Organic & Biomolecular Chemistry

COMMUNICATION

Check for updates

Cite this: Org. Biomol. Chem., 2019, **17**, 8963

Received 27th August 2019, Accepted 21st September 2019 DOI: 10.1039/c9ob01878f

001. 10.1000/0000

rsc.li/obc

Construction of indazolo[3,2-*a*]isoquinolines *via* [3 + 2] cycloaddition of benzynes[†]

Yue-Kun Li, Ming-Xin Cui, Feng Sha, 🕑 * Qiong Li and Xin-Yan Wu ២ *

A [3 + 2] annulation protocol for the construction of *N*-substituted indazolo[3,2-a]isoquinolines starting from benzynes and *C*,*N*cyclic azomethine imines was developed. A diverse range of highly functionalized products indazolo[3,2-a]isoquinolines featuring an indazole scaffold can be easily accessed *via* a one-step reaction under mild conditions, and they show good anti-proliferative activity on cancer cells.

Introduction

Benzophenanthridine alkaloids are important bioactive natural products. Most of them are known to exhibit potent anti-tumor, anti-inflammatory and bacteriostatic activities.¹ In recent years, many research studies have been carried out on the structure-activity relationship of various substituted benzophenanthridines.² Indazolo isoquinoline derivatives have a similar ring system to benzophenanthridine alkaloids, and exhibit diverse biological activities, as shown in previous literature.³ For example, indazolo[3,2-a] isoquinolines have been recognized as an effective DNA intercalator and exhibit anticancer activities.⁴ Moreover, indazolo[3,2-b]isoquinolines (Scheme 1) have been found to inhibit the reverse transcriptase activity of the Moloney leukaemia enzyme and RNA polymerase.⁵ It has been disclosed that indazolo[4,3-gh]isoquinolinones (Scheme 1) exhibit cytotoxic/anti-proliferative activity against different cancer cell lines, namely KB/HeLa (cervical carcinoma), SKOV-3 (ovarian carcinoma), and SF-268 (CNS, glioma).6

E-mail: shaf@ecust.edu.cn, xinyanwu@ecust.edu.cn; Tel: +86-21-64252011

[†]Electronic supplementary information (ESI) available: Detailed experimental procedures, characterization data, copies of NMR spectra for all previously unknown products, and 2D ¹H–¹H NOESY spectra of **3l**, **4b**, **4d** and **4f**. See DOI: 10.1039/c9ob01878f

Ever since the discovery of benzynes in the mid-1950s,¹³ particularly those which can be generated from the corresponding *o*-(trimethylsilyl)aryl triflates,¹⁴ they have emerged as powerful synthons in organic synthesis.¹⁵ The cycloaddition of benzynes with diazo compounds is an attractive route for the construction of the corresponding heterocyclic compounds.¹⁶ Therefore, on the basis of our previous work on benzyne chemistry,¹⁷ we herein describe a convenient method of using benzyne and *C*,*N*-cyclic azomethine imines to construct indazolo[3,2-*a*]iso-quinolines *via* [3 + 2] cycloaddition (Scheme 2d).

View Article Online

School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.

(a) Reddy's work:

Scheme 2 Approaches a-d to synthesize indozolo[3,2-a]isoquinolines.

Results and discussion

Firstly, the reaction of C,N-cyclic azomethine imines 1a with the benzyne precursor 2a was selected as the model reaction.¹⁸ As shown in Table 1, the target product indazolo[3,2-a]isoquinoline (3a) was generated when 1.2 or 2.0 equivalents of the benzyne precursor were used and TBAF was utilized as the fluoride source (Table 1, entries 1 and 2). It was observed that the amount of 2a used affected the yield of 3a. To our delight, the yield of 3a was improved obviously to 91% when the amount of benzyne precursor 2a was increased to 3.0 equivalents (Table 1, entry 3). Further increase of the loading of 2a to 4.0 equivalents led to no obvious change in the yield of 3a (Table 1, entry 4). Meanwhile, two other fluoride sources KF/18-C-6 and CsF were tested, and they both gave 3a in moderate yields (Table 1, entries 5 and 6). It is presumed that the release rate of benzyne did not match well with the reaction under these conditions. Then the effect of temperature on the reaction was investigated. Product 3a was isolated in 85% yield at 0 °C (Table 1, entry 7), and the reaction carried out at 40 °C gave 88% of 3a (Table 1, entry 8). Logically, the conditions described in entry 3 (Table 1) were chosen as the suitable reaction conditions.

88

Table 1 Screening optimal conditions^a

4

8

3.0

^{*a*} Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), F source (0.8 mmol, 4.0 equiv.), and solvent (1.2 mL). ^{*b*} Isolated yield. ^{*c*} 2.0 mL of solvent was used. r.t. = room temperature.

TBAF/THF

40

With the optimal conditions in hand (Table 1, entry 3), we then explored the generality of this [3 + 2] cycloaddition reaction. As shown in Table 2, various C,N-cyclic azomethine imines were prepared and reacted with benzyne precursors, furnishing the desired products (3a-3l) in moderate to good yields. As for azomethine imine 1e with the methyl group at the 8-position, only 9% of 3e (Table 2) was isolated, even with a prolonged reaction time. We speculated that it was probably due to the methyl steric hindrance preventing the reaction partners from coming together. Besides, comparing the effects of different substituents on the 7-position, the methyl substituent of azomethine imine 1b was found to give the corresponding product 3b (Table 2) in 87% yield. The halogen substituted C,N-cyclic azomethine imines also afforded the corresponding compounds in good yields (Table 2, 3f-i). Therefore, the reaction of chloride- and bromide-substituted C,N-cyclic azomethine imines (1f and 1g) furnished higher yields of the corresponding products (3f and 3g). In addition, azomethine imine 1j with a naphthalenyl moiety could also be smoothly converted into the corresponding product 3j with satisfactory yield (71%). Also, the reaction of 4,5-dimethyl benzyne precursor 2b with C,N-cyclic azomethine imine 1a was studied. The corresponding indazolo[3,2-a]isoquinoline product 3k was successfully isolated in 82% yield.

Considering that indazolo isoquinolines are important compounds for anti-cancer activities,¹⁹ the debenzoylation reaction of **3a** was further explored in the presence of LiBHEt₃ (Scheme 3). Gratifyingly, 5,6-dihydroindazolo[3,2-*a*]isoquino-lines **4a** were obtained in a perfect yield of 90%.

To disclose the regioselectivity of this [3 + 2] cycloaddition, nonsymmetric benzyne precursors were used. As expected, the reaction of **2c** with *C*,*N*-cyclic azomethine imine **1a** afforded regioisomers **3l** and **3l'** in a 1:1.2 ratio (Scheme 4, eqn (1)). The structure of product **3l** was confirmed by the NOESY study, which indicated that the methyl group was on the same
 Table 2
 Reaction
 scope
 of
 C,N-cyclic
 azomethine
 imines
 and

 benzynes^a

 <t

^{*a*} Reaction conditions: **1a–1j** (0.2 mmol, 1.0 equiv.), **2a–2b** (0.6 mmol, 3.0 equiv.), TBAF (0.8 mmol, 4.0 equiv.), and THF (1.2 mL), at room temperature, under a nitrogen atmosphere. ^{*b*} Isolated yield.

Scheme 3 Debenzoylation of compound 3a.

side of the isoquinoline moiety. To our surprise, the reaction of 3-methoxyl benzyne precursor 2d gave the sole regioisomer 3m (56%, Scheme 4, eqn (2)). The observed excellent regio-selectivity may be attributed to the electron induced effect of the methoxyl group.²⁰ As demonstrated in Scheme 5, when 1a came close to the *o*-methoxy benzyne in the reaction, the isoquinoline moiety and the methoxyl group on the same side were favoured. After debenzoylation of 3m under LiBHEt₃ conditions, the structure of product 4b could be confirmed by the NOESY study (Scheme 4, eqn (2)).

It is interesting that the sole regioisomer **3n** was obtained in 43% yield with the utilization of the *o*-bromo substituted benzyne precursor **2e** (Scheme 6, eqn (3)). The Heck coupling

Scheme 4 Reaction scope of nonsymmetric benzyne precursors 2c and 2d.

Scheme 5 The electronic effect of the reaction of 1a and 2d.

Scheme 6 Reaction scope of nonsymmetric benzyne precursor 2e and the NOESY study of the Heck coupling product 4c.

reaction of the debenzoylated product 4c with methyl acrylate was subsequently conducted, so that the structure of product 4d could be studied by the NOESY analysis (Scheme 6, eqn (4)). The NOESY analysis of 4d showed that the β -H of olefin hydrogen was related to the triplet of the phenyl ring. Therefore, it is confirmed that the bromine substituent of 3nis on the same side of the isoquinoline moiety.

Furthermore, the 1,2-naphthalyne precursor **2f** was also used and it successfully afforded the sole regioisomer product **3o** in 32% yield (Scheme 7, eqn (5)). This may be attributed to the higher steric hindrance of the naphthalene ring. Debenzoylation of **3o** followed by the reaction with methyl trifluoro-methanesulfonate afforded *N*-methyl triflate **4f**. The

Scheme 7 Reaction scope of nonsymmetric benzyne precursor 2f and the NOESY study of product 4f.

NOESY study of **4f** indicated that the naphthalene ring was on the same side of the isoquinoline moiety (Scheme 7, eqn (6)).

To further explore the [3 + 2] cycloaddition, it is proposed that the addition of the conjugated structure may also yield the corresponding product under the same conditions. Thus, isoquinolinium imide **1k** was employed to react with the benzyne precursor **2a**. The reaction proceeded smoothly under the optimal conditions and afforded the target product **3p** in excellent yield (92%, Scheme 8).

After obtaining a series of indazolo[3,2-*a*]isoquinolines (3 and 4), we mainly investigated their anti-proliferative activities on human NSCLC NCI-H460⁶ and colon carcinoma cells HCT-116^{17*c*} using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.²¹ As shown in Table 3, the anti-proliferative activities of **3a**, **3p** and **4a** were demonstrated. The concentration of the compound that inhibited 50% (IC₅₀) of cell viability after 48 h was calculated by non-linear regression (GraphPad PrismTM).²² Compound **3p** showed good inhibitory activity on NCI-H460 (IC₅₀ = 163.5 µmol L⁻¹), but weak cytotoxicity on HCT-116. The apoptosis rate of NCI-H460 was fast when the concentration of compound **3p** was between 0 and 100 µmol L⁻¹ (Fig. 1). It was interesting to observe that **4a** exhibited excellent anti-proliferative activities

Scheme 8 Reaction of *N*-benzoyl isoquinolinium imide 1l with the benzyne precursor 2a.

Table 3 Anti-proliferative activities on NCI-H460 and HCT-116 (IC $_{50}/\mu$ M)

Compound	NCI-H460	HCT-116
3a	412.9	1476
3р	163.5	1463
4a	218.9	126.9

Fig. 1 Cell toxicity of 3p on NCI-H460 and HCT-116.

Fig. 2 Cell toxicity of 4a on NCI-H460 and HCT-116.

Fig. 3 Cell toxicity of 3a on NCI-H460 and HCT-116.

on two kinds of cancer cells, and showed a better effect on HCT-116 (IC₅₀ = 126.9 μ mol L⁻¹). Both cancer cell lines were almost dead when the concentration of **4a** reached 400 μ mol L⁻¹ (Fig. 2). We speculated that the structural change of the dihydroisoquinoline moiety might be responsible for the increased bioactivity. Compound **3a** was found to show weak inhibitory activity on both the cancer cell lines (Fig. 3).

Conclusions

In summary, we have developed a benzyne-based strategy for the synthesis of indazolo[3,2-*a*]isoquinolines. *Via* this one-step approach, a diverse range of highly functionalized isoquinolines featuring an indazole scaffold can be easily obtained in moderate to good yields with high regioselectivity under mild conditions. Furthermore, debenzoylation reaction could smoothly furnish indazolo isoquinolines in excellent yields. Good proliferative activities were observed towards cancer cell lines NCI-H460 and HCT-116. This novel synthetic approach provides an efficient access to indazolo[3,2-*a*]isoquinoline derivatives with biological activity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We are grateful for financial support from the Shanghai Pujiang Program (18PJD010), the Natural Science Foundation of Shanghai (19ZR1412300), and the Fundamental Research Funds for the Central Universities (222201814019).

Notes and references

- (a) T. Tshikawa, Med. Res. Rev., 2001, 21, 61; (b) I. Kock, D. Heber, M. Weide, U. Wolschendorf and B. Clement, J. Med. Chem., 2005, 48, 2772; (c) Z. Dvořák, V. Kubáň, B. Klejdus, J. Hlaváč, J. Vičar, J. Ulrichová and V. Šimánek, Heterocycles, 2006, 68, 2403; (d) A. D. Yapi, N. Desbois, J. M. Chezal, O. Chavignon, J. C. Teulade, A. Valentin and Y. Blache, Eur. J. Med. Chem., 2010, 45, 2854; (e) H. Tsukamoto, S. Kondo, Y. Mukudai, T. Nagumo, A. Yasuda, Y. Kurihara, T. Kamatani and S. Shintani, Anticancer Res., 2011, 31, 2841; (f) N. Hatae, E. Fujita, S. Shigenobu, S. Shimoyama, Y. Ishihara, Y. Kurata, T. Choshi, T. Nishiyama, C. Okada and S. Hibino, Bioorg. Med. Chem. Lett., 2015, 25, 2749.
- 2 (a) A. L. Ruchelman, S. K. Singh, X. Wu, A. Ray, J. M. Yang, T. K. Li, A. Liu, L. F. Liu and E. LaVoie, *Bioorg. Med. Chem.*, 2003, **11**, 2061; (b) E. Kiselev, T. S. Dexheimer, Y. Pommier and M. Cushman, *J. Med. Chem.*, 2010, **53**, 8716; (c) I. Kmentova, H. S. Sutherland, B. D. Palmer, A. Blaser, S. G. Franzblau and B. Wan, *J. Med. Chem.*, 2010, **53**, 8421; (d) T. L. S. Kishbaugh, *J. Heterocycl. Chem.*, 2014, **26**, 349.
- 3 (a) K. Umei, Y. Nishigaya, A. Kondo, K. Tatani, N. Tanaka, Y. Kohno and S. Seto, *Bioorg. Med. Chem.*, 2017, 25, 2635;
 (b) A. P. Krapcho, A. E. Menta, R. Oliva, L. Domenico, M. E. Fiocchi, C. E. Maresch, M. P. Gallagher, G. Hacker, F. C. Beggiolin and G. Giuliani, *J. Med. Chem.*, 1998, 41, 5429; (c) D. Catarzi, V. Colott and F. Varano, *Arch. Pharm. Med. Chem.*, 1997, 330, 383.
- 4 S. D. Phillips and R. N. Castle, *J. Heterocycl. Chem.*, 1980, 17, 1489.
- 5 G. Timári, T. Soós, G. Hajós, A. Messmer, J. Nacsa and J. Molnár, *Bioorg. Med. Chem. Lett.*, 1996, **6**, 2831.
- 6 M. Shahabi, E. Schirmer, K. Shanab, T. Leepasert, J. Ruzicka, W. Holzer, H. Spreitzer, B. Aicher, P. Schmidt, L. Blumenstein, G. Müller and E. Günther, *Bioorg. Med. Chem. Lett.*, 2013, 23, 1846.
- 7 (a) Q. Z. Zheng, P. Feng, Y. F. Liang and N. Jiao, Org. Lett., 2013, 15, 4262; (b) M. D. Angelis, F. Stossi, K. A. Carlson, B. S. Katzenellenbogen and J. A. Katzenellenbogen, J. Med. Chem., 2005, 48, 1132; (c) B. Roy and P. Hazra, J. Mol. Liq., 2018, 261, 520.

8 (a) Y. Yoshiro, H. Takashi and M. Mitsuo, *Chem. Lett.*, 1980,
9, 1133; (b) W. Lin, M. H. Hu, X. Feng, C. P. Cao,
C. P. Huang and D. P. Shi, *Tetrahedron*, 2013, 69, 6721;
(c) J. Zhao, P. Li, C. Wu, H. Chen, W. Ai, R. Sun, H. Ren,
R. C. Larock and F. Shi, *Org. Biomol. Chem.*, 2012, 10, 1922.

View Article Online

Communication

- 9 Y. P. Reddy, G. S. Reddy and K. K. Reddy, *Indian J. Chem.*, *Sect. B: Org. Chem. Incl. Med. Chem.*, 1977, **12**, 1133.
- 10 S. P. Stanforth, J. Heterocycl. Chem., 1987, 24, 531.
- 11 C. Y. Kuo and M. J. Wu, J. Chin. Chem. Soc., 2005, 52, 965.
- 12 J. Balog, Z. Riedl and G. Hajós, *Tetrahedron Lett.*, 2013, 54, 5338.
- 13 J. D. Roberts, H. E. Simmons, L. A. Carlsmith and C. W. Vaughan, J. Am. Chem. Soc., 1953, 75, 3290.
- 14 (a) H. Yoshio, S. Takaaki and K. Hiroshi, Chem. Lett., 1983,
 12, 1211; (b) H. H. Wenk, M. Winkler and W. Sander, Angew. Chem., Int. Ed., 2003, 42, 502; (c) J. G. Radziszewski,
 B. A. Hess and R. Zahradnik, J. Am. Chem. Soc., 1992, 114,
 52; (d) A. M. Orendt, J. C. Facelli, J. G. Radziszewski,
 W. J. Horton, D. M. Grant and J. Michl, J. Am. Chem. Soc.,
 1996, 118, 846; (e) R. Warmuth, Chem. Commun., 1998, 1,
 59; (f) P. G. Wenthold, R. R. Squires and W. C. Lineberger, J. Am. Chem. Soc., 1998, 120, 5279.
- 15 (a) S. M. Bronner, A. E. Goetz and N. K. Garg, J. Am. Chem. Soc., 2011, 133, 3832; (b) A. D. Huters, K. W. Quasdorf, D. E. Styduhar and N. K. Garg, J. Am. Chem. Soc., 2011, 133, 15797; (c) A. E. Goetz, A. L. Silberstein, M. A. Corsello and N. K. Garg, J. Am. Chem. Soc., 2014, 136, 3036; (d) P. Gouthami, R. Chegondi and S. Chandrasekhar, Org. Lett., 2016, 18, 2044; (e) R. Karmakar and D. Lee, Org. Lett., 2016, 18, 6105; (f) L. J. Zhou, H. J. Li, W. G. Zhang and L. Wang, Chem. Commun., 2018, 54, 4822; (g) J. Antonio, G. López and M. F. Greaney, Chem. Soc. Rev., 2016, 45, 6766; (h) Y. Y. Li, D. C. Qiu, R. R. Gu, J. L. Wang, J. R. Shi and Y. Li, J. Am. Chem. Soc., 2016, 138, 10814; (i) S. P. Ross and T. R. Hoye, Nat. Chem., 2017, 9, 523; (j) B. Kalvacherla, S. Batthula, S. Balasubramanian and R. K. Palakodety, Org. Lett., 2018, 20, 3824.
- 16 For reviews of aryne chemistry, see: (a) A. V. Dubrovskiy, N. A. Markina and R. C. Larock, Org. Biomol. Chem., 2013, 11, 191; (b) H. Pellissier and M. Santelli, Tetrahedron, 2003, 59, 701; (c) H. Yoshida, J. Ohshita and A. Kunai, Bull. Chem. Soc. Jpn., 2010, 83, 199; (d) A. Bhunia, S. R. Yetra and A. T. Biju, Chem. Soc. Rev., 2012, 41, 3140; (e) C. R. Wu and F. Shi, Asian J. Org. Chem., 2013, 2, 116; (f) C. M. Gampe and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 3766; (g) P. M. Tadross and B. M. Stoltz, Chem. Rev., 2012, 112, 3550; (h) D. Pena, D. Perez and E. Guitian, Angew. Chem., Int. Ed., 2006, 45, 3579; (i) H. Yoshida and K. Takaki, Synlett, 2012, 23, 1725; (*j*) C. Chen, Y. Hao, T. Y. Zhang, J. L. Pan, J. Ding, H. Y. Xiang, M. Wang, T. M. Ding, A. Duan and S. Y. Zhan, Chem. Commun., 2019, 55, 755; (k) J. Zhao, H. J. Li, P. H. Li and L. Wan, J. Org. Chem., 2019, 84, 9007; (1) T. Y. Zhang, J. B. Lin, Q. Z. Li, J. C. Kang, J. L. Pan, S. H. Hou, C. Chen and S. Y. Zhang, Org. Lett., 2017, 19, 1764; (m) T. Y. Zhang, C. Liu, C. Chen, J. X. Liu, H. Y. Xiang, W. Jiang, T. M. Ding and S. Y. Zhang, Org. Lett., 2018, 20, 220.

Organic & Biomolecular Chemistry

- 17 (a) C. Y. Tang, G. Wang, X. Y. Yang, X. Y. Wu and F. Sha, *Tetrahedron Lett.*, 2014, 55, 6447; (b) Y. Tao, F. Zhang, C. Y. Tang, X. Y. Wu and F. Sha, *Asian J. Org. Chem.*, 2014, 3, 1292; (c) F. Sha, Y. Tao, C. Y. Tang, F. Zhang and X. Y. Wu, *J. Org. Chem.*, 2015, 80, 8122; (d) X. J. Huang, Y. Tao, Y. K. Li, X. Y. Wu and F. Sha, *Tetrahedron*, 2016, 72, 8565; (e) J. Yuan, X. Y. Wu and F. Sha, *Eur. J. Org. Chem.*, 2016, 2929; (f) F. Sha, S. Hui and X. Y. Wu, *Eur. J. Org. Chem.*, 2013, 2537; (g) X. Q. Feng, F. Zhang, X. P. He, G. R. Chen, X. Y. Wu and F. Sha, *RSC Adv.*, 2016, 79, 75162; (h) C. Y. Tang, X. Y. Wu, F. Sha, F. Zhang and H. Li, *Tetrahedron Lett.*, 2014, 55, 1036; (i) F. Sha, W. L. Ling and X. Huang, *J. Org. Chem.*, 2012, 77, 3754; (j) F. Sha and X. Huang, *Angew. Chem.*, 2009, 121, 3510; (k) X. Huang, F. Sha and J. W. Tong, *Adv. Synth. Catal.*, 2010, 352, 379.
- 18 (a) L. D. Zhang, J. K. Qiu, L. F. Kong, W. J. Hao, J. N. Miao, S. Wu, B. Jiang and S. J. Tu, *RSC Adv.*, 2015, 5, 75569;
 (b) C. Izquierdo, F. Esteban, A. Parra, R. Alfaro, J. Aleman, A. Fraile, J. Luis and G. Ruano, *J. Org. Chem.*, 2014, **79**, 10417; (c) P. Yuvaraj and B. S. R. Reddy, *Tetrahedron Lett.*, 2014, **55**, 806; (d) Y. Fang, S. Y. Wang and S. J. Ji, *Tetrahedron*, 2015, **71**, 2768; (e) D. H. Chang, D. Zhu and L. Shi, *J. Org. Chem.*, 2015, **80**, 5928; (f) J. W. Shin, J. Lee, D. Ko, N. De and E. J. Yoo, *Org. Lett.*, 2017, **19**, 2901; (g) T. L. Yao, B. Ren, B. Wang and Y. Zhao, *Org. Lett.*, 2017, **19**, 3135; (h) W. C. Ye, L. J. Zhang, C. F. Ni, J. Rong and J. Hu, *Chem. Commun.*, 2014, **50**, 10596.

- 19 (a) N. P. Lei, Y. H. Fu and X. Q. Zhu, Org. Biomol. Chem., 2015, 13, 11472; (b) C. E. Galvis and V. V. Kouzentsov, Synthesis, 2017, 49, 4535; (c) K. Umei, Y. Nishigaya, A. Kondo, K. Tatani, N. Tanaka, Y. Kohno and S. Seto, Bioorg. Med. Chem., 2017, 25, 2635.
- 20 S. Yoshida, K. Uchida, K. Igawa, K. Tomooka and T. Hosoya, *Chem. Commun.*, 2014, **50**, 15059.
- 21 (a) T. Mosmann, J. Immunol. Methods, 1983, 65, 55;
 (b) J. Carmichael, W. G. Degraff and A. F. Gazdar, Cancer Res., 1987, 47, 936; (c) A. W. Burton, J. Am. Chem. Soc., 2007, 129, 7627.
- 22 Measurement of the cellular cytotoxic/anti-proliferative activity is based on the MTT assay. The cells were seeded in the respective growth medium recommended by the supplier in 125 µL per 96 well and were grown for 24 h at 37 °C/5% CO₂. Cell numbers were adapted for each cell line to generate signals in the linear detection range under the experimental conditions applied. After 48 h of compound incubation at 37 °C/5% CO2, 200 µL of the new culture medium and 20 µL of 0.5% MTT storage liquid were added for an additional 4 h. After adding 100 µL of DMSO per hole and rapidly oscillating for 60 s, using an enzyme labeling instrument, the absorbance values were detected at 492 nm and 630 nm. The cell survival rate was calculated according to the absorbance value. The difference in cell viability between different concentrations was detected by Student's t-test.