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ABSTRACT: Aryltrifluoroborate ([ArBF3]
−
) has a designable basic anion structure. Various 

[ArBF3]
−
-based

 
anions were synthesized to create novel alkali metal salts using a simple and safe 

preparation process. Nearly forty novel alkali metal salts were successfully obtained, and their 

physicochemical characteristics, particularly their thermal properties, were elucidated. These salts 

have lower melting points than simple inorganic alkali halide salts, such as KCl or LiCl, due to the 

weaker interactions between the alkali metal cations and the [ArBF3]
−
 anions and the anions’ larger 

entropy. Moreover, interestingly, potassium cations were electrochemically reduced in the potassium 

(meta-ethoxyphenyl)trifluoroborate (K[m-OEtC6H4BF3]) molten salt at 433 K. These findings 

contribute substantially to furthering molten salt chemistry, ionic liquid (IL) chemistry, and 

electrochemistry.  
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INTRODUCTION 

Anhydrous liquid alkali metal salts are known as molten salts and have unique features, such as 

negligible vapor pressure, incombustibility, a wide electrochemical window, and relatively high ionic 

conductivity.
1
 Molten salts are very important non-aqueous solvents and have been employed in 

various fields, e.g., smelting, fuel cells, and chemical production.
2–5

 However, most molten salt 

systems must be handled under high-temperature conditions to remain in the liquid state, unlike other 

common solvents. This requirement is often considered a disadvantage. Thus, by applying several 

approaches to decrease the handling temperature, a number of low-temperature molten salt systems 

have been reported in the last decade.
6–11

 Typical approaches are adding other salt(s) to the original 

salt, resulting in, for example, LiCl–KCl binary systems
6,8–12

 and NaCl–KCl–CsCl ternary 

systems,
7,13–17

and designing ionic species with lower surface charge densities, delocalized charges, 

and various molecular motions, thereby decreasing the lattice energy by increasing the interionic 

distance and entropy.
18

 The latter approach is commonly used to obtain ionic liquids (ILs). One 

well-known example is 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide 

([C4mim][Tf2N]), which is synthesized using 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) 

(melting point: 342 K)
19

 and potassium bis(trifluoromethanesulfonyl)amide (K[Tf2N]) (melting 

point: 472 K).
6
 However, few articles on the design and synthesis of alkali metal cation-based 

low-temperature molten salt systems with polyatomic anions are available
6–11

 because introducing 

target substituent(s) to a polyatomic anion is typically difficult because of the simple basic structure.  

In this study, to design and synthesize novel polyatomic anions, we focused on 

aryltrifluoroborate anions ([ArBF3]
−
), which can be easily and safely prepared on a large scale using 

commercially available reagents.
20

 The basic chemical structure is depicted in Figure 1. These anions 

are elaborated by replacing one fluorine of tetrafluoroborate (BF4
−
) with an aromatic group. The 

trifluoroborate group substantially decreases the negative charge on the aromatic ring. Because of the 
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characteristics of the anion structure, these salts are expected to be molten salts with relatively low 

melting temperatures. Nearly forty alkali metal salts with different [ArBF3]
−
 anionic species were 

successfully produced. The aim of this study was to elucidate the thermal and electrochemical 

properties, such as the electrochemical window, of the resulting salts.   

 

 

EXPERIMENTAL SECTION 

Aryltrifluoroborate alkali metal salts (M[ArBF3] (M: K or Cs)) were synthesized using appropriate 

arylboronic acids (ArB(OH)2) (Wako Pure Chemical Co. (Japan), Tokyo Chemical Co. (Japan), and 

others), alkali metal fluorides (MF (M: K or Cs)) (Wako Pure Chemical Co.), and L-tartaric acid 

(Wako Pure Chemical Co.), according to the following protocol (Scheme 1).
20

 An alkali metal 

fluoride aqueous solution (4 equiv., 2 mL) containing the target cationic species was added to a 

solution of arylboronic acid (5 mmol) in acetonitrile (20 mL), and the mixture was stirred for 5 min 

at ambient temperature. L-Tartaric acid (2.05 equiv.) dissolved in tetrahydrofuran (THF) (10 mL) was 

slowly added to the mixture, and then, a white by-product precipitated immediately. The reaction 

mixture was agitated for 1 hour at ambient temperature and filtered to remove the precipitate. The 

resultant filtrate was concentrated in vacuo, and the crude alkali metal salt was obtained as a solid. 

The crude product was purified by recrystallization to give a pure aryltrifluoroborate alkali metal salt. 

The obtained salt was dried at 353 K under vacuum for 4 hours. The final product was confirmed by 

nuclear magnetic resonance (NMR), mass spectrometry, and elemental analysis. 

Differential scanning calorimetry (DSC) was conducted using a Bruker DSC3100SA. The 

sample was sealed in an aluminum pan with an aluminum top. The sealed pan was heated and cooled 

at a rate of 5 K min
−1

. The glass-transition temperature and melting point were obtained from the 

DSC curve of the second heating process. These values were estimated by the tangential intersection 
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method near the temperature at which a phase transformation occurred. Thermogravimetric (TG) 

analysis was performed using a Bruker TG-DTA2000SA. The sample was placed on an aluminum 

pan, and the pan was heated from room temperature to 773 K at a rate of 5 K min
−1

 under flowing 

dry nitrogen gas. The thermal degradation temperature was determined as the 5 wt% loss point of the 

TG curve. These two instruments were controlled with a Bruker MTC1000SA workstation utilizing 

the Bruker WS003 software. All specimens for these measurements were prepared in an argon 

gas-filled glove box (Vacuum Atmospheres Co., Omni-Lab, O2 and H2O < 1 ppm). 

 Electrochemical measurements were conducted using an IVIUM Technologies CompactStat 

portable electrochemical analyzer. All electrochemical experiments were performed in a 

three-electrode cell. The working electrode was a platinum disk (ϕ 1.6 mm), which was polished with 

an alumina suspension (ϕ 0.06 µm) before use. Platinum wire (diameters of 0.5 mm) was used as the 

counter electrode. Platinum and silver wires (diameters of 1.0 mm) were employed for the 

quasi-reference electrode. The measurement was conducted at 433 K or 453 K in an argon gas-filled 

glove box to prevent any contamination. When a potassium electrodeposition experiment was 

performed, a tin plate (5 mm × 5 mm) was used as the working electrode. The electrodeposition was 

conducted at 433 K in an argon gas-filled glove box. The electrodeposits were observed by a Hitachi 

S-3400N scanning electron microscope (SEM) system. The composition was determined by an 

EDAX Octane Prime energy-dispersive X-ray spectroscopy (EDX) instrument mounted on the SEM 

system. The crystal structure of the electrodeposit was identified by a Rigaku Ultima IV X-ray 

diffractometer (XRD) with Cu Kα radiation. This measurement was performed in the 2θ/θ scan mode 

with a scan rate of 1 degree min
−1

. 

The Gaussian 09 program
21

 was used for the ab initio molecular orbital calculations. The basis 

sets implemented in the Gaussian program were used. Electron correlation was accounted for by the 

second-order Mølloer-Plesset perturbation (MP2) method.
22,23

 The geometries of complexes were 
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fully optimized at the HF/6-311G(d,p) level. The intermolecular interaction energies (Eint) were 

calculated at the MP2/6-311G(d,p) level by supermolecule method. Our previous calculations of the 

[C2mim][BF4] and Li[Tf2N] complexes
24,25

 show that the basis set effects on the calculated 

interaction energies of the complexes are very small, if basis sets including polarization functions are 

used, and that the effects of electron correlation beyond MP2 are negligible. Therefore, we calculated 

the interaction energies of the complexes at the MP2/6-311G(d,p) level in this work. The basis set 

superposition error (BSSE)
26

 was corrected for all the interaction energy calculations using the 

counterpoise method.
27

 The stabilization energy by the formation of complex from isolated ions 

(Eform) was calculated as the sum of the Eint and the deformation energy (Edef), which is the increase 

of energy of aryltrifluoroborate anion by deformation of the geometry associated with the complex 

formation.
24,28

 The Edef was calculated at the MP2/6-311G(d,p) level. 

 

RESULTS AND DISCUSSION 

Thermal Behavior of Aryltrifluoroborate Alkali Metal Salts. A large number of 

aryltrifluoroborate alkali metal salts were prepared according to Scheme 1, and their thermal 

properties were examined by DSC and TG analyses. The melting point (Tm) and thermal degradation 

temperature (Td) of M[ArBF3] (M: K or Cs) with different substituents are given in Tables 1-4. 

Non-substitutive potassium phenyltrifluoroborate (K[PhBF3]), which is the simplest 

aryltrifluoroborate potassium salt, had a melting point of 568 K (Table 1). The aromatic potassium 

salts with substituents, R, at the meta position of the phenyl group, K[m-RC6H4BF3], showed lower 

melting points than the non-substitutive K[PhBF3], except for the tert-butyl group, bromomethyl 

group, and carbamoyl group. Specifically, potassium (meta-ethoxyphenyl)trifluoroborate 

(K[m-OEtC6H4BF3]) with an ethoxy group at the meta position on the aromatic ring melted at 390 K; 

thus, introducing the ethoxy group substantially decreased the melting point. As shown in Table 5, 
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this value was considerably lower than those of other common potassium salts,
6, 29–32

likely because 

of the obtained salts’ increased interionic distances and entropies. From these data, we can also 

discuss the effects of the substituents in a little more detail. For example, there is an obvious 

difference between the melting points of K[m-OMeC6H4BF3] and K[m-OCF3C6H4BF3]. The OCF3 

group works as a strong electron withdrawing group because of the electronegativity of the three 

fluorine atoms. The charge density of the anion consequently decreases by the OCF3 group compared 

to OMe group without the fluorine atom. The resulting weak ionic interaction between the K
+
 and the 

[m-OCF3C6H4BF3]
−
 would cause the lower melting point. As described later, quantum chemical 

calculations support this idea. 

A similar approach was also applied to Cs salt preparation. The thermal properties of the Cs salts 

are summarized in Table 2. Cesium phenyltrifluoroborate (Cs[PhBF3]) exhibited a melting point of 

445 K, lower than that of its potassium counterpart. The same was true for other Cs salts with the 

following substituents at the meta position: CF3, F, OCF3, and O
n
Pr. The larger ionic radius of the 

cesium ion compared to that of the potassium ion is commonly believed to decrease the Cs salt’s 

lattice energy.
6,8,10,11

 In contrast, the Tm of Cs salts with a methylthio or ethoxy group clearly 

increased compared to those of potassium salts with the same anions. These Cs salts should have a 

favorable ion packing structure. A similar exception regarding the melting temperatures derived from 

the differences in the cation and anion radii in inorganic alkali metal halides has been reported.
33,34

 

The thermal properties of the ortho-substituted potassium aryltrifluoroborate (K[o-RC6H4BF3]) are 

summarized in Table 3. Most salts showed only a thermal degradation temperature without a melting 

point. Furthermore, for those salts, it was much higher than those of the meta-substituted ones. To 

determine the underlying reason, we carried out quantum chemical calculations for evaluating the 

interactions of K
+
 with substituted phenyltrifuluoroborate anions. The optimized structures of the ion 

pairs of K
+
 and meta- and ortho-substituted phenyltrifuluoroborate anions are depicted in Fig. 2. 
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Whereas the K
+
 has contact with three fluorine atoms of –BF3 in all the ion pairs of meta-substituted 

phenyltrifuluoroborates, in all the ion pairs of ortho-substituted ones, the K
+
 has contact with two 

fluorine atoms of –BF3 and one negatively charged atom in the substituent. The stabilization energies 

by the formation of the complexes from isolated species (Eform) calculated for the ion pairs and the 

difference between the Eform for the ion pair of meta-substituted phenyltrifuluoroborate and that for 

the ion pair of ortho-substituted phenyltrifuluoroborate (∆E) are given in Fig. 2. For example, the 

Eform calculated for the optimized structure of K[m-OMeC6H4BF3] (−456.7 kJ·mol
−1

) was 34.4 

kJ·mol
−1

 smaller (less negative) than that for the K[o-OMeC6H4BF3] (−491.1 kJ·mol
−1

). The Eform 

calculated for the ion pair of meta-substituted phenyltrifuluoroborates is always smaller than that for 

the ion pair of corresponding ortho-substituted phenyltrifuluoroborates. These calculations show that 

the dissociation of the ion pair of meta-substituted phenyltrifuluoroborate can occur more easily than 

the dissociation of the ion pair of corresponding ortho-substituted phenyltrifuluoroborates.
35,36

 The 

computational results suggest that the K
+
 salts with meta-substituted phenyltrifuluoroborates have 

lower melting temperatures compared with the salts of corresponding ortho-substituted 

phenyltrifuluoroborates owing to weaker attraction between the cation and anion. In addition to the 

aforementioned salts, the K
+
 salts with three disubstituted phenyltrifluoroborate anions and two other 

aryltrifuluoroborate anions were also synthesized (Table 4). These salts had no melting point except 

for a potassium 1-naphthyltrifluoroborate (K[1-NaphBF3]). The thermal degradation temperatures of 

alkali salts with aryltrifluoroborate anions prepared in this study scatter over wide temperature ranges 

from 404 to 611 K. Different thermal stability of the substituents in aryltrifluoroborate anions would 

be the major source of the difference of the thermal degradation temperatures. 

 

Electrochemical Analyses. As shown in Tables 1-4, K[m-OEtC6H4BF3] had the lowest melting point, 

i.e., 390 K, among the studied salts. Cyclic voltammograms recorded using a Pt disk electrode in the 
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K[m-OEtC6H4BF3] molten salt are shown in Fig. 3. The electrochemical window was determined 

based on the anodic and cathodic limiting potentials at which the current densities reached the 

current density of ±0.3 mA cm
−2 

in a forward scan. The current increment initiated at ca. 1.36 V (vs. 

quasi-Pt wire reference electrode) and ca. 0.71 V (vs. quasi-Ag wire reference electrode) in the 

anodic region (blue line) was attributable to the decomposition of the [m-OEtC6H4BF3]
−
 anion. In the 

cathodic region (red line), the negative limiting potential was ca. −2.48 V (vs. Pt wire) and ca. −3.13 

V (vs. Ag wire) Hence, the electrochemical window was 3.84 V at 453 K. This range is comparable 

to those of typical alkali metal molten salt systems, such as LiCl-KCl (3.8 V).
37–39

 Therefore, this 

K[m-OEtC6H4BF3] molten salt has great promise as a low-temperature molten salt. Further 

electrochemical analyses were conducted to elucidate the unknown electrochemical redox reactions 

observed at the negative limiting potential. As shown in Fig. 3, a small oxidation peak appeared at 

−2.3 V (vs. Pt wire) in the reverse scan of the cathodic region. We speculated that the oxidation wave 

was related to the dissolution of metal potassium deposited in the potential range of −2.4 ~ −2.5 V 

(vs. Pt wire). However, the coulombic efficiency of the redox reaction estimated based on the cyclic 

voltammogram was only 4 %. Given metallic potassium’s low melting point (337 K), it is highly 

likely that the metal potassium electrodeposited on the electrode floats or precipitated in the 

K[m-OEtC6H4BF3] molten salt at 453 K soon after deposition. These processes would lead to the 

observed significantly low coulombic efficiency. In fact, we could not identify any deposits on the Pt 

electrode after electrolysis at the limiting potential. We collected more accurate information on the 

relevant electrochemical reaction via two approaches: double-step chronoamperometry using short 

potential step times and alloying with a tin electrode that can readily form a K-Sn binary alloy.
40

 

Figure 4 shows the double-step chronoamperograms recorded using a Pt disk electrode in the 

K[m-OEtC6H4BF3] molten salt at 433 K. Based on these chronoamperograms, we can discuss the 

kinetic complications involved in the electrode reaction. When a certain type of ionic species is 
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oxidized or reduced ideally on the electrode surface during double-step chronoamperometry, the 

kinetic complications are determined by the following equation:
41

  

 

− ���� = 1 − �1 − �
	�


�
�
 (1) 

 

where if is the forward current in the first potential step, ir is the reversal current in the second 

potential step, tr is the time at any current in the second potential step, and τ is the retention time of 

the first potential step. Figure 5a depicts an ideal current response in double-step chronoamperometry 

when the first step is the cathodic reaction. The data shown in Fig. 4 were converted into –ir/if and tr/τ 

by eq. 1 and are presented graphically in Fig. 5b. The solid line in the figure represents an ideal line 

calculated using this equation. At a longer step time, i.e., 0.05 s, a large deviation from the ideal line 

occurred. Conversely, the plots were very similar to the ideal line when a shorter time step of 0.01 s 

was used. Therefore, the electrode reaction proceeded reversibly at only very short reduction 

potential step times. Direct evidence of potassium electrodeposition was obtained by constant 

potential electrolysis at −2.6 V (vs. Pt wire) for 3600 s on a Pt electrode. No deposits were identified. 

However, when a tin plate with metallic luster was used as the working electrode (Fig. 6a), the 

surface became covered with a dark gray deposit under the same electrolysis conditions (Fig. 6b). 

SEM images of the electrode surface before and after electrolysis are shown in Fig. 6c and d, 

respectively. The original tin electrode had a smooth surface, but after electrolysis, the surface 

exhibited a dramatic change, becoming rough with many cracks.
42–44

 The tin electrode was 

characterized by XRD, and the results obtained before and after electrolysis are shown in Fig. 7. The 

specimen after electrolysis had a unique XRD pattern. In addition to that of metallic tin, the pattern 

for the K4Sn23 binary alloy was also evident; thus, K-Sn binary alloy was formed on the Sn electrode 
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surface. The K-Sn alloy probably formed immediately after K(I) reduction on the Sn electrode. EDX 

analysis of the specimen indicated that the major components were potassium and tin. Based on these 

results, the redox reaction observed at the negative limiting potential in the K[m-OEtC6H4BF3] 

molten salt was identified as the electrode reaction for K(I), which is in agreement with the results of 

the few papers available that address metal potassium deposition in ILs and organic solvents.
45–47

 

 

 

CONCLUDING REMARKS 

Nearly forty aryltrifluoroborate alkali metal salts with various substituents were designed and 

successfully obtained via a simple and safe preparation process. We revealed that the choice of 

substituents and their positions strongly affected the thermal properties of the resulting salts. The 

alkali metal salts clearly had lower melting points than common inorganic alkali halides, e.g., LiCl, 

KCl, and KF. We prepared a structure-designed potassium aryltrifluoroborate, K[m-OEtC6H4BF3], 

i.e., a low-temperature molten salt, for the electrodeposition of metal potassium. Our results and the 

preparation process for the M[ArBF3] (M: K or Cs) salts reported in this article will be useful for 

scientists and engineers in the fields of molten salts, ILs, and electrochemical technology. 
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Table 1. Thermal properties of the synthesized K[ArBF3] salts with a substituent at the meta 

position 

 

  (Abbreviations for substituents) Tm 
a
 / K Td 

b
 / K 

 568 590 

  (-Me) 518 561 

  (-tBu) — 
c
 574 

 501 568 

 467 538 

  (-OCF3) 405 539 

  (-SMe) 409 507 

  (-SO2Me) 514 600 

  (-CH2Br) — 
c
 410 

 465 594 

 525 566 

  (-CO2Et) 516 576 

  (-CONH2) — 
c
 445 

  (-OMe) 430 592 

  (-OEt) 390 521 
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  (-OnPr) 425 568 

  (-OiPr) 437 539 

  (-OnBu) 439 548 

  (-O(CH2)9CH3) 388 549 

  (-O(CH2)2OCH3) 419 571 

a
Melting point. 

b
Thermal degradation temperature at 5 wt% loss. 

c
Decomposition before melting. 
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Table 2. Thermal properties of the synthesized Cs[ArBF3] salts with a substituent at the meta 

position 

 

  (Abbreviations for substituents) Tm 
a
 / K Td 

b
 / K 

 445 566 

 403 549 

   409 611 

  (-OCF3) 398 534 

  (-SMe) 413 565 

  (-OEt) 433 572 

  (-OnPr) 409 567 

a
Melting point. 

b
Thermal degradation temperature at 5 wt% loss. 
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Table 3. Thermal properties of the synthesized K[ArBF3] salts with a substituent at the ortho 

position 

 

  (Abbreviations for substituents) Tm 
a
 / K Td 

b
 / K 

 — 
c
 587 

  (-OCF3) — 
c
 555 

  (-SMe) 549 564 

  (-OMe) 554 579 

  (-OEt) — 
c
 565 

 — 
c
 492 

  (-COCH3) — 
c
 482 

a
Melting point. 

b
Thermal degradation temperature at 5 wt% loss. 

c
Decomposition before melting. 

BF3

K
R
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Table 4. Thermal properties of other K[ArBF3] salts  

Potassium salts  (Abbreviations for anions) Tm 
a
 / K Td 

b
 / K 

  (2-F-5-OMeC6H3BF3) — 
c
 481 

  (2-Cl-5-CF3C6H3BF3) — 
c
 404 

  (3-CO2Me-5-NO2C6H3BF3) — 
c
 495 

  (3-C4H3SBF3) — 
c
 550 

  (1-NaphBF3) 461 534 

a
Melting point. 

b
Thermal degradation temperature at 5 wt% loss. 

c
Decomposition before melting. 
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Table 5. Melting points of common potassium salts 

Salts Tm
a
 / K Ref. 

KF 1131 30 

KCl 1043 31 

KBr 1006 31 

KI 952 31 

KBF4 803 29 

KTfO 503 32 

KTf2N 472 6 

K[m-OEtC6H4BF3] 390 This work 

a
Melting point. 
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Scheme and Figure Captions 

Scheme 1. Synthesis of aryltrifluoroborate alkali metal salts. 

 

Figure 1. Chemical structure of the aryltrifluoroborate anion ([ArBF3]
−
). 

 

Figure 2.  Optimized structures of ion pairs consisting of K
+
 and meta- and ortho-substituted 

phenytrifluoroborate anions and their stabilization energies by the formation of ion pairs (Eform). ∆E 

(= Eform(meta) – Eform(ortho)) is the difference between the Eform for the ion pair of meta-substituted 

phenytrifluoroborate anion (Eform(meta)) and the Eform for the ion pair of ortho-substituted 

phenytrifluoroborate anion (Eform(ortho)).  

 

Figure 3. Cyclic voltammograms recorded at a Pt disk electrode in (―) the cathodic region and (―) 

the anodic region in the K[m-OEtC6H4BF3] low-temperature molten salt at 453 K. The scan rate was 

10 mV s
−1

. 

 

Figure 4. Double-step chronoamperograms recorded at a Pt disk electrode in the K[m-OEtC6H4BF3] 

low-temperature molten salt at 433 K with a potential step of −2.6 V (vs. Pt wire) followed by 0 V 

(vs. Pt wire). The potential step times were (―) 0.01 s and (―) 0.05 s. 

 

Figure 5. (a) Ideal current response in typical double-step chronoamperometry. if is the forward 

current in the first potential step, ir is the reversal current in the second potential step, tf is the time at 

any current in the first potential step, and τ is the potential step time for the first potential step. (b) –

ir/if vs. tr/τ plot derived from the chronoamperograms shown in Fig. 4. The potential step times were 

(○) 0.05 s and (●) 0.01 s. The solid line in the figure represents the ideal line calculated using eq. 1. 
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Figure 6. Optical microscope and SEM images of the tin electrode (a and c) before and (b and d) 

after electrolysis at −2.6 V (vs. Pt wire) in the K[m-OEtC6H4BF3] low-temperature molten salt at 433 

K. The SEM images are shown in (c) and (d). 

 

Figure 7. XRD patterns (Cu-Kα) of the tin electrode before and after electrolysis at −2.6 V (vs. Pt 

wire) in the K[m-OEtC6H4BF3] low-temperature molten salt at 433 K. As references, the diffraction 

patterns of β-Sn (JCPDS-ICDD, file 00-004-0673) and K4Sn23 (JCPDS-ICDD, file 03-065-3351) are 

also shown. 
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Iwasaki, et al. 
 
 
 
 
 
 

 

 

Scheme 1. Synthesis of aryltrifluoroborate alkali metal salts. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1. Chemical structure of the aryltrifluoroborate anion ([ArBF3]−). 
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Iwasaki, et al. 
 

 

 

 

 

Figure 2.  Optimized structures of ion pairs consisting of K+ and meta- and ortho-substituted 

phenytrifluoroborate anions and their stabilization energies by the formation of ion pairs (Eform). ∆E (= 

Eform(meta) – Eform(ortho)) is the difference between the Eform for the ion pair of meta-substituted 

phenytrifluoroborate anion (Eform(meta)) and the Eform for the ion pair of ortho-substituted 

phenytrifluoroborate anion (Eform(ortho)).  
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Figure 3. Cyclic voltammograms recorded at a Pt disk electrode in (―) the cathodic region and (―) 

the anodic region in the K[m-OEtC6H4BF3] low-temperature molten salt at 453 K. The scan rate was 

10 mV s−1. 
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Figure 4. Double-step chronoamperograms recorded at a Pt disk electrode in the K[m-OEtC6H4BF3] 

low-temperature molten salt at 433 K with a potential step of −2.6 V (vs. Pt wire) followed by 0 V 

(vs. Pt wire). The potential step times were (―) 0.01 s and (―) 0.05 s. 
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Figure 5. (a) Ideal current response in typical double-step chronoamperometry. if is the forward 

current in the first potential step, ir is the reversal current in the second potential step, tf is the time at 

any current in the first potential step, and τ is the potential step time for the first potential step. (b) –

ir/if vs. tr/τ plot derived from the chronoamperograms shown in Fig. 4. The potential step times were 

(○) 0.05 s and (●) 0.01 s. The solid line in the figure represents the ideal line calculated using eq. 1. 
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Figure 6. Optical microscope and SEM images of the tin electrode (a and c) before and (b and d) 

after electrolysis at −2.6 V (vs. Pt wire) in the K[m-OEtC6H4BF3] low-temperature molten salt at 433 

K. The SEM images are shown in (c) and (d). 
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Figure 7. XRD patterns (Cu-Kα) of the tin electrode before and after electrolysis at −2.6 V (vs. Pt 

wire) in the K[m-OEtC6H4BF3] low-temperature molten salt at 433 K. As references, the diffraction 

patterns of β-Sn (JCPDS-ICDD, file 00-004-0673) and K4Sn23 (JCPDS-ICDD, file 03-065-3351) are 

also shown. 
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