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Abstract.  The generation of fluorinated essential 
oils as a source of bioactive compounds is de-
scribed. Most of the components of the natural 
mixtures were altered leading to the discovery of 
a new fluorinated tyrosinase inhibitor. 

 

 Natural products are biologically validated 
starting points for the development of new drugs. 
They are the outcome of a long evolution process 
that has resulted in a unique assortment of skele-
tons with high affinity for biomolecules.1   

 Essential oils (EOs) are natural multi-
component systems2 composed of low-molecular 
weight lipophilic compounds derived from differ-
ent biosynthetic pathways.3 In general their pro-
duction by plants is diversity oriented, with the 
generation of complex mixtures of compounds 
that have the potential to regulate plant–insect 
and plant–mammal interactions. This bioactive 
volatilome is now emerging as a novel potential 
source of interesting lead structures for drug dis-
covery.3 

 Several approaches have been proposed to in-
crease the diversity of natural product mixtures 
such us combinatorial biosynthesis4 and related 
techniques.5 Chemically engineered extracts 
(CEEs) represent alternative sources of molecules 
for the search of new bioactive compounds based 
on natural skeletons.6-9 In this strategy, natural 
mixtures are chemically altered through reactions 
directed towards the incorporation of molecular 
fragments or elements that are relevant for bioac-
tivity and rarely found in secondary metabolites.10  

 Fluorine is one such element, the incorpora-
tion of which into a molecule can modulate phys-
icochemical properties such as pKa, lipophilicity, 
hydrogen bonding and electrostatic interactions, 
as well as metabolic stability (oxidative metabo-
lism, hydrolytic metabolism, in vivo racemiza-
tion).11 The strategic use of fluorine substitution in 
drug design has led to the production of some of 
the key drugs available on the market.12, 13 The 
average proportion of fluorine in drugs is signifi-
cantly higher than in natural products.14 Natural 
organofluorines represent less than 1% of the nat-
urally occurring organohalogens.15 

  Considering that (a) small molecule natural 
products have had a significant impact on drug 
discovery, (b) 20-25% of drugs in the pharmaceu-
tical pipeline contain at least one fluorine atom,11 
and (c) organofluorine compounds are virtually 
absent as natural products,16 it becomes interest-
ing to evaluate the effect of fluorination on the 
biological properties of natural mixtures of small 
molecules such as EOs (Figure 1). 

 

 

Figure 1. Diversification of essential oil mixtures by 
fluorination to generate libraries of biologically active 
compounds. 
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 For EOs diversification we selected Selectfluor 
as a highly reactive fluorinating reagent that is 
safe, nontoxic, stable, and easy to handle.17-20 Se-
lectfluor can introduce fluorine atoms into mole-
cules by reaction with double bonds, aromatic 
rings, and through the transformation of carbon–
hydrogen bonds to carbon–fluorine bonds at satu-
rated secondary and tertiary carbon sites.21  Ac-
cording to the Dictionary of Natural Products,22 
78% of the essential oil constituents include at 
least one non-aromatic carbon–carbon double 
bond in their structures, 22% contain at least one 
aromatic group, and 84% contain the types of C-
H bonds that may be reactive. In addition, Se-
lecfluor has been applied to the fluorination of 
other functional groups23 that are present in es-
sential oil components such as enols (6.8%) and 
alkynes (2.5%). The fluorination of essential oils 
has not been reported to date. 

 The success of the CEEs approach lies in the 
power of numbers: in order to increase the chanc-
es of generating a bioactive compound, it is im-
portant to produce many compounds that incor-
porate the desired chemical feature or element. A 
series of 12 essential oils was fluorinated by reac-
tion with Selectfluor in refluxing acetonitrile, and 
changes in chemical composition and bioactivity 
were evaluated. Incorporation of fluorine into the 
EOs constituents was confirmed by 19F NMR anal-
ysis, with new peaks appearing between -97 ppm 
and -197 ppm as expected for aromatic fluorine, 
α-fluoroketones and α-fluoroenones.  

 The impact of the reaction over the chemical 
composition of the mixtures was evaluated by GC-
MS, showing that most of the EO components 
were transformed by the reaction, expanding the 
chemical diversity of the mixtures. At least 60 % 
of the peaks observed in the chromatograms of 
EOs disappeared after the reaction, and at least 
88% of the peaks present in the gas chromato-
grams of the resulting fluorinated essential oils 
(FEOs) were absent in the chromatogram of the 
precursor EO (Figure 2a). The average number of 
major compounds detected in the mixtures in-
creased from 37 to 155 due to the fluorination re-
action (Figure 2b). This suggests that, on average, 
four products were generated from each natural 
precursor.  

 Changes in the composition of the mixtures 
were also evident from GC-MS coupled to Princi-

pal Component Analysis (PCA). The score plot 
showed discrimination between two groups by 
PC1 and PC2: one corresponding to the FEOs 
(Figure 2, red triangles) and the other corre-
sponding to the EOs (Figure 2c, blue circles). Sim-
ilarly, PCA of 1H NMR spectra of the 24 mixtures 
showed discrimination between two groups by 
PC1, PC2 and PC3 (Fig. S1 in Supporting Infor-
mation). 

 

Figure 2. Box and whiskers plot for a) percentage of 
peaks that disappeared from the chromatograms be-
cause of the reaction (blue) and that appeared in the 
chromatograms after the reaction (red), b) number of 
peaks from EOs (blue) and FEOs (red) detected in the 
GC-MS chromatograms. c) Score plot of PCA of GC-MS 
data: EOs (blue circles) and FEOs (red triangles). 

 

 The effect of the reaction on the biomolecular 
properties of the mixtures was evaluated by com-
paring the tyrosinase inhibitory properties of the 
fluorinated and the non-fluorinated mixtures. The 
discovery of tyrosinase inhibitors is attractive due 
to their potential applications in cosmetic, medic-
inal and agricultural industries. This enzyme ca-
talyses the production of melanin and other pig-
ments by oxidation of L-tyrosine.24 Various der-
matological disorders such as melasma, age spots 
and sites of actinic damage, arise from an exces-
sive level of epidermal pigmentation.25 Addition-
ally, the browning observed in vegetables and 
fruits after harvest is associated with tyrosinase 
activity, which produces a less attractive appear-
ance and loss in nutritional quality.26 

 The tyrosinase inhibition properties of the 
mixtures were surveyed by TLC bioautography,27 a 
technique particularly well suited for the analysis 
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of mixtures.28 This methodology allows the evalu-
ation of inhibitory properties of a sample devel-
oped onto a TLC plate that is covered with a gel 
that contains enzyme and substrate. When ap-
plied to tyrosinase, fluorination was observed to 
enhance the inhibitory properties of two mix-
tures: the FEOs from Ocimum basilicum L., Lami-
naceae (FOB) and Artemisia dracunculus L., 
Asteraceae (FAD) showed intense inhibition spots 
that were absent in the non-fluorinated EOs. A 
follow-up microplate assay29 showed that the IC50 
values for O. basilicum oil decreased from 278.4 ± 
1.38 µg/mL to 174.4 ± 1.45 µg/mL after fluorina-
tion. Similar results were obtained for A. dra-
cunculus, in which IC50 decreased from 232.2 ± 1.19 
µg/mL to 125.5 ± 1.56 µg/mL. 

 The main bioactive compound in both mix-
tures was identified as 4-allyl-4-fluorocyclohexa-
2,5-dienone (1, Scheme 1). The identity of this 
compound was established by NMR (1H, 19F and 
13C NMR), IR, and HRMS analyses. This fluorinat-
ed derivative could have been formed from the 
inactive natural component methyl chavicol (2, 
Scheme 1) that is present in both O. basilicum and 
of A. dracunculus EOs.30 This was confirmed by 
fluorination of pure 2 using the same reaction 
protocol previously employed for the EOs. The 
TLC-bioactivity profile of the reaction showed the 
generation of the same bioactivity spot that was 
previously detected in O. basilicum and of A. dra-
cunculus FEOs.  

 It is interesting to note that compound 1 was a 
minor constituent of both bioactive fluorinated 
mixtures. Although comprising only 0.6% of the 
total peak area of the chromatogram of O. basili-
cum FEO, and 0.5% total peak area of the chro-
matogram of A. dracunculus FEO (Fig. S2 in Sup-
porting Information), this active component was 
easily identified in the bioautography assay. 
Compound 1 could result from an addition-
elimination process initiated with the generation 
of a para-fluoro cation (3, Scheme 1) from 2. Re-
lease an alkyl cation from the phenolic oxygen 
would thus result in the formation of the ob-
served 4-allyl-4-fluorocyclohexa-2,5-dienone 
(Scheme 1).31 

 

Scheme 1. Proposed synthesis of 4-allyl-4-
fluorocyclohexa-2,5-dienone (1) from methyl chavicol 
(2) with Selectfluor through para-fluoro cation (3). 

 

 The inhibitory potency of the fluorinated com-
pound 1 (IC50 59.14 ± 1.15 µM) was found to be 
similar to that of the known tyrosinase inhibitor 
kojic acid (IC50 42.16 ± 1.04 µM). Under these ex-
perimental conditions the natural precursor of 1, 
methyl chavicol (2) was inactive (IC50 >1000 µM). 

 In summary, the generation of chemically en-
gineered extracts through fluorination is de-
scribed for the first time. Chemical diversification 
of a series of EOs led to the transformation of 
most of the components of the starting mixtures, 
producing fluorinated mixtures of expanded di-
versity (four-fold increase in the number of com-
pounds). Fluorination increased tyrosinase inhibi-
tion in two mixtures. The use of a straightforward 
bioautographic assay enabled the identification of 
a minor fluorinated compound with similar inhib-
itory properties to kojic acid, generated in the 
mixture from a natural inactive precursor. 
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