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ABSTRACT: A versatile palladium-catalyzed tandem syn-
thetic sequence to afford E-stilbenes libraries has been
developed. Excellent regio- and stereocontrol have been
achieved by means of the sequence of Hiyama and Heck
cross-couplings. Undesirable homocoupling byproducts were
avoided employing immobilized substrates.
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Stilbene compounds are widely distributed in nature and
have relevant applications in agriculture,1 drug discovery2

and material science.3 Numerous stilbene-based derivatives,
such as resveratrol,4 piceatannol,5 and pterostilbene6 (Figure
1), have shown anti-inflammatory, antiproliferative, and

antioxidant properties among others. Schweinfurthins7 (Figure
2) are stilbene-related compounds which serve as potent and
selective inhibitors in different cancer cell lines. Scheweinfur-
thins act on an unexploited molecular target, becoming
promising drug candidates for untreated forms of this disease,
such as glioblastoma multiforme. In addition, stilbenes are
interesting substrates for diversity oriented synthesis (DOS)

strategies, enabling fast and easy diversification by increasing
molecular complexity.8

The development of new approaches for the generation of
single and double C−C bonds with regio- and stereoselectivity
control remains a challenge in organic synthesis. Methodologies
involving the use of inexpensive, easy to handle, low toxicity
reagents and catalysts are highly desirable since they enable
mild reaction conditions and good yields.9

Most reported strategies for the synthesis of symmetrical and
asymmetrical (E)-1,2-substituted diarylethenes10 involve reac-
tion conditions with limited diastereoselectivity and low
functional group tolerance. These include Wittig reactions,
cross metathesis of vinyl arenes and catalytic couplings, such as
Heck, Suzuki−Miyaura, Stille, and Hiyama reactions.10 The
presence of homocoupling products is one of the main
drawback for these catalytic techniques.11

An interesting high-yielding procedure for the synthesis of
diarylethenes with high regio- and stereoselectivity, using safe,
stable and low-toxicity reagents, is the Hiyama−Heck tandem
reaction.12 However, when this strategy was used in solution,
the formation of undesirable homocoupling products is difficult
to elude.11 This problem might be solved by applying a Hiyama
+ filtration + Heck tandem sequence on polymer-supported
substrates,13 as a practical way to decrease the formation of
byproducts. For solid-phase coupling reactions, spatial separa-
tion between the reactive sites in the immobilized substrate
made its homodimerization a less favorable process. Similarly,
the homodimer of the nonimmobilized substrate remains in the

Received: February 19, 2016
Revised: April 11, 2016

Figure 1. Structures of biologically relevant stilbenes.

Figure 2. Some members of the schweinfurthin family.
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solution phase and can be removed by a simple filtration.14

Besides, process simplicity would allow fast synthesis of
unexplored structures, resulting in a useful tool for DOS
development. In this work, we report the first solid-phase-based
tandem Hiyama−Heck cross-couplings and their application in
stilbene synthesis.
Vinyltriethoxysilane has two reactive positions for under-

going cross-coupling in the presence of Pd catalyst (shown in
blue and green, Scheme 1). Each chemically differentiable

reaction site can give a unique product with high regio- and
stereocontrol, by setting the conditions and additives. Under
Hiyama conditions, fluoride ions present in the reaction
mixture would react with the silicon atom generating a
pentacoordinated transition state, increasing the C−Si bond
polarity and therefore, facilitating the cross-coupling reaction.
Conversely, under Heck conditions, without fluorides influenc-
ing the olefin reactivity, carbon−carbon bond formation occurs
at the more electron-deficient and less hindered carbon.
For the development of the proposed synthetic strategy,

Hiyama cross-coupling conditions were applied on Wang resin-
supported aryl iodide 3{1} (Scheme 2 and Figure 3). 3{1} was
refluxed in THF in the presence of 5 equiv of triethox-
yvinylsilane (1), 10 mol % of tetrakis(triphenylphosphine)-
palladium(0) and 5 equiv of TBAF for 5 h.15 The exclusive
formation of 4{1} and absence of the product derived from
Heck coupling 5{1}, was verified by spectroscopic analysis of a
crude mixture after cleaving an aliquot from the resin. Then
Heck conditions were applied to the immobilized styrene
4{1}.16 This compound was treated with iodobenzene 6{1}, 10
mol % of Pd2(dba)3, P(o-tolyl)3 and 5 equiv of TEA in DMF as
solvent, heating at 110 °C during 24 h. To calculate purity and
reaction yield, 7{1,1} was cleaved from the resin and

methylated. 1H NMR analysis of the crude showed the
presence of 8{1,1} as main product and absence of the methyl
esters derived from 4{1} and 5{1}. Compound 8{1,1} was
obtained in 51% yield after purification by column chromatog-
raphy. Increased reaction time (7 h) resulted in decreased
overall yields for the Hiyama reaction, probably due to
decomposition. A similar effect was observed for the Heck
cross-coupling performed without TEA, evidencing incomplete
transformation by the presence of the corresponding unreacted
styrene (acid derivative of 4{1}).
As discussed previously, changing the order of the reactions

sequence (Heck + filtration + Hiyama), should give the same
product. Then, resin 3{1} was treated with triethoxyvinylsilane
(1) under Heck conditions (Scheme 3). The presence of 5{1}
was confirmed by gel-phase 13C NMR spectrum that showed
signals at 58.9 and 18.3 ppm, corresponding to the carbons of
the ethoxy groups. The immobilized vinyl silane 5{1} was
finally transformed into the stilbene 7{1,1} by applying Hiyama
cross-coupling conditions. After cleavage, esterification and
further purification by column chromatography, 8{1,1} was
obtained in an overall yield of 30%.
Direct comparison of the two alternative synthetic routes to

8{1,1} indicates that the first strategy (Hiyama + filtration +
Heck) was more efficient. These results confirm that changes in
the reaction conditions over the triethoxyvinylsilane (1) are
enough to obtain selectively either Heck or Hiyama product.
Considering the Hiyama + filtration + Heck sequence the best
option (entry 1, Table 1), we decided to validate the Heck

Scheme 1. Chemically Differentiable Carbon Atoms of 1

Scheme 2. Solid-Phase Synthesis of 8{1,1} by Sequential Hiyama−Heck Cross-Couplings

Figure 3. Structures and numbering of building blocks.
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reaction using bromo derivatives. In this case, using
bromobenzene as substrate (6{1′}), compound 8{1,1} was
obtained in 36% yield after purification (entry 2). Addition of
catalytic amounts of tetrabutylammonium chloride is described

in literature as a valid tool to produce higher yields.16a,b

However, when this salt was added to the Heck reaction under
conditions described in entry 2, lower yields were obtained
(entry 3). Although reaction performance for the bromide

Scheme 3. Solid-Phase Synthesis of 8{1,1} by Sequential Heck−Hiyama Cross-Couplings

Table 1. Evaluation of Conditions of Hiyama−Heck Tandem Reactions Using the Immobilized Aryl Iodide 3{1}

entry halide X R1 Heck conditionsa product yield (%)b

1 6{1} I H A 8{1,1} 73 (51)
2 6{1′} Br H A 8{1,1} 57 (36)
3 6{1′} Br H Ac 8{1,1} 51d

4 6{2} I 4-COMe A 8{1,2} 63d

5 6{3} I 4-Me A 8{1,3} 45 (10)
6 6{3} I 4-Me B 8{1,3} 69 (40)

aMethod A: 10 mol % Pd2(dba)3 and P(o-tolyl)3, 5 equiv TEA, DMF, 110 °C, 24 h. Method B: 50 mol % Pd(OAc)2, 10 equiv TEA, 0,5 equiv
Bu4NCl, DMF, 18 h. 110 °C. bYield of 8, calculated by weighing the crude mixture, prior to purification (based on initial loading level, five reaction
steps). Data in parentheses are isolated yields. c0.1 equiv of Bu4NCl was added.

dFrom 1H NMR spectrum of the crude mixture, which contains
starting material.

Table 2. Substrate Scope for the Sequential Hiyama−Heck Cross-Couplings Using Immobilized Aryl Iodides

entry X Z R2 R1 Heck conditionsa product yield (%)b

1 I CH H (6{1}) H (4{1}) A 8{1,1} 51
2 Br CH H (6{1′}) H (4{1}) A 8{1,1} 36
3 I CH H (6{1}) NO2 (4{2}) B 8{2,1} 36
4 Br CH 4-NO2 (6{4′}) H(4{1}) B 8{1,4} 65
5 Br CH 4-NO2 (6{4′}) NO2 (4{2}) B 8{2,4} 30
6 Br CH 4-CHO (6{5′}) H (4{1}) A 8{1,5} 38
7 Br CH 4-Cl (6{6′}) H (4{1}) A 8{1,6} 44
8 I CH 4-COMe (6{2}) H (4{1}) B 8{1,2} 47
9 I CH 4-COMe (6{2}) NO2 (4{2}) B 8{2,2} 79
10 I N H (6{7}) H (4{1}) A 8{1,7} 24
11 I CH 4-Me (6{3}) H (4{1}) A 8{1,3} 10
12 I CH 4-Me (6{3}) H (4{1}) B 8{1,3} 40
13 I CH 4-Me (6{3}) NO2 (4{2}) B 8{2,3} 21
14 I CH 4-CO2Me (6{8}) H (4{1}) A 8{1,8} 8
15 I CH 4-CO2Me (6{8}) H (4{1}) B 8{1,8} 46
16 I CH 4-OH (6{9}) H (4{1}) A 8{1,9} 21
17 I CH 4-OH (6{9}) H (4{1}) B 8{1,9} 15
18 I CH 4-NEt2 (6{10}) H (4{1}) B 8{1,10} 19
19 Br CH 3-OMe (6{11′}) H (4{1}) B 8{1,11} 10

aMethod A: 10 mol % Pd2(dba)3 and P(o-tolyl)3, 5 equiv TEA, DMF, 110 °C, 24 h. Method B: 50 mol % Pd(OAc)2, 10 equiv TEA, 0,5 equiv
Bu4NCl, DMF, 18 h. 110 °C. bOverall isolated yield of 8 after column chromatography (based on initial loading level, five reaction steps).
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substrates (6{1′}, entry 2) was lower than in the case of iodides
(6{1}, entry 1), yields were still acceptable. Therefore, we can
conclude that both halides could be potentially employed as
starting materials for this reaction improving substrate
availability for the generation of prospective libraries. Testing
this methodology for aryl iodides 6{2} (R1 = 4-COMe) and
6{3} (R1 = 4-Me) resulted in lower yields (entries 4 and 5,
Table 1). As a consequence, additional Heck reaction
conditions were evaluated. Substantial improvement was
found for the iodide 6{3} using 50 mol % of Pd(OAc)2, 10
equiv of triethylamine, 0.5 equiv of tetrabutylammonium
chloride in DMF during 18 h at 110 °C (entry 6).
Accordingly, using Hiyama and the two Heck methodologies

previously described, a library of stilbene derivatives was
synthesized, using substrates with different structural and
electronic features (Table 2). Compounds 8{1−2,1−11}
could be obtained in acceptable to high isolated yields (five
reaction steps). Crude mixtures showed very high purity, and
excellent trans-selectivity (the Z isomers could not be detected
at all).17 Best efficiencies for the Heck reaction were obtained
when aryl halides bearing electron-withdrawing groups served
as substrates (entries 3−9, 14, and 15).18 Withdrawing
substituents led to an increase in the C−X bond polarization,
facilitating oxidative addition in the palladium catalytic cycle,
which may be responsible for the better efficiency. This effect is
quite evident when comparing entries 9 and 13. Using the same
immobilized vinyl substrate 4{2} and aryl halides with different
electronic characteristics in the Heck reaction, we noticed a
decrease in yields from 79 to 21% when replacing an electron-
withdrawing substituent (p-COMe) by a donating one (p-Me).
In conclusion, we have developed an efficient solid-phase

strategy based on a palladium cross-coupling tandem reaction
for the fast generation of stilbenes. A library of multifunctional
olefins with structural diversity was prepared from substrates
with different steric and electronic properties, using both aryl
iodides and bromides for the Heck cross-coupling. Products
were obtained with excellent E stereoselectivity. This strategy
could be potentially applied for the synthesis of compounds
with higher structural complexity and prospective biological
activity. Biological activity against several tumor cell lines for
the hereby-synthesized compounds is currently under evalua-
tion.

■ EXPERIMENTAL PROCEDURES
Procedure for Immobilization of Aryl Iodide 3{1}.

Wang resin (0.2 g, 1.1 mmol/g, 0.22 mmol) was swelled by
gentle stirring in anhydrous DMF (5 mL). Then, 4-iodobenzoic
acid 2{1} (0.098 g, 0.66 mmol), DCC (N,N′-diisopropylcarbo-
diimide) (0.102 mL, 0.66 mmol), and DMAP (catalytic
amount) were added. The mixture was stirred overnight at
room temperature. After filtration, the resin was sequentially
washed with CH2Cl2 (×3), DMF (×3), EtOAc (×3), MeOH
(×3), and CH2Cl2 and, finally, dried under high vacuum thus
obtaining the immobilized aryl iodide 3{1}. Mass recovery was
used to determine resin loading after cleavage of an aliquot with
10% TFA/CH2Cl2. In general, coupling was achieved with
greater than 95% efficiency.
Representative Procedure for the Solid-Phase Hiyama

Cross−Coupling Reaction. Support-bound aryl halide 3{1}
(0.88 mmol/g, 0.18 mmol) was suspended in anhydrous THF
(5 mL), and were added in sequential order under a nitrogen
atmosphere Pd(PPh3)4 (0.020 g, 10 mol %), vinyltriethox-
ysilane 1 (0.189 mL, 0.9 mmol) and TBAF (0.9 mL, 1 M in

THF). The flask was fitted with a condenser and the reaction
mixture was stirred 5 h at 80 °C. Subsequently, the resin was
filtered and washed successively with CH2Cl2 (×3), THF (×3),
DMF (×3), and MeOH (×3), and finally, with CH2Cl2 thus
obtaining the support-bound vinyl arene 4{1}. Then, the resin
was dried under high vacuum and used for the Heck cross-
coupling reaction.

Representative Procedure for the Solid-Phase Heck
Cross-Coupling Reaction: Method A. Support-bound vinyl
arene 4{1} (0.96 mmol/g, 0.19 mmol) was suspended in
anhydrous DMF (5 mL), and were added in sequential order
under a nitrogen atmosphere, Pd2(dba)3 (0.018 g, 10 mol %),
P(o-tolyl) (0.005 g,10 mol %), aryl halide 6{1} (0.064 mL, 0.57
mmol), and TEA (133 mL, 0.95 mmol). The flask was fitted
with a condenser and the reaction mixture was stirred 24 h at
110 °C. Subsequently, the resin was filtered and washed
successively with CH2Cl2 (×3), THF (×3), DMF (×3), MeOH
(×3), and finally, with CH2Cl2. After drying under high
vacuum, the compound was cleaved from the support with 5
mL of a 10% TFA in CH2Cl2 for 50 min at room temperature.
Then the mixture was filtered and washed with CH2Cl2 (×2),
and the filtrate was evaporated under reduced pressure.
Esterification with diazomethane afforded the crude product
that was analyzed by 1H NMR and GC/MS and then purified
by column chromatography (hexane-EtOAc), yielding 20 mg of
pure (E)-Methyl 4-styrylbenzoate (8{1,1}) (51%).

Method B. Support-bound vinyl arene 4{1} (0.96 mmol/g,
0.19 mmol) was suspended in anhydrous DMF (5 mL), and
Pd(OAc)2 (0.021 g, 50 mol %), Bu4NCl (0.026 g, 0.095 mmol),
aryl halide 6{3} (0.207 g, 0.95 mmol), and TEA (0.267 mL, 1.9
mmol) were added in sequential order under a nitrogen
atmosphere. The flask was fitted with a condenser, and the
reaction mixture was stirred 18 h at 110 °C. Subsequently, the
resin was filtered and washed successively with CH2Cl2 (×3),
THF (×3), DMF (×3), MeOH (×3), and finally with CH2Cl2.
After drying under high vacuum, the compound was cleaved
from the support with 5 mL of a 10% TFA in CH2Cl2 for 50
min at room temperature. Then the mixture was filtered,
washed with CH2Cl2 (×2) and the filtrate was evaporated
under reduced pressure. Esterification with diazomethane
afforded the crude product that was analyzed by 1H NMR
and GC/MS and then purified by column chromatography
(hexane-EtOAc) yielding 17 mg of pure (E)-methyl 4-(4-
methylstyryl)benzoate (8{1,3}) (40%).
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