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Graphical Abstract 

 

A new polyacetylene, notopolyenol A, isolated from Notopterygium incisum was identified by spectroscopic technique and 

chemical method, and its synthetic enantiomer displayed significant cytotoxicity against MCF-7, H1299, and HepG2 cancer cells 

with IC50 values ranging from 0.6μmol/L to 1.4 μmol/L. 
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Phytochemical investigation on the roots and rhizomes of Notopterygium incisum 

led to the isolation of a new polyacetylene, notopolyenol A (1), along with thirteen 

known analogues (2−14). Their structures were elucidated by extensive analyses of 

NMR and HRMS data, and the absolute configuration of 1 was unambiguously 

determined as 3R by comparison of its retention time and ECD curve with those of 

synthetic enantiomers ()-1 and ()-1, whose absolute configurations were 

established by using the modified Mosher’s method. Subsequent activity screening 

revealed that (3S)-1 exhibited the most significant cytotoxicity against MCF-7, 

H1299, and HepG2 cancer cells with IC50 values of 1.3 μmol/L, 0.6 μmol/L and 1.4 

μmol/L, respectively. 
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Polyacetylenes, characterized by possessing conjugated carbon-carbon triple bonds in structural skeleton, are 
a kind of secondary metabolites distributed widely in organisms, comprising plants [1], marine organisms [2,3], 
microorganisms [4], and animals [5]. This class of compounds has aroused great interest of medicinal chemists and 
pharmaceutical industries due to its broad variety of biological properties, such as anti-inflammatory [6], cytotoxic 
[7,8], and immunosuppressive [9] activities. During our ongoing program aimed at searching for bioactive 
constituents from Notopterygium incisum, a traditional Chinese herb used for treatment of inflammation-related 
diseases [10], a sub-fraction of its 95% aq. EtOH was found to exhibit potent cytotoxicity against different cancer 
cells. Subsequent chemical investigation led to the isolation of 14 polyacetylenes, including a new compound, 
notopolyenol A (1) (Fig. 1). 

Notopolyenol A (1) was isolated as a colorless oil with the molecular formula of C17H20O2 determined by HREIMS at m/z 256.1456 

[M+] (calcd. for C17H20O2: 256.1458), corresponding to eight indices of hydrogen deficiency. The 1H NMR spectrum (Table 1) displayed 

characteristic signals for a terminal vinyl group [H 6.00 (ddd, 1H, J = 17.1, 10.2, 5.3 Hz), 5.53 (dt, 1H, J = 17.1, 1.2 Hz), and 5.31 (dt, 

1H, J = 10.2, 1.2 Hz)], an aliphatic chain [H 2.63 (t, 2H, J = 7.6 Hz), 1.65 (quintet, 2H, J = 7.5 Hz), 1.32 (m, 6H), and 0.91 (t, 3H, J = 

6.9 Hz)], and two coupled furan protons [H 6.68 (d, 1H, J = 3.3 Hz) and 6.01 (d, 1H, J = 3.3 Hz)]. Inspection of the 13C NMR data 

(Table 1) in combination with the HSQC correlations classified 17 carbons into two conjugated acetylenic bonds (C 83.8, 78.0, 70.9, 

and 69.6), two trisubstituted double bonds (C 134.4, 119.9 and 159.9, 106.7), a monosubstituted double bond (C 117.5 and 136.0), an 

oxygenated sp3 methine (C 63.9), five sp3 methenes (C 31.6, 28.9, 28.6, 27.9, and 22.7), and one methyl (C 14.2). The aforementioned 
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information suggested that 1 was a derivative of falcarindiol (5) [11] with the presence of a furan ring consisted of C-8 (C 134.4), C-9 

(H 6.68, C 119.9), C-10 (H 6.01, C 106.7), and C-11 (C 159.9), which accounted for the one remaining indice of hydrogen deficiency. 

The HMBC correlations of H-9/C-8 and C-11, H-10/C-8 and C-11, and H2-12/C-10 and C-11 and the NOESY correlation of H-10/H2-

12 (Fig. S3 in Supporting information) supported the above deduction. Thus, the 2D structure of 1 was defined as shown. 

To establish the absolute configuration of 1, the modified Mosher’s method was carried out. However, attempts to prepare two 

Mosher’s esters of 1 failed due to the limitation of its amount (1.1 mg). Therefore, the total synthesis of racemic ()-1 should be 

conducted, and its retrosynthetic analysis is depicted in Scheme 1. ()-1 could be constructed by Sonogashira reaction [12] from diyne 

15 and iodofuran 16. Disconnection at the conjugated acetylenic bond of 15 would give two alkynes 17 and 18 as intermediates for 

Cadiot-Chodkiewicz coupling [13], while the former subunit could be further disassembled into aldehyde 21 and TMS-protected 

acetylene 18 as substrates of 1,2-addition. Fragment 16 would be prepared by substitution reaction from furan 19 and alkyl iodide 20. 

The synthesis of ()-1 is summarized in Scheme 2. 1,2-Addition of acrolein (21) with trimethylsilylacetylene (18) in the presence 

of n-BuLi followed by protection of the resulting hydroxyl in 22 with t-butyldiphenylsilyl (TBDPS) group afforded 23 as a silyl ether. 

Treatment of 23 with N-bromosuccinic imide (NBS) and catalytic amount of AgNO3 gave brominated alkyne 17, which was coupled 

with 18 subsequently via Cadiot-Chodkiewicz reaction [13] to furnish the conjugated diyne 24. The terminal TMS group of 24 was then 

selectively removed in K2CO3/MeOH to obtain 15. The coupling reaction of 15 with 16, which was prepared by alkylation of furan (19) 

with 1-iodohexane (20) using n-BuLi followed by iodination, under Sonogashira reaction condition [12] yielded 26 smoothly. Finally, 

deprotection of the TBDPS group of 26 by tetra-n-butylammonium fluoride (TBFA) provided ()-1 in 20.6% overall yield for 7 steps 

from 21. 

HPLC chiral resolution of ()-1 afforded two enantiomers, ()-1 at 8.7 min and ()-1 at 11.4 min, respectively. 
Both enantiomers were subjected to esterification with (R)- and (S)--methoxyphenylacetic acid (MPA) to obtain 
the corresponding esters, and analyses of their RS (R

 S) values led to the assignment of 3R configuration for 
()-1 and 3S configuration for ()-1 (Fig. S1 in Supporting information). By comparison of the HPLC chromatogram 
and ECD cruve of 1 with those of the synthetic products (Figs.S4 and S5 in Supporting information), the absolute 
configuration of 1 was unambiguously defined as 3R. 

A plausible biogenetic pathway to 1 is proposed with falcarindiol (5), a known co-isolated compound with 3R 
and 8S configuration determined by the modified Mosher’s method (Fig. S2 in Supporting information), as the 
precursor (Scheme S1 in Supporting information). Allylic oxidation of 5 resulted in the generation of carbonyl group 
at C-11 followed by nucleophilically attacked by hydroxyl group at C-8. Then the removal of H2O induced the 
electrons transfer and formation of a furan ring, and finally converted to 1. 

All isolated compounds 1−14, as well as the synthetic product ()-1, were evaluated for their cytotoxicity 
against three cancer cell lines, MCF-7, H1299, and HepG2, using the sulforhodamine B (SRB) assay [14], and their 
IC50 values are presented in Table 2. Of these, the synthetic compound ()-1 exhibited the most potent cytotoxic 
activity against the three cancer cell lines with IC50 values ranging from 0.6 μmol/L to 1.4 μmol/L, at least 24-fold 
lower than those of its enantiomer 1, indicating the importance of 3S configuration for the cytotoxic effect. 
Panaxydiol-type polyacetylenes (2−4), with IC50 values of 10.7−24.9 μmol/L, displayed stronger inhibitory effects on 
the test cancer cells than those of most of falcarindiol-type polyacetylenes (5−12) and their reduction products (13 
and 14), suggesting that the conjugated system enlarged by 8E-double bond may play a positive role in their 
cytotoxicity. 

a IC50  100 μmol/L. 

b Positive control. 

c Values presented in nmol/L. 

In summary, a new polyacetylene (1), together with thirteen analogues (2−14), was isolated from the roots and rhizomes of N. 

incisum. Its absolute configuration was determined as 3R by applying the modified Mosher’s method to synthetic enantiomers ()-1 and 

()-1 followed by comparing their HPLC retention times and ECD spectra. Interestingly, the synthetic product ()-1, the enantiomer of 

1, displayed the most significant cytotoxic activity against three cancer cell lines (MCF-7, H1299, and HepG2). 
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Fig. 1. Structures of compounds 1−14. 

 

 

 
Scheme 1. Retrosynthetic analysis of compound ()-1. 

 

 

 
Scheme 2. Synthesis of compound ()-1. Reagents and conditions: (a) n-BuLi, THF, 78 °C to r.t., 87% for 22, 70% for 25; (b) TBDPSCl, Et3N, DMAP, DCM, 0 °C 

to r.t., 90%; (c) NBS, AgNO3, Me2CO, r.t. 88%; (d) 18, CuCl, n-BuNH2, NH2OH∙HCl, DCM, 0 °C, 63%; (e) K2CO3, MeOH, r.t., 82%; (f) I2, n-BuLi, THF, 78 °C to 0 °C, 

70%; (g) 15, CuI, PPh3, (PPh3)Pd2Cl2, Et3N, 60 °C, 69%; (h) TBAF, DCM, r.t., 84%. 

 

 

Table 1 

1H (400 MHz) and 13C (100 MHz) NMR data of compound 1 ( in ppm) in CDCl3. 
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Position H (mult., J in Hz) C, type 

1a 

1b 

5.53 (dt, 17.1, 1.2) 

5.31 (dt, 10.2, 1.2) 

117.5, CH2 

2 6.00 (ddd, 17.1, 10.2, 5.3) 136.0, CH 

3 5.05 (t, 5.9) 63.9, CH 

4  83.8a, C 

5  78.0a, C 

6  70.9a, C 

7  69.6a, C 

8  134.4, C 

9 6.68 (d, 3.3) 119.9, CH 

10 6.01 (d, 3.3) 106.7, CH 

11  159.9, C 

12 2.63 (t, 7.6) 28.6, CH2 

13 1.65 (quintet, 7.5) 27.9, CH2 

14 1.32 (m) 28.9, CH2 

15 1.32 (m) 31.6, CH2 

16 1.32 (m) 22.7, CH2 

17 0.91 (t, 6.9) 14.2, CH3 

3-OH 1.95 (d, 6.7)  

a Assignments may be interchangeable. 

 

 

Table 2 

Cytotoxic effects of compounds 1−14 and ()-1 against three cancer cell lines. 

Compound 
IC50 (μmol/L) 

MCF-7  H1299 HepG2 

1 31.7  1.3 24.9  0.9 35.3  0.5 

()-1 1.3  0.6 0.6  0.2 1.4  0.7 

2 13.5  1.9 12.8  0.9 24.9  0.6 

3 15.1  1.9 12.1  0.9 15.1  1.3 

4 7.3  0.4 10.7  0.8 19.2  2.2 

5 29.4  1.0 22.1  0.9 23.6  2.0 

6 43.1  0.1 30.8  0.1 45.2  0.2 

7 −a −a −a 

8 19.0  0.9 16.4  0.7 15.9  0.7 

9 29.6  1.9 21.3  1.9 11.7  1.2 
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10 67.8  2.3 37.6  1.3 22.7  0.2 

11 −a −a 29.7  2.7 

12 45.6  1.5 14.6  0.8 20.8  1.2 

13 66.7  1.2 36.0  1.6 47.6  1.9 

14 85.7  0.4 31.9  0.2 54.2  1.6 

Taxolb 2.2  0.3c 1.8  0.8c 2.0  0.7c 
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