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Aromatic hydrocarbons are some of the most elementary feedstock chemicals, produced annually on a million metric ton
scale, and are used in the production of polymers, paints, agrochemicals and pharmaceuticals. Dearomatization reactions
convert simple, readily available arenes into more complex molecules with broader potential utility, however, despite
substantial progress and achievements in this field, there are relatively few methods for the dearomatization of simple
arenes that also selectively introduce functionality. Here we describe a new dearomatization process that involves visible-
light activation of small heteroatom-containing organic molecules—arenophiles—that results in their para-cycloaddition
with a variety of aromatic compounds. The approach uses N–N-arenophiles to enable dearomative dihydroxylation and
diaminodihydroxylation of simple arenes. This strategy provides direct and selective access to highly functionalized
cyclohexenes and cyclohexadienes and is orthogonal to existing chemical and biological dearomatization processes. Finally,
we demonstrate the synthetic utility of this strategy with the concise synthesis of several biologically active compounds
and natural products.

The dearomatization of aromatic compounds is a fundamental
synthetic strategy that provides direct and efficient access to a
wide range of valuable intermediates from simple and abun-

dant sources of hydrocarbons1–5. Numerous bioactive compounds,
natural products, and drugs, such as the analgesic morphine6–8,
the broad-spectrum antibiotic doxycycline9 and the antiviral drug
oseltamivir (Tamiflu)10–12, have been synthesized utilizing dearoma-
tization as a key step. Despite their strategic and widespread use,
most dearomative strategies do not result in the introduction of
additional functionality. Indeed, the venerable dissolving-metal
reduction (Birch reduction)13, oxidative dearomatization of
phenols14, and arene–alkene photocycloadditions15 are exception-
ally powerful synthetic transformations; however, most of the dear-
omatized products have to be subjected to further manipulations to
install the desired level of functionalization. To date, only certain
stoichiometric reactions of transition-metal complexes based on
Os, Ru, Re, Cr and Mn can enable more elaborate functionalizations
of the corresponding metal-bound arenes (Fig. 1a, left)2,16–19. Both
η2- and η6-coordination modes greatly reduce the aromatic character
of arene ligands and, as a consequence, activate them towards
reactions with electrophiles or nucleophiles. After additional func-
tionalization, oxidative decomplexation liberates the dearomatized
products. Although these methods provide rapid access to com-
pounds that otherwise require long and tedious manipulations,
the toxicity and cost of the above-mentioned metal complexes
have been significant deterrents to their widespread synthetic use.
In addition to stoichiometric methods, a catalytic dearomative
polyhydroxylation of benzene is known and proceeds through
photoinduced charge-transfer osmylation20.

Aside from chemical processes, microbial arene oxidation con-
verts arenes into the corresponding cis-1,2-dihydroxycyclohexa-
3,5-dienes (2,3-dihydrodiols, Fig. 1a, right) with high levels of enan-
tioselectivity21. Although exceptionally powerful and synthetically
useful22, this biotransformation often involves the use of specific
bacterial strains or recombinant organisms to effect substrate-specific
transformations, and these can usually be obtained only from the
laboratories in which they were first cultured.

The development of dearomative functionalization strategies for
arenes is intrinsically challenging and remains a largely unsolved

synthetic problem. The high resonance energy renders aromatic
compounds particularly unreactive as starting materials, and reagents
that can overcome this chemical inertness preferentially react with
the more-reactive unsaturated dearomatized products. Ultimately,
this problem leads to overreaction and decomposition of the starting
material. We envisioned dearomative functionalization as a two-
stage process, and thus we avoided restrictive reactivity differences
between the starting arenes and partially unsaturated products.
Key to the successful execution of this plan was the use of visible-
light photoactivable 2π components, for which we introduce the
term ‘arenophiles’, in analogy to thermal cycloaddition processes.
Specifically, using heteroatom-containing arenophiles that could
formally react in a [4+2] fashion would significantly expand the
toolbox of dearomative chemistry, as they would simultaneously
induce dearomatization, introduce functionality, create stereogenic
centres and enable further functionalization. Subsequent retrocyclo-
addition or fragmentation of the arenophile moiety would then
provide selective access to the corresponding dearomatized
products. Herein we report the realization of this concept in the
development of a method for the dearomative dihydroxylation
and diaminodihydroxylation of simple arenes (Fig. 1a, bottom).
By using an N–N-arenophile and osmium-catalysed dihydroxyla-
tion, a variety of aromatic hydrocarbon compounds were trans-
formed selectively into the corresponding 3,4-dihydrodiols or
diaminodihydrodiols. The synthetic value of this method was
demonstrated through the synthesis of several highly functionalized
small organic molecules from readily available staring arenes (Fig. 1b).

Results and discussion
Design of arenophiles and reaction development. Cycloaddition
reactions that involve arenes encompass an important group of
dearomatization strategies23. Aromatic compounds, known for
their stability in the ground state, become exceptionally reactive
upon photoexcitation and can undergo cycloaddition with a
variety of alkenes15. For these processes, high-energy ultraviolet
light is usually required to access the relatively high π,π*-singlet
state of the aromatic nucleus to enable reactivity. The resulting meta-
photocycloaddition is well documented in the literature and has been
used many times in organic synthesis24,25, whereas the ortho- and,
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particularly, the para-photocycloadditions have not received much
attention, because both types rarely occur with olefins, and
typically are low-yielding side reactions24.

A conceptually distinct approach towards dearomative cyclo-
addition involves photoexcitation of the other cycloaddend to
engage the arene in the ground state during the reaction (Fig. 2a).
Ideally, this alternative activation mode would provide complimen-
tary periselectivity, as well as enable cycloaddition with partners other
than alkenes. In this context, we were intrigued by a report by
Hamrock and Sheridan26 that indicated the existence of arenophile-
type reactivity with benzene; however, because of its transient
nature, the corresponding para-cycloadduct had not been isolated
or chemically explored. Furthermore, arene–arenophile photo-
cycloadditions are still mechanistically ambiguous and could
occur via multiple reaction trajectories, including photoinduced
electron- or charge-transfer complexes between the arene and the
excited arenophile23. Nevertheless, the energy provided by visible
light is sufficient to excite only the arenophile, because of its
much lower-lying and narrower HOMO–LUMO gap (HOMO,
highest occupied molecular orbital; LUMO, lowest unoccupied
molecular orbital) compared with that of an arene (Fig. 2a, inset).

A crucial electronic requirement for the photoreactivity of an
arenophile is that both the HOMO and LUMO energies are within the
range of the energy of the HOMO of the arene. To evaluate the viability
of potential N–N-arenophiles for the photocycloaddition chemistry,
we performed a computational frontier molecular orbital analysis27 of

several small organic molecules using benzene (1a) (HOMO=−9.9 eV)
and naphthalene (2a) (HOMO= −8.4 eV) as benchmarks (Fig. 2b).
Thus, a number of different 1,2,4-triazoline-3,5-diones, A1
(HOMO= −11.2 eV, LUMO= −9.7 eV), A2 (HOMO= −10.8 eV,
LUMO= −9.7 eV), A4 (HOMO= −10.8 eV, LUMO= −9.3 eV) and
A5 (HOMO= −10.4 eV, LUMO= −8.9 eV), and certain symmetric
cyclic (Z)-diazo-containing compounds connected to electron-
deficient groups, such as A3 (HOMO= −10.9 eV, LUMO= −9.5 eV)
and A6 (HOMO= −9.9 eV, LUMO= −8.8 eV), were found to meet
the electronic criteria to react with benzene (the complete list of com-
pounds is given in Supplementary Information, page 67). Next, on
the visible-light irradiation of dichloromethane solutions that
contain the potential arenophiles (A1–A6) in the presence of
benzene, we detected the formation of para-cycloadducts in
three different cases. Although A1, A2 and A4 all showed the
desired reactivity, we decided to continue our investigations with
4-methyl-1,2,4-triazoline-3,5-dione (A2) because of the ease of its
preparation and its stability.

We commenced our studies on dearomative dihydroxylation by
evaluating the optimal reaction parameters for the formation of the
cycloadduct of benzene with A2 and its in situ trapping with
osmium tetroxide. Although cycloaddition occurred readily at
−78 °C under the influence of visible light, as evidenced by the com-
plete disappearance of the characteristic magenta colour of A2
(Fig. 2c) and monitoring by 1H-NMR spectroscopy, the corres-
ponding cycloadduct proved to be rather thermally unstable.
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Figure 1 | Current strategies in dearomative functionalization of arenes, which include this work. a, Left, transition-metal complexation to arenes results in
significant distortions of the of the π-electron density and enables dearomative functionalization. Top right, arene dioxygenase (Protein Data Bank 3EN1) is a
key enzyme in microbial arene oxidation that converts monosubstituted mononuclear arenes into the corresponding optically pure 2,3-dihydrodiols. Bottom
right, visible-light activation of small organic molecules (arenophiles) with in situ dihydroxylation provides tetrafunctionalized bicyclic compounds (this work).
Subsequent retrocycloaddition or fragmentation delivers racemic 3,4-dihydrodiols or diaminodihydrodiols, respectively. b, Small, highly functionalized
molecules prepared using arenophile-based dihydroxylation. Conduramine synthesis was achieved via nitroso Diels–Alder cycloaddition and deprotection
from the benzene-derived dihydrodiol. MK7607 synthesis was accomplished via dihydroxylation and deprotection of the corresponding dihydrodiol derivative
of benzyl acetate. The synthesis of 3-O-desmethyl phomentrioloxin was completed via dihydroxylation and Sonogashira coupling of the bromobenzene-
derived dihydrodiol. TM, transition metal; Nu, nucleophile; E, electrophile.
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Cycloreversion occurred slowly at temperatures above −50 °C and
rapidly above −10 °C. Furthermore, we found that a 10:1 molar ratio
of arene to A2 proved optimal, although ratios as low as 2:1 often
gave similar yields, albeit at the expense of longer reaction times.
In view of the low thermal stability of the intermediate product, the
development of reaction conditions for cold-temperature dihydroxyla-
tion proved necessary. As a result, two different catalytic conditions
were identified for the in situ dihydroxylation of A2 cycloadducts
with mononuclear arenes. Under the first set of conditions (Table 1,
conditions A), the cycloaddition reaction was run in acetone, and

the subsequent addition of osmium(VIII) oxide and a solution of
4-methylmorpholine N-oxide (NMO), water and p-toluenesulfona-
mide (p-TsNH2) delivered the dihydroxylated benzene cycloadduct
3a in 56% yield. The addition of p-TsNH2 proved to be crucial for
higher yields as it facilitated hydrolysis of the intermediate osmate
ester28. The second dihydroxylation process (conditions B), based
on a modified Narasaka–Sharpless method29, was performed using
dichloromethane as the solvent. Thus, after the disappearance of the
magenta colour, the addition of osmium(VIII) oxide, NMO and
n-butylboronic acid afforded the cyclic boronate ester 4a in 65% yield.
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Table 1 | Substrate scope of mononuclear arenes.
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Table 2 | Cycloreversion or fragmentation of the arenophile moiety.
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Reaction generality. With the optimal conditions in hand, we began
an exploration of the scope of this dearomative tetrafunctionalization
by examining simple, mononuclear arenes (Table 1). In addition to
benzene (1a), a variety of monosubstituted derivatives proved to be
suitable photocycloaddition partners. The tolerance of halogen
(1k, 1l and 1m) and benzylic heteroatom (1e, 1f, 1h, 1i and 1l)
substituents is interesting, as these type of substrates are not
generally compatible with chemical-based dearomatizations.
Traditionally, the use of ultraviolet irradiation in
arene cycloaddition chemistry does not permit broader functional-
group incorporation15,23. In contrast, even benzyl chloride (1l) and
bromobenzene (1m) underwent para-cycloaddition with A2. This
dearomative protocol can be conducted on a larger scale,
exemplified with a multigram conversion of benzene (1a) and
bromobenzene (1m) without significant erosions in yields
(Supplementary Information, pages 7 and 21). In addition to
cycloaddition, we also observed that the abstraction of benzylic
C–H bonds by photoexcited A2 was a competitive process with
certain substrates, to give formal C–H amidation products
(limitations of the method are given in Supplementary Information,
page 22)30. For example, amidation proved to be a major reaction
pathway with toluene (not shown) and a minor side process with
cumene (1b). Importantly, all the substrates reacted in a highly
stereo- and regioselective manner; the resulting products were
consistently obtained as a single constitutional isomer and
diastereoisomer (an X-ray structure of the acetonide-protected 3a is
given in Supplementary Information, page 162). At present, there is
no conclusive explanation for the high observed regioselectivity of
the cycloaddition process; however, computational studies are
currently ongoing to elucidate the origins of this selectivity. Finally,
at the current level of development, polysubstituted mononuclear
arenes are not suitable substrates for the dearomatization reaction
we describe (Supplementary Information, page 23).

With the dihydroxylated bicyclic adducts prepared, we turned
our attention to the cycloreversion of the arenophile moiety to
liberate the desired dihydrodiols. Although similar unsaturated
bicyclic urazoles are known to undergo thermal cycloreversion31,
no reaction was observed on heating cycloadducts 3 or 4 to tempera-
tures up to 250 °C. Therefore, we decided to examine a one-pot
urazole hydrolysis/bicyclic hydrazine oxidation sequence that would
generate dihydrodiols via the extrusion of molecular dinitrogen.
Although the hydrolysis and oxidation sequence was expected to be
reasonably straightforward, the lability of such dihydrodiols was
potentially troublesome21,32. Indeed, this turned out to be the case,
as we observed significant amounts of phenol formation during the
oxidation step. However, on examination of a range of protecting
groups and conditions, we eventually found that using the corre-
sponding acetonides 5 in combination with neat hydrazine or KOH
in 2-propanol33, followed by CuCl2-mediated oxidation, successfully
generated protected dihydrodiols 6 as stable compounds. This one-
pot sequence proved to be highly efficient, as the corresponding
diene diol products were prepared in high yields (Table 2, left side).
Most of the functional groups tested proved resistant to urazole
hydrolysis and hydrazine oxidation, with the exception that esters
were converted into the corresponding carboxylic acids (6j) and alco-
hols (6e, 6f and 6g). Importantly, under the reaction conditions
described, no potentially competitive re-aromatization process was
observed and all the acetonide-protected dihydrodiols were stable
to standard purification methods. Finally, all the substituted dihydro-
diols were complementary constitutional isomers to those obtained
by microbial arene oxidation21.

Next, we sought to investigate arenophile fragmentation to
extend further the functional scope and utility of this method
(Table 2, right side). This manipulation was achieved in two steps
using hydrolysis of the urazole moiety under the above-mentioned
conditions, followed by benzoylation and reductive cleavage of

Table 3 | Site-selective dearomative diaminodihydroxylation of polynuclear arenes.
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the N–N bond with samarium diiodide34. A range of substituted
cycloadducts was transformed into the respective unsaturated diami-
nodiols 7. Moreover, vinyl bromide (7m) survived under these
reductive conditions; only cycloadduct 5l, derived from benzyl
chloride, was converted into the corresponding amide 7l during
this reaction sequence. Importantly, this synthetic sequence provides
direct and selective access to highly functionalized small molecules
that are characterized by four contiguous heteroatom-containing
stereogenic centres. The arenophile-mediated dihydroxylation with
subsequent fragmentation was also applicable to site-selective dearoma-
tization of polynuclear arenes (Table 3)35–38. Thus, using a two-step
protocol that involves A2 cycloaddition/dihydroxylation and urazole
hydrolysis/catalytic hydrogenation, a series of naphthalene deriva-
tives was successfully converted into the corresponding diamino-
diols. In addition to halogens 2b–2d, amide (2e) and benzylic
ketal (2f ) substituents survived under the reaction conditions.

Moreover, this strategy proved suitable for trinuclear arenes,
such as phenyl- and pyridine-containing naphthalenes (2g and 2h)
and phenanthrene (2j). For 2g and 2h, the observed site selectivity
of dearomatization could be explained by the higher ionization poten-
tials of phenyl and pyridine as compared with that of naphthalene39.
In all cases, a single constitutional isomer and diastereoisomer was
obtained (X-ray structures of 8a and tetra-acetylated Ac-9a are given
in Supplementary Information, pages 163 and 164).

Applications of dearomative dihydroxylation. The presented
dearomative dihydroxylation strategy can enable rapid access to small,
highly functionalized organic molecules; three illustrative cases are
demonstrated in Fig. 3. For example, conduramine A (ref. 40) (11)
was prepared from the corresponding A2–benzene cycloadduct
5a through a modified hydrolysis–oxidation sequence that installed
an additional 1,4-syn-aminohydroxy functionality. Accordingly,
one-pot successive urazole hydrolysis, hydrazine/oxamic acid
oxidation41 and subsequent hetero Diels–Alder reaction delivered
the bicyclic product 10 in 83% yield. Concurrent N–O cleavage and
deprotection of the trichloroethoxycarbonyl (Troc) group under

reductive conditions, followed by acid-mediated deprotection of
the acetonide, furnished conduramine A (11). Next, the highly
oxygenated cyclohexene herbicidal natural product MK7607 (13)
(ref. 42) was expediently synthesized in three steps from benzyl-alcohol-
derived dihydrodiol 6e via protection, dihydroxylation (6e→ 12)
and subsequent double deprotection. Similarly, bromodihydro-3,4-
diol 6m was concisely converted into the 3-O-desmethylated
analogue of the potent herbicidal agent phomentrioloxin (16)43

through a stereoselective dihydroxylation, followed by Sonogashira
coupling between the resulting vinyl bromide 14 and acetylene 15,
followed by deprotection44.

Conclusion
In summary, we disclose here a dearomative functionalization of
simple arenes that provides access to dihydrodiols and diaminodihy-
drodiols. Significant features of this strategy include visible-light acti-
vation of the arenophile, in situ dihydroxylation of the corresponding
arene–arenophile cycloadduct, and subsequent arenophile cyclorever-
sion or fragmentation. This method permits the use of substrates that
are normally not suitable for chemical-based dearomatizations, such
as halogen- and benzylic-heteroatom-containing arenes, and provides
products that are not obtained by microbial oxidation. In addition to
engaging a broad range of monosubstituted benzene derivatives, this
system was also found to be applicable to the site-selective dearoma-
tive diaminodihydroxylation of polynuclear arenes. Finally, we have
showcased the utility of arenophile-based dihydroxylation as a starting
point in the expedient preparation of highly functionalized small
organic molecules. The study and expansion of the arenophile dearo-
mative platform to other areas, including the application of different
functionalization reactions and natural product synthesis, is currently
underway and will be reported in due course.

Data availability. Crystallographic data for this paper have been
deposited at the Cambridge Crystallographic Data Centre under
deposition numbers CCDC 1455841–1455843. These data can be
obtained free of charge from www.ccdc.cam.ac.uk/data_request/cif.
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Figure 3 | Synthetic applications of dearomative dihydroxylation. Further functionalization of the dihydroxylated A2–benzene cycloadduct 5a and benzyl-
alcohol- and bromobenzene-derived 3,4-dihydrodiols (6e and 6m) provides rapid access to conduramine A (11) (a), MK7607 (13) (b) and 3-O-desmethyl
phomentrioloxin (16) (c). imid., imidazole; Py, pyridine; r.t., room temperature; TBS, t-butyldimethylsilyl; TFA, trifluoroacetic acid; Troc, trichloroethoxycarbonyl.
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