

Subscriber access provided by University of Sussex Library

Transition Metal Catalyzed Direct Amination of Cage B(4)-H Bond in o-Carboranes: Synthesis of Tertiary, Secondary and Primary o-Carboranyl Amines

Hairong Lyu, Yangjian Quan, and Zuowei Xie

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.6b07086 • Publication Date (Web): 14 Sep 2016 Downloaded from http://pubs.acs.org on September 15, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Transition Metal Catalyzed Direct Amination of Cage B(4)–H Bond in *o*-Carboranes: Synthesis of Tertiary, Secondary and Primary *o*-Carboranyl Amines

Hairong Lyu, Yangjian Quan,* and Zuowei Xie*

Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China

Supporting Information Placeholder

ABSTRACT: Transition metal catalyzed regioselective amination of cage B(4)-H bond in o-carboranes has been achieved for the first time using O-benzoyl hydroxylamines or organic azides as the amination reagents, leading to the preparation of a series of tertiary and secondary carboranyl amines. Both amination reactions proceeded under mild conditions without the addition of any external oxidants. Hydrogenolysis of the resultant product 4-N(CH₂Ph)₂-o-carborane afforded primary carboranyl amine, 4-amino-o-carborane, in quantitative yield.

Carboranes, a class of three-dimensional relatives of benzene, have proved as useful basic units in boron neutron capture therapy agents,¹ in supramolecular design/materials,² and in coordination/organometallic chemistry.³ Thus, functionalization of carboranes has received a growing interest. A number of methods have been developed for the functionalization of cage CH and vertices.4 BH In general, cage C-Hactivation/functionalization is relatively easier to be achieved than that of B-H ones as the cage CH proton is acidic $(pK_a \sim 23)$.⁵ We and other groups have taken up the challenge to develop transition metal catalyzed direct cage B-H functionalization.⁶⁻⁸ With the help of a carboxylic acid directing group, catalytic cage B(4)-alkenylation,^{6c} B(4,5)dialkenylation,^{6e} B(4,5)-diarylation,^{6f} B(4)-alkynylation,^{6g} and B(4)-hydroxylation⁶ⁱ have been achieved. These results indicate that the weakly coordinating directing group -COOH not only plays a key role in regioselectivity and mono-/di-selectivity of the reactions, but also is removable after the reaction. We also note that a key intermediate bearing five-membered metallacycle MBCCO is involved in the aforementioned catalytic cycles. Such intermediate may react with amination reagents to realize the direct amination of cage B-H bond.

Carborane derivatives containing organic nitrogen groups have received much attention due to their potential applications in medicinal chemistry⁹ and catalysis.¹⁰ For example, carborane-amino acid or -nucleoside combinations serve as excellent candidates for cancer treatment in boron neutron capture therapy (BNCT).^{9,11} Moreover, aminoalkyl-o-carboranes have been extensively employed as ligands for transition metal complexes.¹² Despite the recent advances in carborane chemistry, straightforward and general synthesis of cage B-aminated-o-carboranes is rather limited.^{3b,4,13,14} For instance, $3-NH_2$ -o-C₂B₁₀H₁₁ is prepared by the reduction of o-carborane with Na in liquid NH₃, followed by oxidation with KMnO₄. Such reaction has the risk of fire and explosion.¹⁵ Recently, the synthesis of B(3)/B(9)-aminated-o-carboranes has been reported through a Pd-catalyzed Buchwald-Hartwig amination of B(3)/B(9)-iodo-o-carboranes (Scheme 1) or B(3)-bromo-o-carborane.¹⁶ However, transition metal catalyzed direct cage B–H amination remains elusive.^{4,13}

Scheme 1. Synthetic Routes to Cage B-Aminated-o-Carboranes

Inspired by the recent achievements in catalytic C-H amination¹⁷ and the unique role of weakly coordinating carboxylic ligand in regioselective activation of cage B-H bond,^{6c,e,f,g,i} we have developed two efficient methods for direct and regioselective amination of o-carboranes using O-benzoyl hydroxylamines and organic azides as the amino

sources, respectively. These new findings are reported in this communication (Scheme 1).

The optimization of reaction conditions was summarized in Table S1 of the Supporting Information. Our initial reaction of 1-COOH-2-CH₃-C₂B₁₀H₁₀ (1a) with O-benzoyl hydroxylmorpholine (2a) in the presence of 10 mol % $Pd(OAc)_2$ and 2 equiv of AgOAc in toluene at 110 °C for 12 h gave no desired amination product (entry 1, Table S1). The addition of 2 equiv of K₂HPO₄ offered the B(4)-aminated-ocarborane 3a in 49% GC yield, whereas 2 equiv of KOAc only led to a trace amount of 3a (entries 2-3, Table S1). Lowering the loading of K₂HPO₄ to 1 equiv and the reaction temperature to 100 °C afforded higher yields of **3a** (entries 4-5, Table S1). It was later found that the amination reaction proceeded well in the absence of AgOAc, giving 3a in 93% GC yield (entries 6-7, Table S1). Lowering the catalyst loading to 5% led to a decreased yield of 3a (entry 9, Table S1). In view of the yield of 3a, entry 7 in Table S1 was chosen as the optimal reaction conditions.

Table 1. Synthesis of B(4)-Morpholinated-o-Carboranes^{*a*}

H COOH R ¹	OBz N (2a) 10 mol% Pd(OAc) ₂ 1 equiv K ₂ HPO ₄ toluene, 100 °C, 12 h		
entry	R	yield $(\%)^b$	
1	Me	79 (3a)	
2	Et	72 (3b)	
3	"Bu	71 (3c)	
4	ⁱ Pr	52 (3d)	
5	TMS	53 (3e) ^c	
6	Н	46 (3e)	
7	benzyl	68 (3g)	
8	4-CH ₃ -benzyl	74 (3h)	
9	4-Cl-benzyl	73 (3i)	
10	4-F-benzyl	71 (3j)	
11	4-OMe-benzyl	78 (3k)	
12	3-CH ₃ -benzyl	70 (3l)	
13	styryl	48 (3m)	
14	4-CH ₃ -styryl	58 (3n)	
^a Reactions were conducted on 0.2 mmol scale in 5 mL of			

^{*a*} Reactions were conducted on 0.2 mmol scale in 5 mL of toluene in a closed flask. ^{*b*} Yield of isolated products. ^{*c*} TMS was removed after work up.

Subsequently, a variety of B(4)-morpholinated-ocarborane derivatives were synthesized under the optimal reaction conditions. Effects of cage carbon substituents R¹ on the reaction results were examined. Both liner alkyl and benzyl substituents gave the B(4)-aminated products **3** in 68-79% isolated yields (entries 1-3 and 7-12, Table 1). No obvious electronic effects were observed (entries 7-12, Table 1). However, branch alkyl, TMS and styryl groups led to the decreased yields of **3** (entries 4-5 and 13-14, Table 1). If R¹ = H, the corresponding product **3e** was isolated in 46% yield (entry 6, Table 1). Substrate scope of other *O*-benzoyl hydroxylamines was also evaluated. To our delight, a variety of alkylamine moieties were readily introduced to the cage B(4) position by simply treatment of **1a** with various *O*-benzoyl hydroxylamines, giving **30-3v** in moderate to high isolated yields (Table 2).

Table 2. Scope of O-Benzoyl Hydroxylamine Substrates a,b

^{*a*} Reactions were conducted on 0.2 mmol scale in 5 mL of toluene in a closed flask. ^{*b*} Yield of isolated products.

The aforementioned direct catalytic B-H amination gave tertiary carboranyl amines. We wondered if primary amido groups could be introduced to the cage B(4) position using organic azides as the amination reagents. The results showed that replacement of O-benzoyl hydroxylamine with tosyl azide in the aforementioned optimal reaction conditions did not give any target product (entry 1, Table S2 in the SI). Inspired by Rh- or Ru-promoted cage B-H activation^{6h,6j,7c,7f} and Rh- or Ru-catalyzed C-N bond forming reactions using organic azides as reagents,^{17b} we then screened these transition metals as the catalysts. [Cp*RhCl₂]₂ only afforded the aminated product 4-TsNH-2- CH_3 - $C_2B_{10}H_{10}$ (5a) in 12% yield (entry 2, Table S2). To our delight, in the presence of 2.5 mol % [Ru(p-cymene)Cl₂]₂ and 2 equiv of NaOAc, reaction of 1a with TsN₃ in toluene at 100 °C for 12 h gave the desired amination product 5a in 95% GC yield (entry 10, Table S2). Further screening of bases and reaction temperatures did not offer better results. Thus, entry 10 in Table S2 was chosen as the optimal reaction conditions.

Under the above optimized reaction conditions, the scope of such amination was investigated. A variety of alkyl and benzyl substituents at the cage C(2) position gave the amination products **5** in very good to excellent isolated yields, and no obvious electronic effects were observed (entries 1-3 and 5-9, Table 3). Compound **1e** ($R^1 = TMS$) afforded the corresponding product **5d** in a good yield of 67% (entry 4, Table 3). In addition, the scope of sulfonyl azides was also examined (Table 4). Arylsulfonyl azides reacted smoothly regardless of the substituents on the phenyl ring, giving **5j**-**5o** in > 80% isolated yields. Benzylsulfonyl azide worked equally well, whereas butylsulfonyl azide resulted in relatively lower isolated yield of 72% (**5p** and **5q** in Table 4). These results show that Ru-catalyzed direct cage B-H amination is generally more efficient than Pd-catalyzed one

60

in view of the isolated yields of amination products **3** and **5** (Tables 1 and 2 vs Tables 3 and 4).

Table 3. Synthesis of B(4)-Aminated-o-CarboranesUsing Tosyl Azide^a

	COOH	TS_NH H R ¹ 5
entry	R ¹	yield $(\%)^b$
1	Me	90 (5a)
2	Et	88 (5b)
3	ⁱ Pr	85 (5 c)
4	TMS	67 (5d) ^c
5	benzyl	91 (5e)
6	4-CH ₃ -benzyl	84 (5f)
7	4-Cl-benzyl	94 (5g)
8	4-OMe-benzyl	93 (5h)
9	22~~~O~	92 (5i)

^{*a*} Reactions were conducted on 0.2 mmol scale in 5 mL of toluene in a closed flask. ^{*b*} Yield of isolated products. ^{*c*} TMS was removed after work up.

Table 4. Scope of Sulfonyl Azide Substrates^{*a,b*}

^{*a*} Reactions were conducted on 0.2 mmol scale in 5 mL of toluene in a closed flask. ^{*b*} Yield of isolated products.

It was noteworthy that the benzyl groups in **3u** was easily removed through hydrogenolysis in the presence of 10 mol % Pd/C to afford quantitatively 4-amino-o-carborane **6u**, which may serve as a new precursor for cage B(4) functionalization of o-carboranes (Scheme 2).¹⁸

Compounds **3**, **5** and **6u** were fully characterized by ¹H, ¹³C, and ¹¹B NMR spectroscopy as well as high-resolution mass spectrometry (see the SI for detail). The molecular structures of **3e**, **3o**, **3p**, **5a** and **5k** were further confirmed by single-crystal X-ray analyses (Figure S1-S5).

Scheme 2. Synthesis of 4-Amino-o-Carborane

To gain mechanistic insights into these B-H amination reactions, several control experiments were carried out. Under the optimal reaction conditions, 1a, 4k and norbornene were mixed in 1:1:1 molar ratio, giving an azacyclopropane 7 and 5k in 43% and 51% yields, respectively (Scheme Sia in the SI), whereas only a trace amount of azacyclopropane 7 was detected by GC-MS in the absence of the Ru catalyst (Scheme Sib). These results suggest that a Ru-nitrene intermediate may be involved in the Rucatalyzed amination.^{17b} On the other hand, comparison of the reaction rates of 1a-d₆ (1-COOH-2-Me-3,4,5,6,7,11-D₆-0- $C_2B_{10}H_4$) and 1a under the optimal reaction conditions gave very small KIE values of $k_{\rm H}/k_{\rm D}$ = 1.15 for Pd system and 0.96 for Ru one (Schemes S₂ and ₃), which indicates that the cyclometalation (B-H activation) step may not be involved in the rate-determining step. However, many attempts to isolate the five-membered cyclometalated intermediates failed. Based on the aforementioned experimental results and literature reports,^{6,17} two plausible reaction mechanisms for Pd- and Ru-catalyzed direct cage B-H amination are proposed in Schemes S4 and 5, respectively (see the SI for detail).

In conclusion, we have developed two catalytic systems for regioselective and efficient direct amination of cage B(4)–H bond in o-carboranes, for the first time, using *O*benzoyl hydroxylamines or organic azides as aminating agents, where –COOH acts as a traceless directing group. This work builds a toolbox for the preparation of previously inaccessible tertiary, secondary and primary o-carboranyl amines directly from o-carboranes, which might find applications in medicine, catalysis and materials.¹⁻³ These amination reactions have a broad substrate scope and are tolerant of functional groups, which offers useful references for selective C–H amination in organic compounds and B-H amination in other boron clusters.

ASSOCIATED CONTENT

Supporting Information

Detailed experimental procedures, complete characterization data, NMR spectra, and X-ray data in CIF format for **3e**, **3o**, **3p**, **5a** and **5k**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

- * <u>viquan@cuhk.edu.hk</u>
- * zxie@cuhk.edu.hk

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

This work was supported by grants from the Research Grants Council of HKSAR (Project No. 14304115), NSFC/RGC Joint Research Scheme (N_CUHK442/14) and Vice-Chancellor's (CUHK) Discretionary Fund.

REFERENCES

(1) For selected reviews, see: (a) Hawthorne, M. F. Angew. Chem., Int. Ed. Engl. 1993, 32, 950. (b) Armstrong, A. F.; Valliant, J.

60

F. Dalton Trans. 2007, 4240. (c) Issa, F.; Kassiou, M.; Rendina, L. M. Chem. Rev. 2011, 111, 5701.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

(2) For selected examples, see: (a) Jude, H.; Disteldorf, H.; Fischer, S.; Wedge, T.; Hawkridge, A. M.; Arif, A. M.; Hawthorne, M. F.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2005, 127, 12131. (b) Dash, B. P.; Satapathy, R.; Gaillard, E. R.; Maguire, J. A.; Hosmane, N. S. J. Am. Chem. Soc. 2010, 132, 6578. (c) Wee, K. R.; Cho, Y. J.; Jeong, S.; Kwon, S.; Lee, J. D.; Suh, I. H.; Kang, S. O. J. Am. Chem. Soc. 2012, 134, 17982. (d) Koshino, M.; Tanaka, T.; Solin, N.; Suenaga, K.; Isobe, H.; Nakamura, E. Science, 2007, 316, 853. (e) Naito, H.; Morisaki, Y.; Chujo, Y. Angew. Chem., Int. Ed. 2015, 54, 5084. (f) Brusselle, D.; Bauduin, P.; Girard, L.; Zaulet, A.; Viñas, C.; Teixidor, F.; Ly, I.; Diat, O. Angew. Chem., Int. Ed. 2013, 52, 12114. (g) Guo, J.; Liu, D.; Zhang, J.; Zhang, J.; Miao, Q.; Xie, Z. Chem. Commun. 2015, 51, 12004. (h) Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 12680. (i) Schwartz, J. J.; Mendoza, A. M.; Wattanatorn, N.; Zhao, Y.; Nguyen, V. T.; Spokoyny, A. M.; Mirkin, C. A.; Baše, T.; Weiss, P. S. J. Am. Chem. Soc. 2016, 138, 5957. (j) McArthur, S. G.; Geng, L.; Guo, J.; Lavallo, V. Inorg. Chem. Front. 2015, 2, 1101. (k) Kirlikovali, K. O.; Axtell, J. C.; Gonzalez, A.; Phung, A. C.; Khan, S. I.; Spokoyny, A. M. Chem. Sci. 2016, 7, 5132. (1) Clingerman, D. J.; Morris, W.; Mondloch, J. E.; Kennedy, R. D.; Sarjeant, A. A.; Stern, C.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. Chem. Commun. 2015, 51, 6521.

(3) For selected reviews, see: (a) Hosmane, N. S.; Maguire, J. A. In Comprehensive Organometallic Chemistry III; Crabtree, R. H., Mingos, D. M. P., Eds.; Elsevier: Oxford, 2007; Vol. 3, Chapter 5. (b) Xie, Z. Coord. Chem. Rev. 2002, 231, 23. (c) Xie, Z. Acc. Chem. Res. 2003, 36, 1-9. (d) Spokoyny, A. M.; Machan, C. W.; Clingerman, D. J.; Rosen, M. S.; Wiester, M. J.; Kennedy, R. D.; Stern, C. L.; Sarjeant, A. A.; Mirkin, C. A. Nat. Chem. 2011, 3, 590. (e) Spokoyny, A. M.; Lewis, C. D.; Teverovskiy, G.; Buchwald, S. L. Organometallics 2012, 31, 8478. (f) Joost, M.; Zeineddine, A.; Estévez, L.; Mallet-Ladeira, S.; Miqueu, K.; Amgoune, A.; Bourissou, D. J. Am. Chem. Soc. 2014, 136, 14654. (g) Lugo, C. A.; Moore, C. E.; Rheingold, A. L.; Lavallo, V. Inorg. Chem. 2015, 54, 2094. (h) Eleazer, B. J.; Smith, M. D.; Peryshkov, D. V. Organometallics 2016, 35, 106. (i) Saleh, L. M. A.; Dziedzic, R. M.; Khan, S. I.; Spokoyny, A. M. Chem. Eur. J. 2016, 22, 8466. (j) Adams, R. D.; Kiprotich, J.; Peryshkov, D. V.; Wong, Y. O. Chem. Eur. J. 2016, 22, 6501.

(4) For selected reviews, see: (a) Grimes, R. N. *Carboranes*, 2nd ed.; Elsevier: Oxford, 2011. (b) Hosmane, N. S. *Boron Science: New Technologies and Applications*; Taylor & Francis Books/CRC: Boca Raton, FL, 2011. (c) Xie, Z. *Sci. China Chem.* 2014, 57, 1061.

(5) Nakamura, H.; Aoyagi, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998, 120, 1167.

(6) (a) Qiu, Z.; Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2013, 135, 12192. (b) Quan, Y.; Qiu, Z.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 7599. (c) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2014, 136, 15513. (d) Quan, Y.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 3502. (e) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 10623. (f) Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2015, 54, 10623. (f) Quan, Y.; Xie, Z. Chem. Sci. 2016, 7, 5838. (h) Liu, D.; Dang, L.; Sun, Y.; Chan, H.-S.; Lin, Z.; Xie, Z. Angew. Chem., Int. Ed. 2008, 130, 16103. (i) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem. Soc. 2008, 130, 16103. (i) Lyu, H.; Quan, Y.; Xie, Z. Angew. Chem., Int. Ed. 2016, DOI: 10.1002/anie.201605880. (j) Hoel, E. L.; Talebinasab-Savari, M.; Hawthorne, M. F. J. Am. Chem. Soc. 1977, 99, 4356. (k) Mirabelli, M. G. L.; Sneddon, L. G. J. Am. Chem. Soc. 1988, 110, 449. (l) Cao, K.; Huang, Y.; Yang, J.; Wu, J. Chem. Commun. 2015, 51, 7257. (m) Wu, J.; Cao, K.; Xu, T.-T.; Zhang, X.-J.; Jiang, L.; Yang, J.; Huang, Y. RSC Adv. 2015, 5, 91683.

(7) For stoichiometric cage B-H activation/functionalization of o-C₃B₁₀H₁₂, see: (a) Estrada, J.; Lee, S. E.; McArthur, S. G.; El-Hellani, A.; Tham, F. S.; Lavallo, V. J. Organomet. Chem. 2015, 798, 214. (b) Spokoyny, A. M.; Reuter, M. G.; Stern, C. L.; Ratner, M. A.; Seideman, T.; Mirkin, C. A. J. Am. Chem. Soc. 2009, 131, 9482. (c) Herberhold, M.; Yan, H.; Milius, W.; Wrackmeyer, B. Angew. Chem., Int. Ed. 1999, 38, 3689. (d) Zhang, R.; Zhu, L.; Liu, G.; Dai, H.; Lu, Z.; Zhao, J.; Yan, H. J. Am. Chem. Soc. 2012, 134, 10341. (e) Yao, Z. J.; Yu, W. B.; Lin, Y. J.; Huang, S. L.; Li, Z. H.; Jin, G. X. J.

Am. Chem. Soc. **2014**, *136*, 2825. (f) Fey, N.; Haddow, M. F.; Mistry, R.; Norman, N. C.; Orpen, A. G.; Reynolds, T. J.; Pringle, P. G. *Organometallics* **2012**, *31*, 2907. (g) Eleazer, B. J.; Smith, M. D.; Popov, A. A.; Peryshkov, D. V. *J. Am. Chem. Soc.* **2016**, *138*, 10531.

(8) For selected examples of catalytic B-H activation of $CB_{11}H_{12}^{-7}$, $C_2B_9H_n^{2-7}$ and boranes, see: (a) Hewes, J. D.; Kreimendahl, C. W.; Marder, T. B.; Hawthorne, M. F. *J. Am. Chem. Soc.* **1984**, *106*, 5757. (b) Molinos, E.; Kociok-Köhn, G.; Weller, A. S. *Chem. Commun.* **2005**, 3609. (c) Rojo, I.; Teixidor, F.; Kivekäs, R.; Sillanpää, R.; Viñas, C. *J. Am. Chem. Soc.* **2003**, *125*, 14720. (d) Pender, M. J.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. **2001**, *123*, 12222.

(9) (a) Soloway, A. H.; Tjarks, W.; Barnum, B. A.; Rong, F. G.; Barth, R. F.; Codogni, I. M.; Wilson, J. G. *Chem. Rev.* **1998**, *98*, 1515. (b) Hawthorne, M. F.; Maderna, A. *Chem. Rev.* **1999**, *99*, 3421. (c) Valliant, J. F.; Guenther, K. J.; King, A. S.; Morel, P.; Schaffer, P.; Sogbein, O. O.; Stephenson, K. A. *Coord. Chem. Rev.* **2002**, *232*, 173.

(10) For selected examples, see: (a) Hosmane, N. S.; Maguire, J.
A. Eur. J. Inorg. Chem. 2003, 3989. (b) Xie, Z. Coord. Chem. Rev.
2006, 250, 259. (c) Shen, H.; Xie, Z. J. Am. Chem. Soc. 2010, 132, 11473. (d) Zhu, Y.; Vyakaranam, K.; Maguire, J. A.; Quintana, W.; Teixidor, F.; Viñas, C.; Hosmane, N. S. Inorg. Chem. Commun.
2001, 4, 486.

(11) (a) Barth, R. F. J. Neuro-Oncol. 2003, 62, 1. (b) Hawthorne, M. F.; Lee, M. W. J. Neuro-Oncol. 2003, 62, 33.

(12) (a) Wang, J.; Zhu, Y.; Li, S.; Zheng, C.; Maguire, J. A.; Hosmane, N. S. J. Organomet. Chem. 2003, 680, 173. (b) Lee, Y.-J.; Lee, J.-D.; Jeong, H.-J.; Son, K.-C.; Ko, J.; Cheong, M.; Kang, S. O. Organometallics 2005, 24, 3008. (c) Shen, H.; Chan, H.-S.; Xie, Z. Organometallics 2007, 26, 2694. (d) Xiang, L.; Xie, Z. Chem. Commun. 2014, 50, 8249. (e) Zhao, D.; Zhang, J.; Xie, Z. J. Am. Chem. Soc. 2015, 137, 9423.

(13) For selected reviews, see: (a) Qiu, Z. Tetrahedron Lett. 2015, 56, 963. (b) Qiu, Z.; Ren, S.; Xie, Z. Acc. Chem. Res. 2011, 44, 299. (c) Xie, Z.; Jin, G.-X. Carborane Themed Issue Dalton Trans 2014, 43, 4924. (d) Olid, D.; Núñez, R.; Viñas, C.; Teixidor, F. Chem. Soc. Rev. 2013, 42, 3318. (e) Scholz, M.; Hey-Hawkins, E. Chem. Rev. 2011, 111, 7035.

(14) For C-aminated-o-carboranes, see: (a) Polyakova, L. A.; Bilevich, K. A.; Bregadze, V. I.; Okhlobystin, O. Yu. *Russ. Chem. Bull.* **1972**, *21*, 1846. (b) Kahl, S. B.; Kasar, R. A. *J. Am. Chem. Soc.* **1996**, *118*, 1223. (c) Cheng, R.; Zhang, J.; Zhang, J.; Qiu, Z.; Xie, Z. *Angew. Chem., Int. Ed.* **2015**, *55*, 1751.

(15) Kasar, R. A.; Knudsen, G. M.; Kahl, S. B. *Inorg. Chem.* **1999**, 38, 2936.

(16) (a) Sevryugina, Y.; Julius, R. L.; Hawthorne, M. F. Inorg. Chem. 2010, 49, 10627. (b) Kracke, G. R.; VanGordon, M. R.; Sevryugina, Y.; Kueffer, V. P. J.; Kabytaev, K.; Jalisatgi, S. S.; Hawthorne, M. F. ChemMedChem 2015, 10, 62. (c) Beletskaya, I. P.; Bregadze, V. I.; Kabytaev, K. Z.; Zhigareva, G. G.; Petrovskii, P. V.; Glukhov, I. V.; Starikova, Z. A. Organometallics 2007, 26, 2340. (d) Mukhin, S. N.; Kabytaev, K. Z.; Zhigareva, G. G.; Glukhov, I. V.; Starikova, Z. A.; Bregadze, V. I.; Beletskaya, I. P. Organometallics 2008, 27, 5937. (e) Dziedzic, R. M.; Saleh, L. M. A.; Axtell, J. C.; Martin, J. L.; Stevens, S. L.; Royappa, A. T.; Rheingold, A. L.; Spokoyny, A. M.; J. Am. Chem. Soc. 2016, 138, 9081. For the formation of other cage B-heteratom bonds from B-I bond, see: (f) Leitao, E. M.; Jurca, T.; Manners, I. Nat. Chem. 2013, 5, 817. (g) Kabytaev, K. Z.; Everett, T. A.; Safronov, A. V.; Sevryugina, Y. V.; Jalisatgi, S. S.; Hawthorne, M. F. Eur. J. Inorg. Chem. 2013, 2488. (h) Kabytaev, K. Z.; Safronov, A. V.; Sevryugina, Y. V.; Barnes, C. L.; Jalisatgi, S. S.; Hawthorne, M. F. Inorg. Chem. 2015, 54, 4143.

(17) For selected reviews, see: (a) Louillat, M.-L.; Patureau, F. W. Chem. Soc. Rev. 2014, 43, 901. (b) Shin, K.; Kim, H.; Chang, S. Acc. Chem. Res. 2015, 48, 1040. (c) Lyons, T. W. Sanford, M. S. Chem. Rev. 2010, 110, 1147. (d) Pirnot, M. T.; Wang, Y.-M.; Buchwald, S. L. Angew. Chem., Int. Ed. 2016, 55, 48. (e) Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. (f) Yu, J.-Q. Shi, Z. C-H Activation; Springer: Berlin, 2010.

(18) (a) Zhao, D.; Zhang, J.; Xie, Z. Angew. Chem., Int. Ed. 2014,
53, 8488. (b) Zhao, D.; Xie, Z. Angew. Chem., Int. Ed. 2016, 55, 3166.
(c) Zhao, D.; Xie, Z. Chem. Sci. 2016, 7, 5635.

Journal of the American Chemical Society

