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Donor-σ-Acceptor Motif Thermally Activated Delayed 

Fluorescence Emitters with Dual Upconversion 

Yan Geng[a,b], Anthony D’Aleo[c], Ko Inada[a], Lin-Song Cui[a], Jong Uk Kim[a], Hajime Nakanotani[a,d,e] 

and Chihaya Adachi*[a,d,e] 

 

Abstract: A family of organic emitters having a donor-σ-acceptor 

(D-σ-A) motif is demonstrated. Based on the weakly coupled D-σ-A 

intramolecular charge transfer state, a transition from the localized 

excited triplet states (3LE) and charge transfer triplet states (3CT) to 

the charge transfer singlet states (1CT) with a small activation 

energy and high photoluminescence quantum efficiency is 

accomplished. Two thermally activated delayed fluorescence 

(TADF) components are identified, one of which has a very short 

lifetime of 200-400 ns and another a longer TADF lifetime of the µs 

order. In particular, two D-σ-A materials present strong blue 

emission with TADF properties in toluene. This result will shed light 

on the molecular design of new TADF emitters having short delayed 

lifetimes. 

Nowadays, organic light-emitting diodes (OLEDs) are widely 
utilized in flat-panel displays and solid-state lighting, and attract 
considerable interest both in academia and industry.[1] The 
internal electroluminescence (EL) quantum efficiency (IQE) of 
OLEDs with conventional organic fluorophores is in practice 
limited to 25% because 75% of the electrically generated 
excitons are statistically triplets that decay nonradiatively.[2] In 
comparison with fluorescent OLEDs, phosphorescent OLEDs 
(PHOLEDs) with precious-metal complexes as emitters can 
achieve IQEs of 100%, since both singlet and triplet excitons 
can be harvested as a result of singlet-triplet state mixing via 
efficient spin-orbit coupling.[3] However, PHOLEDs still suffer 
from the high cost, scarcity and toxicity of these precious 

metals, which hinder their long-term mass production and 
utilization. Recently, however, the application of metal-free 
thermally activated delayed fluorescence (TADF) emitters has 
led to the development of TADF-OLEDs. These are among the 
most promising classes of practical next-generation OLEDs, 
since high-performance EL characteristics can be obtained 
through the molecular design of conventional aromatics, which 
is in effect unlimited.[4] 

In TADF-OLEDs, electrically generated triplet excitons can 
be efficiently upconverted from the lowest triplet excited state 
(T1) to the lowest singlet excited state (S1) via reverse 
intersystem crossing (RISC) when the energy difference 
between the two excited states (∆EST) is small enough, 
generally less than a few hundreds meV.[5] Recently, TADF-
OLEDs have made substantial progress in achieving an external 
EL quantum efficiency of over 30%, which is comparable with 
the best PHOLEDs.[6] The TADF process is central to the 
formation of a charge-transfer (CT)excited state from donor-
acceptor (D-A) molecules, where the highest occupied 
molecular orbital (HOMO) is located on the donor moiety, and 
the lowest unoccupied molecular orbital (LUMO) is offered by 
the acceptor moiety. For the conventional D-A type TADF 
emitters, the overlap between HOMO and LUMO must be 
minimized to decrease ∆EST, which is crucial for efficient thermal 
upconversion via RISC.[4] 

Besides the well-established single-molecule TADF 
emitters, exciplex emitters based on intermolecular CT 
transitions were also confirmed to function via TADF by our 
group in 2012.[7] Compared with single-molecule TADF 
emitters, a wide variety of exciplex TADF emitters have been 
developed by the appropriate combination of donor and 
acceptor molecules. While some technical issues, such as low 
photoluminescence quantum yield (PLQY), complex device 
fabrication and delicate requirements for energy level alignment, 
represent a barrier to the development of high-performance 
exciplex TADF OLEDs, recent studies suggest the crucial 
importance of control over the distance between donor and 
acceptor moieties.[8] All the studies to date highlight the 
necessity of CT state in TADF mechanism. 

In this context, we explored an improved design of TADF 
molecules having a donor-σ-acceptor (D-σ-A) structure where 
the σ-group allows to some extent to control the distance in an 
intramolecular way.[9] In principle, hyperconjugation in such D-σ-
A molecules would not only favor the wide separation of the 
HOMO and LUMO, resulting in small ∆EST, but also overcome 
the disadvantages of exciplex TADF emitters, where the charge 
transfer state is reached through intermolecular charge transfer. 
The D-A geometries in exciplexes are uncontrollable in solid 
films, which increases nonradiative decay.[8] More importantly, 
we aim for very fine tuning and alignment of the CT and local 
excited (LE) state energy levels, so that the mixing of the 
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of the second delayed component, which can be ascribed to the 
upconversion from the 3CT state to the 1CT state after the 
forward ISC decay. Note that the efficiency of this process is 
only 6% and 3% in molecules 1 and 2, respectively, indicating 
that the first delayed channel is the major TADF delay process. 
In the case of 3, the PL behavior is appreciably different from the 
other two. The PLQY is 10% and 20% with and without O2, 
respectively, indicating the presence of highly efficient 
nonradiative decay processes, which can be ascribed to the 
donor unit of TPA. Since the TPA unit is rather rotationally 
flexible compared with the other donors, the excitons in 3LE(Donor) 

undergo efficient nonradiative decay, and the decrease of 
temperature contributes to a slight enhancement of the 
upconversion. Also, the lack of a clearly observed second 
TADF component indicates that nonradiative decay is also 
dominant from the 3CT state. Overall, we have confirmed that 
molecules 1 and 2 have very fine-tuned energy alignments, 
demonstrating two sources of  upconversion. 

Finally, we note further aspects of this molecular design 
concept with respect to OLED application. In view of crucial 
issues such as device lifetime and efficiency roll-off in OLEDs, 
the decrease of delayed lifetime in TADF emitters will 
undoubtedly enhance device performance. However, at the 
current stage of design, the presence of the second delayed 
component will prevent their effective application because of the 
direct exciton formation at this energy level. In a follow-up study, 
we intend to finely tune the σ length to enable the complete 
mixing of 3CT and 1CT, allowing the disappearance of the 
second slow TADF component. 

In summary, we have demonstrated a novel molecular 
design strategy for TADF emitters based on donor-σ-acceptor 
molecules. By separating the HOMO and LUMO through the 
introduction of hyperconjugation, a small ∆EST with dual TADF 
was obtained, arising from fine-tuned energy alignment of the 
1CT, 3CT and 3LE states. In spite of the weakly coupled 
intramolecular CT state, considerably high PLQY values can be 
achieved using these materials because of their rigid molecular 
structures. More interestingly, relatively short TADF decayed 
lifetimes of less than 400 ns were achieved with 1 and 2. We 
believe our present study provides a new design strategy using 
hyperconjugation for advanced TADF materials. 
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