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ABSTRACT: The broad synthetic utility of organoboron 
compounds stems from their ready ability to undergo 1,2-
migrations. Normally, such shifts are induced by α-leaving 
groups or by reactions of alkenyl boronates with electrophiles. 
Herein, we present a new strategy to induce 1,2-metallate 
rearrangement, via ring expansion of vinylcyclopropyl 
boronate complexes activated by electrophiles. This leads to a 
cyclopropane-stabilized carbocation which triggers ring 
expansion and concomitant 1,2-metallate rearrangement. This 
novel process delivers medicinally relevant 1,2-substituted 
cyclobutyl boronic esters with high levels of 
diastereoselectivity. A wide range of organolithiums and 
Grignard reagents, electrophiles, and vinylcyclopropyl boronic 
esters could be used. The methodology was applied to a short, 
stereoselective synthesis of (±)-grandisol. Computational 
studies indicate that the reaction proceeds via a non-classical 
carbocation followed by anti 1,2-migration. 

Organoboronic esters are highly versatile synthetic 
intermediates as they can be converted into a broad range of 
functional groups, often with complete stereospecificity.1 
These transformations are typically initiated by addition of a 
nucleophile to boron which subsequently rearranges by a 1,2-
shift to an adjacent electrophilic center, expelling a leaving 
group (Scheme 1A).1 From the classic Matteson homologation1b 
to our own lithiation-borylation reaction, this reaction has 
found broad applications in synthesis.2 1,2-Metallate 
rearrangements to sp2 carbons can also be triggered by 
reaction with a suitable electrophile,3 as in the Zweifel 
olefination reaction,4 or more recently in Morken’s conjunctive 
coupling reaction where the rearrangement is induced by 
reaction with an electrophilic palladium(II) species.5 Recently, 
we and the Studer group independently reported that the 1,2-
metallate rearrangement could be induced without recourse to 
a leaving group, through oxidation of an α-boryl radical.6 

Fundamentally new triggers for 1,2-metallate 
rearrangement are rare but they have the potential to open up 
substantial chemical space and can lead to new opportunities 
in synthesis. We considered the possibility of a novel method 
to induce 1,2-metallate rearrangements via ring-expansion of 
vinylcyclopropyl boronate complexes. We envisaged that 
reaction of a vinylcyclopropyl boronate complex I with an 
electrophile would generate a carbocation α to the cyclopropyl 
ring II, which should trigger ring expansion with concomitant 
1,2-metallate rearrangement to give cyclobutyl boron product 

1 (Scheme 1B, pathway A). Although allylboronate complexes 
related to I are known to react with electrophiles with loss of 
the boronate group,7 we believed that this undesired pathway 
(B) would be retarded by the increase in ring strain of the 
corresponding alkylidenecyclopropane product 2.8 The 
cyclopropyl group is therefore not only integral to the ring-
expansion 1,2-metallate rearrangement, but its presence 
should also favor the desired pathway A by stabilising the 
carbocation and disfavor the undesired pathway B by the 
increase in ring strain. Additional attractive features of the 
methodology include the generation of three new bonds, two 
stereogenic centers and a four membered ring and the 
potential for synthetic diversity. Furthermore, it provides 
ready access to 1,2-substituted cyclobutanes 1,9 which are not 
only common in natural products10 (Scheme 1C) but are finding 
increasing application in pharmaceuticals11, 12 In this paper we 
report our success in developing a novel ring-expansion 
triggered 1,2-metallate rearrangement and demonstrate its 
utility in a short stereoselective synthesis of (±)-grandisol. 

Scheme 1: (A) Known 1,2-metallate shifts. (B) Proposed 
1,2-metallate shift. (C) Natural products containing 1,2-
substituted cyclobutanes.
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bis(boryl)cyclopropane. B) Preparation of vinylcyclopropyl 
boronic esters.
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Our initial investigations focused on designing a route to 
vinylcyclopropyl boronic esters 4. Recently, Harris reported 
the synthesis of gem-bis(boryl)cyclopropane 3 (Scheme 2A).13 
Following deprotonation, reaction with B2pin2 gave an 
intermediate boronate complex which underwent 1,2-
metallate rearrangement to give 3. Subsequent cross-coupling 
with an aryl halide gave an arylcyclopropyl boronic ester. We 
wondered whether we could employ vinyl boronic esters in 
place of B2pin2 to access vinylcyclopropyl boronic esters 4 
directly from cyclopropyl bromide. After optimization,14 this 
reaction successfully provided the desired products in high 
yield, with 4a formed in 72% yield on 5 mmol scale and 66% 
yield on gram scale (Scheme 2B). A variety of β-substituted 
vinyl boronic esters were homologated to give the products 4b-
4g in good yields. α-Substituted vinyl boronic ester could also 
be used in the reaction (product 4h). Furthermore, 
cyclohexenyl boronic esters was also shown to be viable 
substrate (product 4i).

With a selection of vinylcyclopropyl boronic esters 4 in hand, 
we began our studies of the ring-expansion induced 1,2-
metallate rearrangement. For the optimization studies, 
boronate complex IV was generated in situ by the addition of 
phenyllithium to a solution of vinylcyclopropyl boronic ester 
4a in THF. Addition of Eschenmoser’s salt (5)7 to boronate 
complex IV gave the desired cyclobutyl boronic ester 1a in a 
promising 47% yield as a single diastereomer (Table 1, entry 
1) together with trace amount of allylation product 2a.14 The 
stereochemistry of 1a was unambiguously determined by X-
ray analysis. Increasing the loading of Eschenmoser’s salt (5) 
improved the yield of 1a to 75% (Table 1, entry 2). Among the 
solvents tested (Table 1, entries 2−6),15 DMF emerged as the 
optimum. Finally, adding DMF to the THF solution of IV without 
solvent exchange also gave 1a in similar yield which simplified 
the reaction procedure (Table 1, entry 7). The reaction was 

found to be robust on multigram scale, giving product 1a in 
91% yield as a single diastereomer on >6 g scale.
Table 1: Optimization studiesa

THF
78 °C to RT

solvent
T °C

pinB
Ph

NN
I

Bpin
Ph Li

5

4a 1aIV

N2a, <5%

Bpin PhLi

Entry
5

(x equiv)
Solvent T 

(°C)
Yield
(%)b

d.r.c

1 1.1 THF –78 47 >20:1
2 2 THF –78 75 >20:1
3 2 2-MeTHF –78 61 >20:1
4 2 MeOH –78 46 16:1
5 2 CH3CN –40 51 12:1
6 2 DMF –40 95 >20:1
7d 2 DMF/THF –40 94 >20:1

aReaction conditions: 0.15 mmol of 4a, 1.3 equiv of PhLi and 
THF (0.15 M) followed by removal of THF and addition of 
solvent (0.075 M) and 5 at temperature T. The reactions were 
stirred for 2 h at –78 °C (entries 1-4) or –40 °C (entries 5-7) 
before slowly warming to RT overnight. bYields determined by 
1H NMR using trimethoxybenzene as internal standard. 
cDetermined by GC-MS. dDMF was added to the reaction in THF.

Having established optimal reaction conditions, we initially 
investigated the scope of the reaction with respect to the 
organolithium (Scheme 3A). A range of aryllithiums of different 
steric and electronic properties worked well (1a-1h). Notably, 
the bromo-substituted product 1f, bearing a useful handle for 
further transformations could be isolated in 80% yield. Simple 
vinyllithium and substituted alkenyllithiums could also be 
employed (products 1i and 1j), showing that the allyl boronate 
is more reactive than the vinyl boronate towards 
Eschenmoser’s salt (5).14 Primary and secondary alkyllithiums 
all performed well in the reaction (products 1k-1m). Notably, 
methyl, which is generally poor migrating group16 and has even 
been used as a non-migrating group, gave the cyclobutane 1k 
in very good yield and selectivity, demonstrating how strongly 
pathway A is favoured over pathway B (Scheme 1B). 
Cycloalkyllithiums, including cyclopropyl and cyclobutyl, were 
also found to be viable substrates (products 1n and 1o). 
Attempts to use the more readily available Grignard reagents 
e.g. phenylmagnesium bromide were unsuccessful. Morken 
reported that boronate complex formation using Grignard 
reagents was facilitated by the addition of LiCl17 which is 
known to increase the reactivity of Grignard reagents. To our 
delight, addition of LiCl to phenylmagnesium bromide prior to 
boronic ester 4a followed by addition of Eschenmoser’s salt (5) 
resulted in the formation of cyclobutane 1a in excellent yield 
(91%) and essentially complete selectivity. Other 
commercially Grignard reagents were also applicable, with 
benzyl and alkyl Grignard reagents providing 1p and 1q in 
good yields and selectivities (Scheme 3B). In all cases, 
chromatographic purification was avoided by isolating the 
products as HCl salts.
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Scheme 3: Reaction scopea
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bEschenmoser's salt added at –40 °C to a mixture of THF/DMF solvents. cLiCl (1.5 equiv) was added to Grignard reagent in THF at 
RT. dElectrophiles were added at –78 °C in THF, unless otherwise noted. eTropylium tetrafluoroborate was used. f1,3-
Benzodithiolylium tetrafluoroborate was used. gBenzaldehyde dimethyl acetal and TESOTf (2.0 equiv) were used. 
hDimethyl(methylthio)sulfonium tetrafluoroborate was used. iSolution of boronate complex in MeCN was added to a solution of 
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We then tested a more diverse range of electrophiles (Scheme 
3C). We were delighted to find that pyrrolidine and 
piperidine derived iminium salts worked well, providing a 
broader range of medicinally-relevant cyclobutanes 1r and 
1s.18 The reaction was extended to other classes of 
electrophiles, including the tetrafluoroborate salts of 
tropylium and benzodithiolylium giving good yields and high 
selectivity (products 1t and 1u). Benzaldehyde dimethyl 
acetal in the presence of TESOTf could also be used but in this 
case subsequent elimination to the styrene 1v occurred. 
Electrophiles that create new carbon−heteroatom bonds 
could also be utilized in the reaction, enabling formation of 
C−S and C−F bonds, again with very high selectivity (products 

1w and 1x). Surprisingly, a simple proton (addition of HBF4) 
gave the desired ring-expansion product 1y in good yield and 
selectivity. No competing protodeboronation19 was observed 
in this case highlighting the high chemoselectivity of the 
process.

We next proceeded to explore the scope of the reaction 
with respect to the vinylcyclopropyl boronic esters 4 
(Scheme 3D). We were delighted to find that γ-substituted 
vinylcyclopropyl boronic esters bearing alkyl, cycloalkyl and 
phenyl substituents worked efficiently, providing the highly 
complex cyclobutanes containing three contiguous 
stereogenic centers in good yield and excellent selectivity 
(products 1z-1ae).20 Remarkably, spiro-[5,3]decane 1af 
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4

could also be efficiently synthesized from boronic ester 4i, 
creating three contiguous stereogenic centers, two of which 
are quaternary. Surprisingly, β-substituted boronic ester 4h 
gave allylation product 2b instead of the ring-expansion 
product. Attempts to switch the selectivity by using the 
electron-poor aryllithium, 3,5-(CF3)2C6H3-Li, was 
unsuccessful, giving the same allylation product 2b.
Scheme 4: Stereoselective synthesis of (±)-grandisol
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Finally, we have demonstrated the utility of this 
methodology in the synthesis of (±)-grandisol (Scheme 4), the 
main component of the sexually attracting pheromone of the 
cotton boll weevil, which is a serious pest responsible for 
significant damage to cotton crops.21 Starting from 
vinylcyclopropyl boronic ester 4b, methyllithium was added 
and the corresponding boronate complex was reacted with 
Eschenmoser’s salt (5) to give the cyclobutane 1ag. The crude 
material was carried forward to the Zweifel olefination, 
followed by hydroboration-oxidation of alkene 6 to give 
alcohol 7. Again, without purification, treatment with mCPBA 
in DMF at 120 °C resulted in Cope elimination,22 leading to 
(±)-grandisol in 36% yield with 10:1 dr. This synthesis is 
notable for its brevity and high selectivity, and its modularity 
provides ready access to a range of analogues, if required.

Finally, DFT calculations were performed to gain insight 
into the ring expansion reaction [M06-2X / 6–311G(d,p) level, 
with a polarisable continuum model of solvation (PCM,THF)]. 
Protonation was selected as the model reaction giving 
cyclobutane 1y (Scheme 5A).23 The DFT calculations 
indicated that the reaction proceeds via the carbocation 
intermediate A, generated upon protonation of the vinyl 
moiety of boronate complex V. The positive charge of the non-
classical carbocation is stabilized by hyperconjugation with 
the σ-electrons of the C1C2 bond.24 Indeed, the -bond is 
almost perfectly aligned to stabilise the carbocation (HC3
C2C1 = 92°); attempts to align the C-B bond to stabilize the 
carbocation led to a higher energy species which relaxed back 
to intermediate A. This showed that the bent cyclopropyl 
bond is better able to stabilize the carbocation than even the 
CB(ate) bond. From A, a facile anti-1,2-migration (ΔG‡ = 1.0 
kcal/mol) yields the desired product 1y which is 
thermodynamically and kinetically favoured over the 
allylation product 2c (ΔG‡ = 5.6 kcal/mol), as observed 
experimentally. The higher energy for the allylation pathway 
is partly caused by poor alignment of the CB bond with the 
carbocation. To account for the observed diastereoselectivity, 

different conformations of the intermediate have been 
considered (A - D), all of which have similar energies (Scheme 
5B). Intermediate B, formally obtained upon C2C3 rotation, 
would lead to the cis isomer 1y’ 
Scheme 5: Computational models for selectivity 
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via a similar anti-1,2-migration. However, in this case the 
corresponding TS is higher in energy (ΔG‡ = 2.2 kcal/mol) 
than the TS leading to the trans isomer 1y (relative energy 
difference ΔΔG‡ = 1.2 kcal/mol) which is sufficient to achieve 
>90% stereoselectivity at –78 °C.25 Finally, intermediates C 
and D (formally obtained upon C2-B rotation from B and A) 
undergo syn-migration with significantly higher barriers (ΔG‡ 

= 7.9 kcal/mol and 6.4 kcal/mol, respectively) and so 
contribute minimally to the process. This mechanism 
accounts for the high diastereoselectivity observed for the 
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5

substituted vinyl boronic esters (Scheme 3d) where addition 
and migration occur with an anti-arrangement of groups 
(Scheme 5C).

In conclusion, we have developed a new strategy to induce 
1,2-metallate rearrangement via ring expansion of 
vinylcyclopropyl boronate complexes activated by 
electrophiles. The methodology enables the modular 
synthesis of 1,2-substituted cyclobutyl boronic esters in a 
highly diastereoselective process, including spirocycles with 
contiguous quaternary centers, and cyclobutanes with three 
contiguous stereocenters. The reaction shows broad 
substrate scope and was applied to a short stereoselective 
synthesis of (±)-grandisol. DFT studies indicated that the 
reaction proceeds through a non-classical carbocation which 
readily undergoes anti-1,2-migration to give the product. 
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