot syntheses of functional
dyes, predominantly fluorophores. Indolo[3,2-aJcarbazoles are accessible by a
Pd/Cu-catalyzed oxidative four-fold CH-activation that proceeds in a pseudo-
threecomponent domino reaction.

During our methodological studies we not only noticed that the title compounds are
intensively violet to blue emissive in solution and in the solid state, but also
acidochromic, i.e. a significant red shift of the absorption bands with concomitant
fluorescence quenching.

By comprehensive NMR studies the site of protonation as assessed, showing that
the protonated species falls into the rarely occurring class of apocyanines. The site of
protonation was additionally corroborated by DFT calculations on various
conceivable isomers.

The isosbestic points in the protonated absorption spectra as well as the static
fluorescence quenching (Stern-Vollmer plot) furthermore allows determining the pK,
of conjugated acids of the title compounds, i.e. apocyanines.

The elucidation of the electronic structure by DFT and TD DFT calculations using
the PBEh1PBE functional reveals that the longest wavelength chromogenic
absorption band can be indeed assigned to dominant cyanine like HOMO-LUMO
transitions.



