

Note

Subscriber access provided by United Arab Emirates University | Libraries Deanship

Acid-Catalyzed Multicomponent Tandem Double Cyclization: A One-pot, Metal-free Route to Synthesize Polyfunctional 4,9-Dihydropyrrolo[2,1-b]quinazolines

Qun Cai, Deng-Kui Li, Rong-Rong Zhou, Shi-Yi Zhuang, Jin-Tian Ma, Yan-Dong Wu, and An-Xin Wu J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.6b01660 • Publication Date (Web): 09 Aug 2016 Downloaded from http://pubs.acs.org on August 10, 2016

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Acid-Catalyzed Multicomponent Tandem Double Cyclization: A One-pot, Metal-free Route to Synthesize Polyfunctional 4,9-Dihydropyrrolo[2,1-*b*]quinazolines

Qun Cai, Deng-Kui Li, Rong-Rong Zhou, Shi-Yi Zhuang, Jin-Tian Ma, Yan-Dong Wu*, and An-Xin Wu*

Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China

E-mail: chwuyd@mail.ccnu.edu.cn (Y. -D. Wu); chwuax@mail.ccnu.edu.cn (A. -X. Wu)

TOC Graphic:

Abstract: An acid-catalyzed multicomponent tandem double cyclization protocol has been developed for the synthesis of polyfunctional 4,9-dihydropyrrolo[2,1-*b*]quinazolines from simple and readily available arylglyoxal monohydrates, 2-aminobenzylamine, and *trans-* β -nitrostyrenes. This practical and metal-free reaction proceeds through an imine formation/cyclization/Michael addition/Henry cyclization protocol, resulting in the construction of four new bonds and two ring moieties directly in one pot.

The straightforward construction of fused N-heterocyclic scaffolds is an important and ongoing research area in organic synthesis due to their presence in drugs and functional materials.¹ Among them, 4,9-dihydropyrrolo[2,1-*b*]quinazoline is one of the privileged structural motifs in heteropolycyclic systems, and its derivatives can be found in numerous natural products and biologically active

molecules such as vasicoline (I),² vasicine (II),³ batracylin (III),⁴ and antimicrobial molecule $(IV)^5$ (Figure 1).

Figure 1. Selected natural products and biologically active compounds with a 4,9-dihydropyrrolo[2,1-b]quinazoline moiety.

Due to the importance and utility of 4,9-dihydropyrrolo[2,1-b]quinazoline derivatives, a simplified synthesis of this heteropolycyclic system offers great value. To the best of our knowledge, however, only a few approaches have been reported thus far to construct this novel structure. In 2011, Stephens and co-workers exploited a Pd-catalyzed intramolecular C-N coupling reaction for the synthesis of 4,9-dihydropyrrolo[2,1-b]quinazolines from prefabricated 2-aminopyrroles having a 2-bromobenzyl group at the N-1 position (Scheme 1a).⁶ In addition, the Zhao group reported a Cu-catalyzed Ullmann-type coupling reaction for the synthesis of 5.12-dihydroindolo[2,1-b]quinazolines through a sequential C-C and C-N bond formation from N-(2-bromobenzyl)-2-iodoanilines and acetonitriles substituted with electron-withdrawing groups under an argon condition (Scheme 1b).⁷ Despite these limited examples, the development of new and practical synthetic strategies, especially metal-free pathways, access polyfunctional to 4,9-dihydropyrrolo[2,1-b]quinazolines is highly desirable.

In recent years, tandem cyclization has emerged as a versatile and economical strategy for the synthesis of highly functionalized polycyclic ring systems, which has attracted substantial interest from chemists.⁸⁻¹⁴ In particular, tandem double cyclization has found wide applications in total synthesis of natural products because of its advantages in unparalleled efficiencies, reducing the reaction steps and waste production.¹⁵⁻¹⁶ In continuation of our efforts to synthesize heterocycles using tandem

cyclization methods,¹⁷ we herein report a new acid-catalyzed multicomponent reaction to construct polysubstituted 4,9-dihydropyrrolo[2,1-*b*]quinazolines from readily available arylglyoxal monohydrates, 2-aminobenzylamine, and *trans-\beta*-nitrostyrenes in a single operation (Scheme 1c). Notably, this work represents a fascinating approach for the direct construction of three C–N bonds and one C–C bond via tandem double cyclization in a single step without any metal additives.

Our initial investigations of the tandem double cyclization reaction focused on optimizing the reaction conditions of phenylglyoxal monohydrate **1a**, 2-aminobenzylamine **2**, and *trans-* β -nitrostyrene **3a** in the presence of different Brønsted acids and solvents. To our delight, the reaction proceeded to give the desired product **4a** in 30% yield when it was conducted in methanol with 30 mol % of CF₃SO₃H (Table 1, entry 1). Thus, we screened a series of solvents, including *i*-PrOH, CHCl₃, CH₃CN, 1,4-dioxane, THF, DMF, and DMSO (Table 1, entries 2–8), and DMSO was shown to be the most effective for this reaction. Based on this encouraging result, we then evaluated several other acids, but none of these performed any better than CF₃SO₃H (Table 1, entries 9–13). After screening several different amounts of CF₃SO₃H, we found that 30 mol % of CF₃SO₃H was still the most suitable for the reaction (Table 1, entries 14–18 vs entry 8). Moreover, the yield decreased slightly when the reaction was performed at a lower or higher temperature (Table 1, entries 19–22).

Table 1. Optimization of the Reaction Conditions^a

				Γ
	H + NH2 +		acid ent, temp	
1a	2	3a		4a
entry	solvent	acid (mol %)	temp (°C)	yield ^b (%)
1	MeOH	CF ₃ SO ₃ H(30)	65	30
2	i-PrOH	CF ₃ SO ₃ H(30)	80	48
3	CHCl ₃	CF ₃ SO ₃ H(30)	40	10
4	CH ₃ CN	CF ₃ SO ₃ H(30)	80	28
5	1,4-dioxane	CF ₃ SO ₃ H(30)	100	16
6	THF	CF ₃ SO ₃ H(30)	66	12
7	DMF	CF ₃ SO ₃ H(30)	100	76
8	DMSO	CF ₃ SO ₃ H(30)	100	88
9	DMSO	$CH_3SO_3H(30)$	100	70
10	DMSO	$CH_3CO_2H(30)$	100	82
11	DMSO	CF ₃ CO ₂ H(30)	100	68
12	DMSO	TsOH(30)	100	74
13	DMSO	HCl(30)	100	62
14	DMSO	-	100	trace
15	DMSO	CF ₃ SO ₃ H(10)	100	35
16	DMSO	CF ₃ SO ₃ H(60)	100	75
17	DMSO	CF ₃ SO ₃ H(120)	100	trace
18	DMSO	CF ₃ SO ₃ H(150)	100	trace
19	DMSO	CF ₃ SO ₃ H(30)	r.t.	50
20	DMSO	$CF_3SO_3H(30)$	60	56
21	DMSO	CF ₃ SO ₃ H(30)	80	70
22	DMSO	CF ₂ SO ₂ H(30)	120	73

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv), **2** (0.24 mmol, 1.2 equiv), **3a** (0.2 mmol, 1.0 equiv), and acid (x mol %) were heated in 2 mL of solvent in a sealed tube for 3 h. ^{*b*}Isolated yields.

With the optimized conditions in hand, the substrate scope of arylglyoxal monohydrate (1) was explored. It is noteworthy that the reaction demonstrated a wide tolerance for diverse substituents of arylglyoxal monohydrates. As shown in Scheme 2, arylglyoxals bearing electron-neutral (4-H, 4-Me), electron-rich (4-OMe, 3-OMe), and electron-deficient (3-NO₂) substituents were smoothly converted to the corresponding products in moderate to excellent yields (76–90%; **4a**–**4e**). Gratifyingly, halo-substituted (4-Cl, 4-Br, 3-Br) arylglyoxals were also found to furnish the corresponding products in excellent yields (82–87%; **4f**–**4h**), which provided the possibility for further functionalization. Additionally, heterocyclic (2-thiophenyl and 3-thiophenyl) and sterically hindered (1-naphthyl and 2-naphthyl) arylglyoxals were found to be suitable for this transformation (70–80%; **4i–4l**). Furthermore, the structure of **4b** was unambiguously confirmed by X-ray diffraction analysis (see the Supporting Information).

^aReaction conditions: **1** (0.3 mmol), **2** (0.36 mmol), **3a** (0.3 mmol), and CF_3SO_3H (0.09 mmol) were heated in 3 mL of DMSO in a sealed tube for 3 h. ^bIsolated yields.

Encouraged by the results described above, the scope of aryl-substituted nitroolefins (**3**) was subsequently examined (Scheme 3). Much to our satisfaction, the electronic properties of the aryl-substituents on the nitroolefins were shown to have little influence on the efficiency of this reaction. In general, electron-neutral (4-Me), electron-rich (4-OMe, 4-OH), and halogenated (4-F, 2-Cl, 2,4-Cl₂, 2-Br) groups were all found compatible under the optimal reaction conditions with excellent yields (72–85%; **4m–4s**). Sterically hindered (1-naphthyl) nitroolefin was also tolerated in this reaction to afford the desired product **4t** in 74% yield. Furthermore, methyl-, bromo-, 3-thiophenyl-, and 2-naphthyl-substituted arylglyoxal monohydrates reacted smoothly with 2-aminobenzylamine and methyl- or methoxyl-substituted nitrostyrene to obtain the corresponding products in moderate yields (68–86%; **4u–4x**).

Scheme 3. Scope of Nitroolefins and Arylglyoxal Monohydrates^{*a,b*}

^{*a*}Reaction conditions: **1** (0.3 mmol), **2** (0.36 mmol), **3** (0.3 mmol), and CF_3SO_3H (0.09 mmol) were heated in 3 mL of DMSO in a sealed tube for 3 h. ^{*b*}Isolated yields.

To gain some insight into the mechanism of this reaction, a series of control experiments were performed as shown in Scheme 4. When phenylglyoxal monohydrate 1a reacted with 2-aminobenzylamine 2 under the standard conditions for 0.5 h, 1,2,3,4-tetrahydroquinazoline **B** was obtained in 15% yield together with large amounts of quinazoline 5 (Scheme 4a). Then, the treatment of \mathbf{B} and *trans-\beta*-nitrostyrene **3a** under the standard conditions directly generated the target product 4a in 85% yield (Scheme 4b). These results implied that B was the key intermediate for this reaction. To further demonstrate the reaction order of three substrates, 2 and 3a were first subjected to the reaction under the standard conditions for 2 h, then 1a was added into the mixture; however, the target product 4a was not obtained, which excluded the reaction order of (2 + 3a) + 1a (Scheme 4c). Furthermore, when this reaction was conducted under an argon condition, the desired product 4a was isolated in 13% yield along with a possible unstable intermediate D detected by MS (Scheme 4d). In contrast, when this reaction was conducted under an oxygen condition, 4a was still isolated in a low yield accompanying the byproduct 5 in 41% yield (Scheme 4e), which indicated that a large amount of oxygen is unfavorable to the smooth transformation of the reaction.

Based on the above results and previous reports,¹⁷⁻¹⁹ a possible mechanism for the formation of polyfunctional 4,9-dihydropyrrolo[2,1-*b*]quinazolines 4 was presented in Scheme 5 (4a as an example). Initially, phenylglyoxal monohydrate 1a transformed to the corresponding dehydrated species 1a', which was protonated to form 1a'' in acid condition. Subsequently, 1a'' reacted with 2-aminobenzylamine 2 to afford imine intermediate A. Then, intramolecular cyclization of intermediate A led to the formation of intermediate B. Afterward, Michael addition of intermediate B to *trans-β*-nitrostyrene 3a furnished intermediate C, which straightly underwent intramolecular Henry cyclization to form intermediate D. Finally, D went through oxidative aromatization to give the desired product 4a.

Scheme 5. Possible Mechanism

ACS Paragon Plus Environment

To further make this reaction more attractive in terms of synthetic practicality, a gram-scale synthesis of 4,9-dihydropyrrolo[2,1-*b*]quinazolines (**4a**) was carried out. To our great pleasure, the reaction proceeded well and the desired product **4a** was isolated in 80% yield (Scheme 6).

Scheme 6. Gram-scale Experiment of Product 4a

In conclusion, we have developed a highly efficient multicomponent tandem double cyclization protocol for the synthesis of polyfunctional 4,9-dihydropyrrolo[2,1-*b*]quinazolines from simple and readily available starting materials in one pot. This method features in the consecutive construction of four new bonds and two rings under metal-free conditions. This reaction represents a highly efficient and convenient methodology for the synthesis of diversely substituted heteropolycyclic scaffolds under mild conditions.

Experimental Section

General Methods.

Unless otherwise stated, all starting materials and catalysts were obtained from commercial suppliers and used without further purification. All new compounds were fully characterized. TLC analysis was performed using precoated glass plates. Column chromatography was performed using silica gel (200–300 mesh). IR spectra were recorded as KBr pellets with absorption in cm⁻¹. ¹H spectra were recorded with 600/400 MHz spectrometers and resonances (δ) are given in ppm relative to TMS (internal standard). ¹³C spectra were recorded with 150/100 MHz NMR spectrometers. HRMS were obtained on a 7.0T FTMS equipped with ESI or APCI. Melting points were determined using an electrothermal capillary melting point apparatus and not corrected.

General Procedures for the Synthesis of the Products 4 (4a as an example)

The Journal of Organic Chemistry

A mixture of phenylglyoxal monohydrate **1a** (46 mg, 0.3 mmol), 2-aminobenzylamine **2** (44 mg, 0.36 mmol), *trans-β*-nitrostyrene **3a** (45 mg, 0.3 mmol), and CF₃SO₃H (14 mg, 0.09 mmol) was heated at 100 °C in 3 mL of DMSO in a sealed tube for 3 h till almost completed conversion of the substrates by TLC analysis, then extracted with EtOAc three times (3×50 mL). The extract was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5/1) to afford the product **4a**.

Experimental Procedure for Preparation of B and 5

A mixture of phenylglyoxal monohydrate **1a** (76 mg, 0.5 mmol), 2-aminobenzylamine **2** (73 mg, 0.6 mmol), and CF₃SO₃H (23 mg, 0.15 mmol) was heated at 100 °C in 3 mL of DMSO in a sealed tube for 0.5 h till almost completed conversion of the substrates by TLC analysis, then extracted with EtOAc three times (3×50 mL). The extract was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 10/1) to afford **B** and **5**.

Gram Scale Reaction for product 4a

A mixture of phenylglyoxal monohydrate **1a** (760 mg, 5 mmol), 2-aminobenzylamine **2** (732 mg, 6 mmol), *trans-β*-nitrostyrene **3a** (745 mg, 5 mmol), and CF₃SO₃H (225 mg, 1.5 mmol) was heated at 100 °C in 50 mL of DMSO in a sealed tube for 5 h till almost completed conversion of the substrates by TLC analysis, then extracted with EtOAc three times (3×100 mL). The extract was dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by column chromatography on silica gel (eluent: petroleum ether/EtOAc = 5/1) to afford the product **4a**.

Analytical Data for Products 4, B and 5

2-nitro-1,3-diphenyl-4,9-dihydropyrrolo[2,1-b]quinazoline (4a). Yield: 88% (97 mg);

Yellow solid; m.p. 98–100 °C; ¹H NMR (DMSO- d_6 , 600 MHz): δ 8.93 (s, 1H), 7.58 (d, J = 6.0 Hz, 2H), 7.52 (d, J = 6.6 Hz, 3H), 7.44 (t, J = 7.2 Hz, 2H), 7.40–7.28 (m, 3H), 7.19–6.99 (m, 3H), 6.79 (t, J = 7.2 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz): δ 136.6, 131.7, 131.4, 130.9, 130.2, 129.5, 129.0, 128.8, 128.32, 128.28, 128.1, 127.4, 126.9, 126.4, 119.9, 114.8, 114.2, 96.3, 44.1; IR (KBr):, 3410, 3056, 2924, 2858, 1621, 1587, 1547, 1492, 1345, 1250, 844, 763, 700 cm⁻¹; HRMS (APCI): m/z [M + H]⁺ calcd for C₂₃H₁₈N₃O₂: 368.1394; found: 368.1398.

2-nitro-1-phenyl-3-(*p*-tolyl)-4,9-dihydropyrrolo[2,1-*b*]quinazoline (4b). Yield: 86% (98 mg); Yellow solid; m.p. 203–205 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.54–7.46 (m, 5H), 7.34–7.26 (m, 4H), 7.15 (t, *J* = 7.8 Hz, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 6.87 (t, *J* = 7.8 Hz, 1H), 6.68 (d, *J* = 7.8 Hz, 1H), 6.36 (s, 1H), 4.84 (s, 2H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 136.7, 136.3, 131.8, 130.7, 129.6, 129.1, 129.0, 128.9, 128.7, 128.6, 128.4, 127.3, 126.9, 120.9, 114.6, 114.3, 110.0, 97.4, 44.6, 21.3; IR (KBr): 3415, 3020, 2919, 2853, 1620, 1588, 1548, 1492, 1344, 1255, 848, 755, 696 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀N₃O₂: 382.1550; found: 382.1556.

3-(4-methoxyphenyl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4c). Yield: 90% (107 mg); Yellow solid; m.p. 152–154 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta 8.85 (s, 1H), 7.60–7.45 (m, 5H), 7.28 (d,** *J* **= 8.4 Hz, 2H), 7.13–7.05 (m, 3H), 7.00 (d,** *J* **= 7.8 Hz, 2H), 6.77 (t,** *J* **= 6.6 Hz, 1H), 4.88 (s, 2H), 3.81 (s, 3H); ¹³C NMR (DMSO-***d***₆, 100 MHz): \delta 158.0, 136.7, 131.6, 131.5, 130.8, 129.4, 129.0, 128.9, 128.3, 128.1, 127.0, 126.9, 123.7, 119.8, 114.7, 114.2, 113.8, 96.1, 55.1, 44.1; IR (KBr): 3405, 3057, 2836, 1624, 1590, 1492, 1468, 1341, 1248, 1178, 1030, 836, 750, 699 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499; found: 398.1497.**

3-(3-methoxyphenyl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4d). Yield: 84% (100 mg); Yellow solid; m.p. 183–185 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta 8.94 (s, 1H), 7.60–7.49 (m, 5H), 7.34 (t,** *J* **= 7.8 Hz, 1H), 7.14–7.09 (m, 2H), 7.08 (d,** *J* **= 7.2 Hz, 1H), 6.94–6.87 (m, 3H), 6.78 (t,** *J* **= 7.8 Hz, 1H), 4.88 (s, 2H), 3.80 (s, 3H); ¹³C NMR (DMSO-***d***₆, 150 MHz): \delta 159.1, 136.6, 132.9, 131.5, 130.8, 129.5, 129.2, 129.0, 128.8, 128.3, 128.1, 127.2, 126.9, 122.6, 119.9, 115.6, 114.8, 114.2, 112.2, 96.2, 54.9, 44.1; IR (KBr): 3362, 3040, 2830, 1618, 1590, 1544, 1485, 1464, 1334, 1256, 757, 702 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499; found: 398.1497.**

2-nitro-3-(3-nitrophenyl)-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4e). Yield: 76% (94 mg); Yellow solid; m.p. 150–152 °C; ¹H NMR (DMSO-d_6, 600 MHz): \delta 9.14 (s, 1H),**

8.23–8.14 (m, 2H), 7.82 (d, J = 7.2 Hz, 1H), 7.73 (t, J = 7.8 Hz, 1H), 7.62–7.51 (m, 5H), 7.17–7.09 (m, 2H), 7.01 (d, J = 7.8 Hz, 1H), 6.82 (t, J = 7.8 Hz, 1H), 4.91 (s, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz): δ 147.8, 137.4, 136.2, 133.6, 130.9, 130.8, 130.3, 129.6, 129.2, 128.6, 128.40, 128.35, 128.2, 127.1, 125.0, 121.3, 120.3, 114.6, 114.2, 94.1, 44.2; IR (KBr): 3379, 2842, 1625, 1589, 1530, 1495, 1345, 1259, 1036, 832, 753, 700 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₇N₄O₄: 413.1244; found: 413.1244.

3-(4-chlorophenyl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4f). Yield: 82% (99 mg); Yellow solid; m.p. 133–135 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta 8.99 (s, 1H), 7.57 (d,** *J* **= 6.6 Hz, 2H), 7.52 (d,** *J* **= 6.0 Hz, 3H), 7.48 (d,** *J* **= 8.4 Hz, 2H), 7.38 (d,** *J* **= 7.8 Hz, 2H), 7.12 (t,** *J* **= 7.8 Hz, 1H), 7.09–7.00 (m, 2H), 6.79 (t,** *J* **= 7.2 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (DMSO-***d***₆, 150 MHz): \delta 136.4, 132.2, 131.1, 130.8, 130.7, 129.8, 129.0, 128.7, 128.3, 128.2, 128.1, 127.7, 127.0, 120.0, 114.7, 114.2, 95.0, 44.1; IR (KBr): 3415, 2922, 1624, 1588, 1547, 1491, 1341, 1257, 1194, 1091, 838, 749, 700 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₃H₁₆ClN₃NaO₂: 424.0823; found: 424.0823.**

3-(4-bromophenyl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4g**). Yield: 87% (116 mg); Yellow solid; m.p. 134–136 °C; ¹H NMR (DMSO-*d*₆, 600 MHz): δ 8.99 (s, 1H), 7.61 (d, *J* = 7.8 Hz, 2H), 7.57 (d, *J* = 6.6 Hz, 2H), 7.54–7.45 (m, 3H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.12 (t, *J* = 7.8 Hz, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.79 (t, *J* = 7.8 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 136.4, 132.4, 131.1, 131.00, 130.97, 130.7, 129.6, 128.9, 128.6, 128.2, 128.0, 127.6, 126.8, 119.9, 119.6, 114.6, 114.1, 95.0, 44.0; IR (KBr): 3404, 3059, 2925, 2856, 1680, 1623, 1587, 1490, 1258, 1195, 833, 749, 698 cm⁻¹; HRMS (ESI): m/z [M + K]⁺ calcd for C₂₃H₁₆BrN₃KO₂: 484.0058; found: 484.0050.

3-(3-bromophenyl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4h**). Yield: 85% (114 mg); Yellow solid; m.p. 157–159 °C; ¹H NMR (DMSO-*d*₆, 600 MHz): δ 9.07 (s, 1H), 7.57 (d, *J* = 6.0 Hz, 2H), 7.55–7.49 (m, 5H), 7.41–7.35 (m, 2H), 7.13 (t, *J* = 7.8 Hz, 1H), 7.08 (d, *J* = 7.8 Hz, 2H), 6.80 (t, *J* = 7.2 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (DMSO-*d*₆, 150 MHz): δ 136.4, 134.3, 132.9, 131.1, 130.8, 130.2, 129.9, 129.5, 129.3, 129.1, 128.7, 128.3, 128.1, 127.8, 127.0, 121.5, 120.1, 114.7, 114.2, 94.9, 44.2; IR (KBr): 3377, 2921, 1622, 1589, 1546, 1494, 1471, 1334, 1260, 854, 753, 703 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₇BrN₃O₂: 446.0499; found: 446.0499.

2-nitro-1-phenyl-3-(thiophen-2-yl)-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4i). Yield: 80% (89 mg); Yellow solid; m.p. 220–222 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): δ 9.03 (s, 1H), 7.62–7.56 (m, 3H), 7.55–7.49 (m, 3H), 7.20–7.11 (m, 4H), 7.04 (d,** *J* **= 7.2 Hz, 1H), 6.79 (t,** *J*

ACS Paragon Plus Environment

= 6.6 Hz, 1H), 4.88 (s, 2H); ¹³C NMR (DMSO- d_6 , 150 MHz): δ 136.3, 132.1, 131.6, 131.0, 130.8, 129.1, 128.7, 128.5, 128.4, 128.2, 127.6, 127.2, 126.9, 126.5, 120.2, 114.9, 114.1, 88.5, 44.2; IR (KBr): 3408, 3101, 1622, 1588, 1549, 1494, 1471, 1357, 1250, 1178, 851, 759 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₁H₁₅N₃NaO₂S: 396.0777; found: 396.0778.

2-nitro-1-phenyl-3-(thiophen-3-yl)-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4j). Yield: 78% (87 mg); Yellow solid; m.p. 264–266 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta 8.86 (s, 1H), 7.60–7.47 (m, 7H), 7.12 (d,** *J* **= 3.6 Hz, 3H), 7.07 (d,** *J* **= 7.8 Hz, 1H), 6.82–6.75 (m,, 1H), 4.87 (s, 2H); ¹³C NMR (DMSO-***d***₆, 150 MHz): \delta 136.5, 131.4, 130.9, 130.8, 129.84, 129.82, 129.0, 128.9, 128.3, 128.1, 127.2, 126.9, 124.9, 123.7, 120.0, 114.8, 114.2, 91.5, 44.1.; IR (KBr): 3411, 3103, 1623, 1590, 1546, 1493, 1471, 1355, 1333, 1250, 757, 699 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₁₆N₃O₂S: 374.0958; found: 374.0957.**

3-(naphthalen-1-yl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4k). Yield: 70% (87mg); Yellow solid; m.p. 163–165 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta8.81 (s, 1H), 8.03–7.93 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.71–7.65 (m, 2H), 7.64–7.45 (m, 7H), 7.12–7.04 (m, 2H), 6.92 (d, J = 7.2 Hz, 1H), 6.81–6.73 (m, 1H), 4.98 (s, 2H); ¹³C NMR (DMSO-***d***₆, 150 MHz): \delta 136.6, 133.5, 133.2, 132.3, 131.0, 130.1, 129.8, 129.1, 129.04, 129.00, 128.3, 128.1, 127.6, 127.5, 127.0, 126.1, 125.9, 125.7, 125.5, 119.8, 114.4, 114.0, 109.6, 93.7, 44.3; IR (KBr): 3404, 3052, 1624, 1588, 1546, 1493, 1254, 1208, 792, 864, 750, 698 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₀N₃O₂: 418.1550; found: 418.1552.**

3-(naphthalen-2-yl)-2-nitro-1-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4l). Yield: 74% (93 mg); Yellow solid; m.p. 137–139 °C; ¹H NMR (CDCl₃, 600 MHz): \delta 7.88–7.80 (m, 4H), 7.51–7.43 (m, 8H), 7.09 (t, J = 7.2 Hz, 1H), 6.93 (d, J = 7.2 Hz, 1H), 6.83 (t, J = 7.8 Hz, 1H), 6.59 (d, J = 7.8 Hz, 1H), 6.49 (s, 1H), 4.80 (s, 2H); ¹³C NMR (CDCl₃, 150 MHz): \delta 136.1, 133.5, 132.2, 131.7, 130.7, 129.5, 129.4, 129.2, 128.8, 128.6, 128.44, 128.37, 128.2, 127.7, 127.6, 127.5, 126.8, 126.1, 125.9, 120.9, 114.5, 114.3, 97.4, 44.6; IR (KBr): 3412, 3053, 1623, 1588, 1493, 1469, 1343, 1250, 1203, 823, 751, 699 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₀N₃O₂: 418.1550; found: 418.1551.**

2-nitro-3-phenyl-1-(*p*-tolyl)-4,9-dihydropyrrolo[2,1-*b*]quinazoline (4m). Yield: 85% (97 mg); Yellow solid; m.p. 201–203 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.46–7.42 (m, 2H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 2H), 7.33–7.28 (m, 3H), 7.12 (t, *J* = 7.2 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.85 (t, *J* = 7.8 Hz, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.41 (s, 1H), 4.82 (s, 2H), 2.43 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 139.2, 136.2, 131.7, 131.6, 130.5, 129.7,

129.1, 129.0, 128.7, 128.6, 127.7, 126.82, 126.79, 125.7, 120.8, 114.5, 114.3, 97.4, 44.6, 21.4; IR (KBr): 3416, 3018, 1620, 1591, 1553, 1502, 1473, 1344, 1256, 1198, 849, 753, 703 cm⁻¹; HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{20}N_3O_2$: 382.1550; found: 382.1559.

1-(4-methoxyphenyl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4n**). Yield: 72% (86 mg); Yellow solid; m.p. 129–131 °C; ¹H NMR (DMSO-*d*₆, 600 MHz): δ 8.90 (s, 1H), 7.50 (d, J = 8.4 Hz, 2H), 7.43 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 7.2 Hz, 2H), 7.32 (t, J =7.2 Hz, 1H), 7.15–7.09 (m, 2H), 7.07 (d, J = 8.4 Hz, 3H), 6.82–6.74 (m, 1H), 4.88 (s, 2H), 3.84 (s, 3H); ¹³C NMR (DMSO-*d*₆, 150 MHz): δ 159.7, 136.7, 132.4, 131.8, 131.4, 130.2, 129.3, 128.3, 128.1, 127.6, 126.9, 126.3, 120.6, 119.9, 114.8, 114.3, 113.7, 96.3, 55.2, 44.1; IR (KBr): 3354, 3052, 2838, 1620, 1588, 1550, 1498, 1468, 1339, 1251, 1030, 848, 760, 701 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₄H₂₀N₃O₃: 398.1499; found: 398.1507.

4-(2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazolin-1-yl)phenol (40).** Yield: 73% (84 mg); Yellow solid; m.p. 252–254 °C; ¹H NMR (DMSO-*d*₆, 600 MHz): δ 9.87 (s, 1H), 8.85 (s, 1H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.35–7.23 (m, 3H), 7.16–7.03 (m, 3H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.79 (t, *J* = 7.2 Hz, 1H), 4.87 (s, 2H); ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 158.1, 136.7, 132.2, 131.8, 131.3, 130.0, 129.1, 128.1, 128.0, 127.9, 126.8, 126.2, 119.8, 118.8, 115.1, 114.7, 114.4, 96.2, 44.0; IR (KBr): 3409, 2843, 1620, 1589, 1551, 1497, 1467, 1342, 1275, 1251, 852, 756, 702 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₈N₃O₃: 384.1343; found: 384.1348.

1-(4-fluorophenyl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4p**). Yield: 84% (97 mg); Yellow solid; m.p. 190–192 °C; ¹H NMR (DMSO-*d*₆, 600 MHz): δ 8.92 (s, 1H), 7.68–7.62 (m, 2H), 7.44 (t, *J* = 7.8 Hz, 2H), 7.40–7.31 (m, 5H), 7.16–7.05 (m, 3H), 6.79 (t, *J* = 7.2 Hz, 1H), 4.89 (s, 2H); ¹³C NMR (DMSO-*d*₆, 150 MHz): δ 162.5 (d, 1*J*C-F = 244.5 Hz), 136.6, 133.31, 133.25, 131.6, 131.5, 130.2, 129.5, 128.3, 128.1, 126.9, 126.4, 126.3, 125.2, 119.9, 115.4, 115.2, 114.8, 114.2, 96.4, 44.1; IR (KBr): 3408, 1622, 1589, 1551, 1499, 1472, 1345, 1235, 853, 759, 702 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₇FN₃O₂: 386.1299; found: 386.1305.

1-(2-chlorophenyl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4q**). Yield: 78% (94 mg); Yellow solid; m.p. 115–117 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.55 (d, *J* = 7.8 Hz, 1H), 7.52–7.36 (m, 7H), 7.34 (t, *J* = 6.6 Hz, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.8 Hz, 1H), 6.86 (t, *J* = 7.8 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 1H), 6.39 (s, 1H), 4.87–4.68 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 135.9, 135.3, 132.6, 132.0, 131.5, 130.9, 129.9, 129.7, 129.3, 128.7, 128.64, 128.61, 127.0, 126.9, 126.8, 124.3, 120.9, 114.3, 114.0, 97.3, 44.2; IR (KBr): 3405, 3057, 1621, 1587, 1547, 1489, 1344, 1255, 1198, 846, 757, 701 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₃H₁₆ClN₃NaO₂: 424.0823; found: 424.0832.

1-(2,4-dichlorophenyl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[2,1-*b***]quinazoline (4r). Yield: 80% (105 mg); Yellow solid; m.p. 144–146 °C; ¹H NMR (CDCl₃, 600 MHz): \delta7.61–7.57 (m, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.45–7.38 (m, 4H), 7.36 (t, J = 7.2 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.90 (t, J = 7.8 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 6.38 (s, 1H), 4.89–4.71 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): \delta136.4, 136.2, 135.9, 133.5, 132.2, 131.3, 130.0, 129.7, 129.6, 128.8, 128.3, 127.4, 127.3, 127.2, 126.9, 122.8, 121.1, 114.4, 113.9, 97.6, 44.3; IR (KBr): 3416, 3052, 2849, 1668, 1622, 1585, 1493, 1338, 1273, 842, 749, 696 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₃H₁₅Cl₂N₃NaO₂: 458.0434; found: 458.0435.**

1-(2-bromophenyl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]**quinazoline** (**4s**). Yield: 76% (102 mg); Yellow solid; m.p. 142–144 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.72 (d, *J* = 7.8 Hz, 1H), 7.55–7.38 (m, 6H), 7.38–7.30 (m, 2H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.86 (t, *J* = 7.8 Hz, 1H), 6.65 (d, *J* = 7.8 Hz, 1H), 6.38 (s, 1H), 4.86–4.66 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 135.9, 132.7, 132.6, 131.7, 131.5, 131.0, 130.8, 129.9, 129.1, 128.7, 128.6, 127.5, 127.0, 126.9, 126.0, 125.4, 120.9, 114.3, 113.9, 97.2, 44.2; IR (KBr): 3424, 1624, 1586, 1548, 1486, 1343, 1255, 1198, 1029, 846, 752, 701 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₁₇BrN₃O₂: 446.0499; found: 446.0502.

1-(naphthalen-1-yl)-2-nitro-3-phenyl-4,9-dihydropyrrolo[**2**,1-*b*]quinazoline (**4t**). Yield: 74% (93 mg); Yellow solid; m.p. 161–163 °C; ¹H NMR (CDCl₃, 600 MHz): δ 8.04–7.84 (m, 2H), 7.63 (d, J = 7.8 Hz, 1H), 7.60–7.53 (m 2H), 7.53–7.35 (m, 6H), 7.35–7.28 (m, 1H), 7.05 (t, J = 6.6 Hz, 1H), 6.84–6.64 (m, 2H), 6.58 (d, J = 7.8 Hz, 1H), 6.46 (s, 1H), 4.74–4.45 (m, 2H); ¹³C NMR (CDCl₃, 150 MHz): δ 135.9, 133.4, 132.7, 131.7, 129.9, 129.8, 129.30, 129.25, 128.7, 128.6, 128.5, 127.1, 126.9, 126.8, 126.7, 126.3, 125.7, 125.2, 124.8, 120.8, 114.2, 114.1, 97.2, 44.1; IR (KBr): 3402, 3053, 1621, 1587, 1541, 1479, 1340, 1256, 860, 787, 750, 700 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₇H₂₀N₃O₂: 418.1550; found: 418.1551.

2-nitro-1,3-di-*p*-tolyl-4,9-dihydropyrrolo[2,1-*b*]quinazoline (4u). Yield: 86% (102 mg); Yellow solid; m.p. 146–148 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.37 (d, J = 7.8 Hz, 2H), 7.32–7.28 (m, 4H), 7.27 (d, J = 7.8 Hz, 2H), 7.14 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.2 Hz, 1H), 6.85 (t, J = 7.8 Hz, 1H), 6.66 (d, J = 7.8 Hz, 1H), 6.36 (s, 1H), 4.83 (s, 2H), 2.44 (s, 3H), 2.40 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 139.2, 136.6, 136.3, 131.7, 130.6, 129.5, 129.1, 128.9, 128.7, 128.6, 127.5, 126.9, 125.8, 120.8, 114.6, 114.2, 109.9, 97.3, 44.6, 21.5, 21.3; IR (KBr): 3425, 2918, 1623, 1591, 1549, 1498, 1463, 1337, 1255, 916, 814, 751, 730 cm⁻¹; HRMS (ESI): m/z [M + Na]⁺ calcd for C₂₅H₂₁N₃NaO₂: 418.1526; found: 418.1534.

3-(4-bromophenyl)-2-nitro-1-(*p***-tolyl)-4,9-dihydropyrrolo[2,1-***b***]quinazoline (4v). Yield: 87% (120 mg); Yellow solid; m.p. 280–282 °C; ¹H NMR (DMSO-***d***₆, 600 MHz): \delta 8.94 (s, 1H), 7.59 (d,** *J* **= 7.8 Hz, 2H), 7.43 (d,** *J* **= 7.8 Hz, 2H), 7.37–7.21 (m, 4H), 7.17–6.98 (m, 3H), 6.78 (t,** *J* **= 7.2 Hz, 1H), 4.86 (s, 2H), 2.40 (s, 3H); ¹³C NMR (DMSO-***d***₆, 150 MHz): \delta 138.5, 136.4, 132.5, 131.1, 131.0, 130.6, 129.6, 128.9, 128.0, 127.8, 126.9, 125.7, 119.9, 119.6, 114.6, 114.1, 95.0, 44.1, 21.0; IR (KBr): 3417, 2918, 1621, 1589, 1551, 1499, 1471,**

1339, 1257, 843, 819, 752 cm⁻¹; HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{24}H_{19}BrN_3O_2$: 460.0655; found: 460.0655.

1-(4-methoxyphenyl)-2-nitro-3-(thiophen-3-yl)-4,9-dihydropyrrolo[2,1-b]quinazoline

(4w). Yield: 70% (85 mg); Yellow solid; m.p. 147–149 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.39 (d, J = 8.4 Hz, 3H), 7.29 (s, 1H), 7.20–7.12 (m, 2H), 7.02 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 7.8 Hz, 1H), 6.87 (t, J = 7.2 Hz, 1H), 6.71 (d, J = 7.8 Hz, 1H), 6.43 (s, 1H), 4.83 (s, 2H), 3.87 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 160.2, 136.3, 132.0, 131.6, 129.5, 129.3, 128.7, 127.5, 126.9, 125.7, 122.4, 120.9, 120.7, 115.1, 114.6, 114.3, 113.9, 92.5, 55.3, 44.6; IR (KBr): 3377, 1620, 1591, 1546, 1502, 1473, 1331, 1251, 1108, 867, 803, 765 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₂H₁₈N₃O₃S: 404.1063; found: 404.1067.

1-(4-methoxyphenyl)-3-(naphthalen-2-yl)-2-nitro-4,9-dihydropyrrolo[2,1-b]quinazoline

(4x). Yield: 68% (91 mg); Yellow solid; m.p. 142–144 °C; ¹H NMR (CDCl₃, 600 MHz): δ 7.88–7.80 (m, 4H), 7.46 (d, J = 6.6 Hz, 3H), 7.39 (d, J = 7.8 Hz, 2H), 7.09 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 7.8 Hz, 2H), 6.95 (d, J = 7.2 Hz, 1H), 6.83 (t, J = 7.2 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.48 (s, 1H), 4.81 (s, 2H), 3.84 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 160.2, 136.3, 133.5, 132.2, 132.1, 131.7, 129.6, 129.2, 128.6, 128.4, 128.2, 127.8, 127.67, 127.65, 127.5, 126.8, 126.1, 125.9, 120.9, 120.6, 114.6, 114.3, 113.9, 97.4, 55.3, 44.6; IR (KBr): 3402, 3050, 2931, 2836, 1622, 1589, 1550, 1467, 1334, 1250, 1177, 821, 747 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₂₈H₂₂N₃O₃: 448.1656; found: 448.1661.

phenyl(1,2,3,4-tetrahydroquinazolin-2-yl)methanone (B). Yield: 15% (18 mg); White solid; m.p. 161–163 °C; ¹H NMR (CD₃OD, 600 MHz): δ 7.94 (d, J = 7.2 Hz, 1H), 7.56 (d, J = 7.8 Hz, 2H), 7.48–7.28 (m, 4H), 7.20 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 7.8 Hz, 1H), 7.03 (t, J = 8.4 Hz, 2H), 5.45 (s, 1H), 4.73 (s, 2H); ¹³C NMR (CD₃OD, 150 MHz): δ 164.4, 131.3, 130.2, 130.0, 129.9, 129.8, 128.7, 128.0, 127.5, 127.4, 119.1, 73.0, 43.8; IR (KBr): 3513, 3370, 3052, 2939, 2844, 1733, 1599, 1482, 1447, 1255, 1137, 1089, 943, 909, 807, 750, 705 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₅N₂O: 239.1179; found: 239.1178.

phenyl(quinazolin-2-yl)methanone (5). Yield: 62% (73 mg); Yellow solid; m.p. 106–108 °C; ¹H NMR (CDCl₃, 400 MHz): δ 9.55 (s, 1H), 8.17 (d, J = 8.4 Hz, 1H), 8.14–8.07 (m, 2H), 8.04–7.96 (m, 2H), 7.77 (t, J = 7.6 Hz, 1H), 7.60 (t, J = 7.2 Hz, 1H), 7.47 (t, J = 8.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 191.7, 160.8, 158.7, 149.5, 135.4, 134.9, 133.4, 131.0, 129.4, 129.2, 128.3, 127.2, 124.7; IR (KBr): 3060, 2350, 1743, 1700, 1644, 1519, 1397, 1317, 807, 770, 734, 697 cm⁻¹; HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₁₁N₂O: 235.0866; found: 235.0869.

ASSOCIATED CONTENT

Supporting Information

Crystallographic data and copies of the ¹H and ¹³C NMR spectra are involved. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chwuyd@mail.ccnu.edu.cn (Y. -D. Wu); chwuax@mail.ccnu.edu.cn (A. -X. Wu) Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (Grant 21272085 and 21472056) and the Fundamental Research Funds for the Central Universities (CCNU15ZX002 and CCNU16A05002) for financial support.

REFERENCES

(1) For selected reviews, see: (a) Baraldi, P. G.; Tabrizi, M. A.; Gessi, S.; Borea, P. A. *Chem. Rev.* 2008, *108*, 238-263. (b) Scott, J. D.; Williams, R. M. *Chem. Rev.* 2002, *102*, 1669-1730. (c) Coughlin, J. E.; Henson, Z. B.; Welch, G. C.; Bazan, G. C. *Acc. Chem. Res.* 2014, *47*, 257-270. (d) Fried, L. E.; Manaa, M. R.; Pagoria, P. F.; Simpson, R. L. *Annu. Rev. Mater. Res.* 2001, *31*, 291-321. (e) Chen, D.; Su, S.-J.; Cao, Y. *J. Mater. Chem. C* 2014, *2*, 9565-9578.

(2) Joshi, B. S.; Bai, Y.; Puar, M. S.; Dubose, K. K.; Pelletier, S. W. J. Nat. Prod.
1994, 57, 953-962.

(3) Shevyakov, S. V.; Davydova, O. I.; Pershin, D. G.; Krasavin, M.; Kravchenko, D. V.; Kiselyov, A.; Tkachenko, S. E.; Ivachtchenko, A. V. *Nat. Prod. Res.* 2006, 20, 735-741.

(4) Dzierzbicka, K.; Trzonkowski, P.; Sewerynek, P.; Myśliwski, A. *J. Med. Chem.* 2003, 46, 978-986.

(5) Grandolini, G.; Ambrogi, V.; Perioli, L.; Giannangeli, M.; Jovicevic, L.; Rossi, V. <i>Farmaco.</i> 1997 , <i>52</i> , 679-683.
(6) Suthiwangcharoen, N.; Pochini, S. M.; Sweat, D. P.; Stephens, C. E. J. Heterocycl. Chem. 2011, 48, 706-709.
(7) Jiang, M.; Li, J.; Wang, F.; Zhao, Y.; Zhao, F.; Dong, X.; Zhao, W. Org. Lett. 2012, 14, 1420-1423.
(8) For selected reviews, see: (a) Guo, LN.; Duan, XH.; Liang, YM. Acc. Chem.
Res. 2011, 44, 111-122. (b) Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev.
2014, 114, 2390-2431. (c) Wang, Y.; Lu, H.; Xu, PF. Acc. Chem. Res. 2015, 48,
1832-1844. (d) Guo, XX.; Gu, DW.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115,
1622-1651. (e) Sears, J. E.; Boger, D. L. Acc. Chem. Res. 2016, 49, 241-251.
(9) (a) Xia, XF.; Wang, N.; Zhang, L. L.; Song, XR.; Liu, XY.; Liang, YM. J.
Org. Chem. 2012, 77, 9163-9170. (b) Zhou, ZZ.; Jin, DP.; Li, LH.; He, YT.;
Zhou, PX.; Yan, XB.; Liu, XY.; Liang, YM. Org. Lett. 2014, 16, 5616-5619. (c)
Qiu, YF.; Zhu, XY.; Li, YX.; He, YT.; Yang, F.; Wang, J.; Hua, HL.; Zheng, L.;
Wang, LC.; Liu, XY.; Liang, YM. Org. Lett. 2015, 17, 3694-3697.
(10) (a) Liu, HC.; Tao, HY.; Cong, H.; Wang, CJ. J. Org. Chem. 2016, 81,
3752-3760. (b) Li, J.; Huang, R.; Xing, YK.; Qiu, G.; Tao, HY.; Wang, CJ. J. Am.
Chem. Soc. 2015, 137, 10124-10127. (c) Tong, MC.; Chen, X.; Li, J.; Huang, R.;
Tao, H.; Wang, CJ. Angew. Chem. Int. Ed. 2014, 53, 4680-4684.
(11) (a) Pan, X.; Luo, Y.; Wu, J. J. Org. Chem. 2013, 78, 5756-5760. (b) Xiao, Q.; Ye,
S.; Wu, J. Org. Lett. 2012, 14, 3430-3433. (c) Zheng, D.; Li, S.; Luo, Y.; Wu, J. Org.
Lett. 2011, 13, 6402-6405.
(12) (a) Yi, X.; Xi, C. Org. Lett. 2015, 17, 5836-5839. (b) Zhao, P.; Liu, Y.; Xi, C.
Org. Lett. 2015, 17, 4388-4391. (c) Liao, Q.; Yang, X.; Xi, C. J. Org. Chem. 2014, 79,
8507-8515. (d) Yan, X.; Zou, S.; Zhao, P.; Xi, C. Chem. Commun. 2014, 50,
2775-2777.

(13) (a) Wang, B.; Liu, Y.; Lin, C.; Xu, Y.; Liu, Z.; Zhang, Y. Org. Lett. 2014, 16,

4574-4577. (b) Sang, P.; Xie, Y.; Zou, J.; Zhang, Y. Org. Lett. 2012, 14, 3894-3897. (c)

Sang, P.; Xie, Y.; Zou, J.; Zhang, Y. Adv. Synth. Catal. 2012, 354, 1873-1878.

(14) (a) Mühmel, S.; Alpers, D.; Hoffmann, F.; Brasholz, M. Chem. - Eur. J. 2015, 21,

12308-12312. (b) Rettenmeier, E.; Hansmann, M. M.; Ahrens, A.; Rübenacker, K.;

Saboo, T.; Massholder, J.; Meier, C.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K.

Chem. - Eur. J. 2015, 21, 14401-14409. (c) Chen, D.; Xu, W.-D.; Liu, H.-M.; Li,

M.-M.; Yan, Y.-M.; Li, X.-N.; Li, Y.; Cheng, Y.-X.; Qin, H.-B. Chem. Commun. 2016,

52, 8561-8564. (d) Chen, Z.-Z.; Liu, S.; Hao, W.-J.; Xu, G.; Wu, S.; Miao, J.-N.; Jiang, B.; Wang, S.-L.; Tu, S.-J.; Li, G. *Chem. Sci.* **2015**, *6*, 6654-6658.

(15) Kärkäs, M. D.; Porco, J. A.; Stephenson, C. R. J. Chem. Rev. 2016.
DOI: 10.1021/acs.chemrev.5b00760.

(16) (a) Kanoh, N.; Sakanishi, K.; Iimori, E.; Nishimura, K. i.; Iwabuchi, Y. Org. Lett.
2011, 13, 2864-2867. (b) Chiou, W.-H.; Lin, Y.-H.; Chen, G.-T.; Gao, Y.-K.; Tseng, Y.-C.; Kao, C.-L.; Tsai, J.-C. Chem. Commun. 2011, 47, 3562-3564. (c) Jiang, S.-Z.; Zeng, X.-Y.; Liang, X.; Lei, T.; Wei, K.; Yang, Y.-R. Angew. Chem. Int. Ed. 2016, 55, 4044-4048.

(17) Cai, Q.; Li, D.-K.; Zhou, R.-R.; Shu, W.-M.; Wu, Y.-D.; Wu, A.-X. Org. Lett.
2016, 18, 1342-1345.

(18) (a) Sinkkonen, J.; Zelenin, K. N.; Potapov, A.-K. A.; Lagoda, I. V.; Alekseyev, V.
V.; Pihlaja, K. *Tetrahedron* 2003, *59*, 1939-1950. (b) Correa, W. H.; Papadopoulos, S.;
Radnidge, P.; Roberts, B. A.; Scott, J. L. *Green Chem.* 2002, *4*, 245-251.

(19) (a) Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588-4591. (b) Albertshofer, K.; Tan, B.; Barbas, C. F. Org. Lett. 2012, 14, 1834-1837.