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Cyclometalated platinum complexes with visible luminescence 
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Abstract 
The synthesis and characterisation of nine new monometallic heteroleptic platinum complexes 

[PtCl(L1-3)(DMSO)], [Pt(L1-3)(acac)], [Pt(L1-3)(8-Q)] (where L1-3 = N-octyl/dodecyl/hexadecyl-2-

phenylquinoline-4-carboxamides; acac = acetylacetonate; 8-Q = 8-quinolinato) are described. 

Single crystal X-ray diffraction studies on [Pt(L1)(acac)] revealed a square planar coordination 

geometry with intermolecular Pt-Pt contacts at ca. 3.3 Å. The complexes were investigated using 

195Pt{1H} NMR spectroscopy, revealing varied chemical shifts around δPt -2800 ppm that were 

strongly dependent upon the specific coordination environment of Pt(II). Luminescence studies 

showed the complexes possess a phosphorescent character with tuneable emission wavelengths 

between 605-641 nm, and luminescent lifetimes up to ca. 450 ns.  Supporting TD-DFT studies 

provided descriptions of the HOMO and LUMO energy levels of the key complex types, which 

generally correlated well with the experimental spectra. The contribution of the Pt(5d) centre to the 

calculated HOMOs was strongly ligand dependent, whilst the LUMOs were generally predicted to 

be localized over the quinoline component of the cyclometalated ligand.   
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Introduction 

Cyclometelated platinum(II) complexes are highly attractive species to study due to their wide 

ranging optoelectronic and biomedical applications.1 There is an ever-expanding range of suitable 

ligands that can be coordinated to square planar Pt(II) in a cyclometalating manner. The relative 

ease of design, and attempts at tuning the resultant physical properties of the complex, have led to 

cyclometalated platinum complexes being studied in photocatalysis,2  photooxidation (via the 

photogeneration of 1O2),
3 electroluminescent cells,4 luminescent bioimaging agents5 and optical 

sensors.6 

 Planar cyclometalated Pt(II) complexes have also recently been investigated with respect to 

the design of targeted agents for binding amyloid beta peptide,7 in the context of the inhibition of 

Zn and Cu peptide complex formation (cf. Alzheimer’s disease). These studies follow on from the 

detailed and lengthy history of the biomedical applications of square planar Pt(II) complexes,8 

particularly with respect to the treatment of cancer (cisplatin).9 Since cisplatin and its analogues are 

regarded as non-luminescent, more recent approaches have looked at tethering fluorescent tags onto 

closely related Pt(II) species, thus enabling ‘visualisation’ of the biologically active Pt(II) species in 

a cellular environment.10 In this context cyclometalated Pt(II) species such as [Pt(C^N)(DMSO)Cl)] 

(where C^N = a cyclometalating unit) may have much to offer as we have shown that they can 

possess luminescent properties;11 the relatively labile co-ligands enable their application to cell 

imaging using confocal fluorescence microscopy and the development of prospective bimodal 

imaging agents.12 Indeed the assessment of the cytotoxic nature of related Pt(II) complexes is an 

area of intense study.13 

 The focus of this paper is the development of 2-phenyl-4-quinolinecarboxamido alkyl-

derived ligands, which possess alkyl chain lengths of n = 8 (octyl), 12 (dodecyl) and 16 (hexadecyl) 

HL1-3, respectively, leading to nine new cyclometalated Pt(II) complexes of the type 

[Pt(L)(DMSO)Cl)], [Pt(L)(acac)] (where acac = acetyacetonate) and [Pt(L)(8-Q)] (where 8-Q = 8-

quinolinato). These ligands can be synthesised from commercially available cinchophen (2-phenyl-
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4-quinolinecarboxylic acid), and we have previously shown that derivatives of this ligand class can 

be used to develop related cyclometalated Ir(III) complexes with tuneable luminescent properties.14 

The reasons for the incorporation of alkyl chains are two fold: firstly, to improve the organic 

solubility of the resultant Pt(II) species isolated as intermediates and thus facilitate further 

reactivity, and secondly, to allow for future consideration of these complexes as cellular bioimaging 

agents. Previous studies on luminescent rhenium(I) complexes functionalised with alkyl chains have 

shown that enhanced lipophilicity of organometallic complexes can dramatically improve transport 

across the cell membrane and aid intracellular distribution.15 

It is also noteworthy that cinchophen-based species also have a long history of biomedical 

application. Cinchophen itself was used as an analgesic to treat gout in the early twentieth century, 

whilst 2-phenyl-4-quinolinecarboxamides have been investigated as therapeutics for neurological 

diseases, including schizophrenia.16  

 

Results and Discussion 
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Scheme 1. Synthesis of the complexes: i) DMSO, rt; ii) 2,4-pentanedione, 3-pentanone; iii) 8-

hydroxyquinoline, 2-methoxyethanol. 

 

Synthesis of the ligands and complexes  

The ligands were prepared following previous reports for related amide-functionalised ligands 

based on the cinchophen structure.13 Thus, 2-phenyl-4-quinolinecarbonyl chloride was reacted with 

a series of n-alkyl amines with octyl, dodecyl and hexadecyl length chains to give the ligands HL1, 

HL2 and HL3 respectively.  

The complexes (Scheme 1) were synthesised according to our previous reports on related 

Pt(II) systems11,12 which involves the generation of a precursor Pt(II) dimer species [Pt(L)(µ-Cl)]2 

which is then split by DMSO to give monometallic [Pt(L)(DMSO)Cl] allowing further reactivity 

and addition of co-ligands. The solubility characteristics of HL3 (hexadecyl) were incompatible 

with the aqueous reaction mixtures typically used for the synthesis of the µ-dichloro-bridged Pt(II) 

dimers. Therefore, in this case, additional 2-ethoxyethanol was added in an attempt to improve the 

solubility of the ligand in the reaction medium. Despite this, the reaction yield for the dimer 

[Pt(L3)(µ-Cl)]2 was still lower than for HL1 and HL2, which is attributed to the highly hydrophobic 

character of the hexadecyl chain in HL3. In all three cases unreacted ligand was removed from the 

dimer material by washing the crude solid product with dichloromethane. The subsequent splitting 

of the dimers in DMSO yielded the monometallic [Pt(L)(DMSO)Cl] species which were isolated 

and spectroscopically characterised. The DMSO adducts were then reacted further with either 2,4-

pentanediketone to give [Pt(L)(acac)], or 8-hydroxyquinoline to give [Pt(L)(8-Q)]. 

 

Characterisation of the ligands and complexes 

The ligands HL1-3 were characterised using the traditional array of spectroscopic and analytical 

techniques. 1H NMR spectroscopy revealed that the amide NH proton of the ligands appears as a 

broadened triplet between 6.37 – 6.93 ppm, depending upon the alkyl chain length. 13C{1H} NMR 
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spectroscopy showed overlapping resonances in the aliphatic regions associated with the alkyl 

chains of the ligands and thus fewer signals than theoretically predicted. 

Typically, for the 1H NMR spectra of [Pt(L)(DMSO)Cl] the methyl resonance of the 

coordinated DMSO appeared around δH 3.6 ppm with satellites attributed to coupling to the 195Pt 

nucleus. The [Pt(L)(acac)] complexes revealed the singlet resonance at δH 5.6 ppm associated with 

the coordinated acac ligand. 195Pt{1H} NMR spectra obtained for the three [Pt(L)(acac)] complexes 

each appeared around δPt -2775 ppm suggesting that alteration of the alkyl chain length had very 

little effect upon the Pt(II) centre. This value for δPt is consistent with our previous reports on 

related cinchophen-derived complexes of Pt(II)11,12 and very close to the reported chemical shift for 

the benchmark analogue [Pt(ppy)(acac)] (where ppy = 2-phenylquinoline) at -2868 ppm.17 The 195Pt 

resonances for the remaining complexes were all consistent with our previous studies on related Pt 

complexes of this type.11 Mass spectrometry studies on the [Pt(L)(acac)] complexes generally 

showed a [M – H]- cluster of peaks matching the predicted isotopic distribution; [Pt(L)(8-Q)] 

complexes revealed a [M + Na]+ cluster of peaks, again with the appropriate isotopic distribution 

for Pt. The [Pt(L)(DMSO)Cl] species were, unsurprisingly, prone to fragmentation and loss of 

ligand; typical m/z values revealed the expected isotopic pattern for Pt, but with a loss of both 

chloride and DMSO ligands upon ionisation. 

 

X-ray crystal structure of [Pt(L1)(acac)] 

X-ray crystallographic studies were undertaken on suitable crystals of [Pt(L1)(acac)] which were 

obtained by the slow evaporation of a concentrated chloroform solution of the complex. The 

structure (Figure 1) revealed the expected coordination sphere with a weakly distorted square planar 

geometry at Pt(II). The bond lengths around the Pt centre were found to be 1.952(6) and 2.041(5) Å 

for the Pt-C and Pt-N bonds, respectively, and 2.006(4) and 2.089(4) Å for the Pt-O bond lengths 

(where the shorter bond is trans to the coordinated N atom). These are very comparable to the bond 

lengths reported for the structure of the related complex [Pt(ppy)(acac)], as well as being in line 
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with our previous observations on related cinchophen derived Pt(II) complexes.11,12 There is a head-

to-tail packing arrangement of the complexes within the crystal form, driven by the formation of 

dimers through a Pt-Pt interaction of 3.327(1) Å (and therefore below the sum of the van der Waal’s 

radii).18  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. X-ray crystal structure of [Pt(L1)(acac)]. Ellipsoids are drawn at 50% probability and H 
atoms and solvent molecules are omitted. Crystal data for [Pt(L1)(acac)]: C30H35Cl3N2O3Pt, M = 
773.04, red plate, a = 14.0542(10), b = 8.3288(5), c = 25.6474(18) Å, α = 90, β = 93.606(2), γ = 90, 

V = 2996.2(3) Å3, monoclinic, space group P21/n, Z = 4, µ = 4.985 mm-1, reflections collected = 

30031, independent reflections = 6837, Rint = 0.1338, R1 = 0.0448, wR2 [F2 > 2σ(F2)] = 0.0784, R1 
= 0.0713, wR2 = 0.0825. 

 

UV-vis. absorption and luminescence studies 

The electronic absorption spectra of the free ligands (in chloroform) were dominated by the 

expected 1π-π* transitions typical of a phenylquinoline chromophore; each ligand possesses two 

peaks at around 332 and 264 nm. The UV-vis absorption data for all complexes is collected in Table 

1. For the [Pt(L)(DMSO)Cl] complexes the UV-vis spectra (in chloroform) displayed 

bathochromically shifted features with a peak at ca. 285 nm attributed to ligand-centred 1π-π* 
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transitions and a broad, lower intensity band ca. 365 nm with a weak shoulder at 420 nm. 

Conversion to the [Pt(L)(acac)] revealed spectra (in chloroform) which retain the ligand-centred 

features, but modulate the appearance of the broad visible absorption band at 400-500 nm (for 

example, Figure 2). Notably for the [Pt(L)(8-Q)] species an additional absorption feature was 

displayed in the visible part of the spectrum at 450-575 nm. The results show that the length of the 

alkyl chain (octyl, dodecyl, hexadecyl) imparts little influence on the energies of the absorption 

bands, which is consistent with the expected similarities in electronic structure for these complexes. 

Supporting theoretical TD-DFT calculations on closely related cyclometalated Pt(II) model 

complexes (based on cyclometalating L = ethyl-2-phenylquinoline-4-carboxylate) show that the 

nature of the HOMO-LUMO transitions are likely to vary according to the ancillary ligands at Pt(II) 

(see Table 1). In particular, the studies show that the calculated percentage of Pt 5d orbital 

contribution to the HOMO varies significantly across the series [Pt(L)(DMSO)Cl] versus 

[Pt(L)(acac)] versus [Pt(L)(8-Q)]. Thus, for [Pt(L)(8-Q)] complexes, where the percentage of Pt 5d 

character contributing to the HOMO is calculated to be < 5%, ligand(quinolinato)-to-

ligand(quinoline) charge transfer (LLCT) transitions are predicted to contribute to the HOMO-

LUMO transition. This predicted transition probably corresponds to the experimentally observed 

lowest energy absorption at 450-575 nm for the [Pt(L)(8-Q)] complexes. In comparison, for the 

[Pt(L)(acac)] species, the percentage of Pt 5d character contributing to the HOMO is calculated to 

be ca. 40%, suggesting a greater metal(platinum)-to-ligand(quinoline) charge transfer (MLCT) 

contribution to the visible absorption band of [Pt(L)(acac)]. 
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Table 1. Calculated frontier orbitals for [Pt(L)(acac)], [Pt(L)(DMSO)Cl] and [Pt(L)(8-Q)] 

complexes (where L = ethyl-2-phenylquinoline-4-carboxylate). 

 

All of the complexes were shown to be luminescent in chloroform solution following excitation in 

the visible region at 420 nm (Table 1). The broad featureless emission profiles occur between 590 – 

640 nm and were clearly dependent upon the nature of the ancillary ligands coordinated to Pt(II) 

(Figure 3). In the case of [Pt(L)(acac)] species the alkyl chain length does not impart any shift in 

emission energy.  A comparison of the [Pt(L)(acac)] and [Pt(L)(8-Q)] species show that the former 

possess a longer emission wavelength and thus larger Stokes’ shift compared to the latter. The 

luminescence lifetimes of the [Pt(L)(acac)] and [Pt(L)(8-Q)] complexes were in the range 211-439 

Compound    HOMO-1      HOMO    LUMO 
 
 
 
[Pt(L)(acac)] 
 
 
 

 

 
 

 
 

 
 
 
[Pt(L)(DMSO)Cl] 
 
 
 

 
 
    

  

 
 
 
[Pt(L)(8-Q)]  
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ns and thus consistent with a phosphorescent emitting state that is likely to comprise admixtures of 

3MLCT/3LLCT. The [Pt(L)(acac)] complexes clearly displayed significantly longer lifetimes than 

the 8-quinolinato analogues. The corresponding lifetimes of the precursor [PtCl(L)(DMSO)] 

species are notably shorter (24-54 ns) suggesting a more pronounced quenching of the excited state, 

due to the coordinated DMSO and chloride ligands, the latter known to contribute to quenching in 

certain metal complexes.19 Quantum yields in aerated solvent were modest (≤1%) but in line with 

previous studies on this class of complex.11 

 

 

 

 

Table 2. UV-vis and luminescence spectroscopic data for the complexes (in aerated chloroform). 

 

a using 420 nm excitation; b using 295 or 372 nm excitation; c using [Ru(bipy)3](PF6)2 in aerated 

MeCN as standard (Φ = 0.016).20 

 

 

Complex Absorption 
(λλλλmax / nm) 

Emission 
(λλλλem / nm)a  

Lifetime 
(ττττ / ns)b  

 

Quantum 
Yieldc 

[Pt(L1)(DMSO)Cl] 272, 281, 341, 368, 422sh  609 24 - 

[Pt(L1)(acac)] 300, 349, 368, 417 618 380 0.006 

[Pt(L1)(8-Q)] 263, 370, 505 606 211 0.004 

[Pt(L2)(DMSO)Cl] 281, 363, 430sh 615 54 - 

[Pt(L2)(acac)] 284, 345, 368, 415 617 406 0.01 

[Pt(L2)(8-Q)] 265, 269, 368, 502 606 238 0.005 

[Pt(L3)(DMSO)Cl] 265, 284, 365, 426sh 592 28 - 

[Pt(L3)(acac)] 259, 286, 295, 344, 361, 414 617 439 0.01 

[Pt(L3)(8-Q)] 283, 346, 362, 429, 496 593 227 0.004 
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Figure 2. UV-vis absorption spectra comparing [Pt(L3)(acac)] (black line) and [Pt(L3)(8-Q)] (grey 

line) (in chloroform). 

 

 

 

 

 

 

 

 

 

Figure 3. Normalised excitation (grey) and emission (black) spectra for [Pt(L3)(8-Q)] (left) and 

[Pt(L3)(acac)] (right) (aerated chloroform, λex = 420 nm). 

 

 

Conclusions 

 
The work has shown that highly lipophilic cyclometalated Pt(II) complexes can be synthesised from 

carboxamide derivatives of 2-phenylquinoline. Supporting spectroscopic and X-ray structural data 

show that the complexes possess the anticipated formulations. The stepwise synthesis of the 

complexes allow a range of ancillary ligands to be coordinated to Pt(II) enabling tuning of the 

absorption and emission properties of the complexes. The addition of an 8-quinolinato chelate 
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[Pt(L)(8-Q)] results in a bathochromically shifted absorption whilst the emission is at a higher 

energy relative to the [Pt(L)(acac)] species. The acac complexes also display the longest 

phosphorescent lifetimes in this series of complexes, with values up to 439 ns. Generally, the 

electronic effect of the alkyl chain is neglible with chain length differences imparting only minor 

variations in the photophysical parameters. Given the promising nature of the luminescence 

properties, future studies will explore the cell imaging potential of this series of complexes with 

particular attention on the cellular uptake characteristics of these highly lipophilic complexes. 

 
Experimental 

All reactions were performed with the use of vacuum line and Schlenk techniques. Reagents were 

commercial grade and were used without further purification. 1H and 13C{1H} NMR spectra were 

run on NMR-FT Bruker 250 or 400 spectrometers, 195Pt{1H} on NMR-FT 500 spectrometer all 

recorded in CDCl3. 
1H and 13C{1H} NMR chemical shifts (δ) were determined relative to internal 

TMS and are given in ppm. Low-resolution mass spectra were obtained by the staff at Cardiff 

University. High-resolution mass spectra were carried out by at the EPSRC National Mass 

Spectrometry Service at Swansea University. UV-Vis studies were performed on a Jasco V-570 

spectrophotometer as chloroform solutions. Photophysical data were obtained on a JobinYvon-

Horiba Fluorolog spectrometer fitted with a JY TBX picosecond photodetection module as 

chloroform solutions. Emission spectra were uncorrected and excitation spectra were instrument 

corrected. The pulsed source was a Nano-LED configured for 372 nm output operating at 1 MHz. 

Luminescence lifetime profiles were obtained using the JobinYvon-Horiba FluoroHub single 

photon counting module and the data fits yielded the lifetime values using the provided DAS6 

deconvolution software.  

 

X-ray data collection and processing 

Suitable crystals were selected and data collected following a standard method,21 on a Rigaku R-

AXIS Spider molybdenum sealed tube diffractometer at 120K equipped with a RAPID image plate 
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detector. Cell determination and data collection were carried out using CrystalClear.22 Structure 

solution and refinement using SHELX programs.23 CCDC 1432127 contains supplementary X-ray 

crystallographic data for [Pt(L1)(acac)]. This data can be obtained free of charge via 

http://www.ccdc.cam.ac.uk/conts/retrieving.html,  or from the Cambridge Crystallographic Data 

Centre, Union Road, Cambridge, CB2 1EZ; fax(+44) 1223-336-033 or email: 

deposit@ccdc.cam.ac.uk. 

 

DFT studies 

Non-relativistic calculations were performed on the Gaussian 09 program.24  Geometry 

optimisations were carried out without constraints using the B3LYP functional.25 The Stuttgart-

Dresden basis set was used for the Pt atoms,26 and was invoked with pseudo-potentials for the core 

electrons, with a 6-31G(d) basis set for all remaining atoms.27 TD-DFT studies were performed 

using the same functional, but with 6-31+G(d,p) on all non-metal atoms, and also included a 

simulated MeCN environment using the polarized continuum model (PCM) approach.28  For 

prediction of absorption spectra, the geometry used to calculate orbital and other properties was 

used without modification. For the prediction of emission energies, however, the triplet state was 

allowed to relax to its optimal geometry using unrestricted B3LYP in the gas phase, prior to 

solvated TD-DFT. 

 

Materials 

2-phenyl-4-quinolinecarboxylic acid and potassium tetrachloroplatinate were used as purchased 

from Alfa Aesar. 

 

Synthesis 

Synthesis of HL1: Thionyl chloride (excess) was added, dropwise, to a stirring suspension of 2-

phenyl-4-quinolinecarboxylic acid (0.465 g, 1.869 mmol) in chloroform (10 mL). The reaction was 
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heated at reflux for 16 h under dinitrogen. The solvent was then removed in vacuo and the yellow 

solid redissolved in chloroform (10 mL) before the selected 1-octylamine (0.219 g, 1.699 mmol) 

was added dropwise to the stirring solution. EtNiPr2 (excess) was added dropwise and the mixture 

was stirred for 16 h at room temperature under dinitrogen. The solvent was removed in vacuo 

before being redissolved in dichloromethane (20 mL). The crude mixture was washed with aqueous 

NaHCO3 (sat. 2 × 20 mL), water (1 × 20 mL) and brine (1 × 20 mL). The organic phase was 

collected, dried over MgSO4 and filtered before the solvent was removed in vacuo. Yield = 0.434 g 

(71%). 1H NMR (400 MHz, CDCl3): δH 7.98 (1H, d, 3JHH = 8.4 Hz), 7.94 - 7.91 (2H, m), 7.84 (1H, 

d, 3JHH = 8.0 Hz), 7.60 – 7.56 (1H, m), 7.51 (1H, s), 7.42 - 7.40 (3H, m), 7.33 – 7.29 (1H, m), 6.93 

(1H, br. t, 3JHH = 4.4 Hz), 3.35 - 3.30 (2H, m), 1.59 – 1.52 (2H, m), 1.34 – 1.19 (10H, m), 0.90 (3H, 

t, 3JHH = 6.4 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC 167.6, 156.7, 148.5, 143.4, 138.7, 

130.3, 129.9, 129.0, 127.5, 127.3, 125.1, 123.4, 116.4, 40.3, 31.9, 29.7, 29.4, 27.1, 22.8, 14.2 ppm. 

MS(ES) found m/z = 361.22 for [M + H]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 263 (29100), 

327 (6600) nm. IR (thin film): νmax 3306 (N-H), 1636 (C=O) cm-1. 

 

Synthesis of HL2: as for HL1, but using 2-phenyl-4-quinolinecarboxylic acid (0.370 g, 1.486 

mmol) and 1-dodecylamine (0.250 g, 1.351 mmol). Yield = 0.416 g (74%). 1H NMR (400 MHz, 

CDCl3): δH 8.13 (1H, d, 3JHH = 8.0 Hz), 8.09 – 8.06 (3H, m), 7.77 (1H, s), 7.73 – 7.69 (1H, m), 7.52 

– 7.46 (4H, m), 6.37 (1H, br. t, 3JHH = 4.4 Hz), 3.54 – 3.49 (2H, m), 1.71 – 1.63 (2H, m), 1.42 – 

1.22 (18H, m), 0.88 (3H, t, 3JHH = 6.4 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC 167.6, 

156.7, 148.4, 143.5, 138.6, 130.3, 129.9, 129.0, 127.6, 127.4, 125.1, 123.5, 116.5, 68.2, 40.3, 32.0, 

29.7, 29.4, 29.3, 27.1, 22.8, 14.2 ppm. MS(ES) found m/z = 417.32 for [M + H]+. HR MS found m/z 

= 417.2898; C28H37N2O requires 417.2900. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 268 (27500), 

322 (6000) nm. IR (thin film): νmax 3306 (N-H), 1636 (C=O) cm-1. 
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Synthesis of HL3: as for HL1, using 2-phenyl-4-quinolinecarboxylic acid (0.454 g, 1.826 mmol) 

and 1-hexadecylamine (0.4 g, 1.660 mmol). Yield = 0.572 g (73%). 1H NMR (400 MHz, CDCl3): 

δH 8.12 – 8.04 (4H, m), 7.75 (1H, s), 7.72 – 7.68 (1H, m), 7.51 – 7.45 (4H, m), 6.50 (1H, br. t, 3JHH 

= 4.4 Hz), 3.52 – 3.46 (2H, m), 1.69 – 1.61 (2H, m), 1.41 – 1.19 (24H, m), 0.87 (3H, t, 3JHH = 6.8 

Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC
  167.6, 156.6, 148.5, 143.3, 138.7, 130.1, 129.9, 

129.8, 128.9, 127.6, 127.5, 127.2, 125.1, 123.4, 116.3, 53.5, 40.3, 32.0, 29.8, 29.7, 29.5, 29.1, 27.1, 

22.8, 14.2 ppm.  MS(ES) found m/z = 473.34 for [M + H]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-

1) 257 (76000), 324 (28500) nm. IR (thin film): νmax 3306 (N-H), 1633 (C=O) cm-1. 

 

Synthesis of [Pt(L1)(µ-Cl)]2: using potassium tetrachloroplatinate (0.057 g, 0.137 mmol) and HL1 

(0.050 g, 0.139 mmol). A solution of potassium tetrachloroplatinate(II) (1.0 eq.) in water (2 mL) 

was added to a stirring solution of HL (1.0 eq.) in 2-ethoxyethanol (6 mL) under dinitrogen and 

heated to 80 °C for 16 h in a foil-wrapped flask. Brine (10 mL) was added to the cooled solution 

and the resultant precipitate was collected on a sinter and washed with water (2 ×××× 10 mL) and dried. 

The precipitate was washed with dichloromethane to remove any unreacted ligand. Yield = 0.070 g 

(87%). 

 

Synthesis of [Pt(L2)(µ-Cl)]2: as for [Pt(L1)(µ-Cl)]2, but using potassium tetrachloroplatinate (0.050 

g, 0.120 mmol) and HL2 (0.050 g, 0.120 mmol). The solvent ratio was adjusted to 4:1 by using 8 

mL of 2-ethoxyethanol. The precipitate was washed with dichloromethane to remove any unreacted 

ligand. Yield = 0.068 g (87%). 

 

Synthesis of [Pt(L3)(µ-Cl)]2: as for [Pt(L1)(µ-Cl)]2, but using potassium tetrachloroplatinate (0.097 

g, 0.233 mmol) and HL3 (0100 g, 0.212 mmol). The solvent ratio was adjusted to 4:1 by using 8 

mL of 2-ethoxyethanol.  The precipitate was washed with dichloromethane to remove any unreacted 

ligand. Yield = 0.095 g (64%). 
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Synthesis of [Pt(L1)(DMSO)Cl]: Based on a modified literature methodology.29 Crude [Pt(L1)(µ-

Cl)]2 (0.070 g, 0.059 mmol) was dissolved in a minimum volume of DMSO before being 

precipitated with brine (10 mL), filtered on a sinter, washed with water (2 × 20 mL) and then dried. 

Yield = 0.044 g (55 %). 1H NMR (400 MHz, CDCl3): δH 8.95 (1H, d, 3JHH = 8.8 Hz), 8.29 – 8.27 

(1H, m (with satellites)), 7.94 (1H, d, 3JHH = 8.0 Hz), 7.75 (1H, s), 7.71 – 7.47 (1H, m), 7.58 – 7.56 

(1H, m), 7.51 – 7.47 (1H, d), 7.21 – 7.19 (2H, m), 6.51 (1H, br. t, 3JHH = 5.6 Hz), 3.60 (6H, s (with 

satellites), 3.55 – 3.50 (2H, m), 1.72-1.65 (2H, m), 1.43 – 1.25 (10H, m), 0.89 (3H, t, 3JHH = 7.2 Hz) 

ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC
 166.7, 166.2, 147.1, 146.7, 145.6, 142.8, 133.7, 130.8, 

130.0, 128.6, 127.9, 126.1, 125.5, 124.8, 124.5, 114.3, 46.2, 41.0, 40.4, 31.9, 29.6, 29.3, 27.1, 22.7, 

14.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2672 ppm.  MS(ES) found m/z = 618.9 for [M - 

Cl – DMSO + 2MeOH]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 272 (18440), 281 (16980), 368 

(4190), nm. IR (thin film): νmax 1647 cm-1.   

 

Synthesis of [Pt(L2)(DMSO)Cl]: as for [Pt(L1)(DMSO)Cl], but using [Pt(L2)(µ-Cl)]2 (0.068 g, 

0.026 mmol). Yield = 0.035 g (93%). 1H NMR (400 MHz, CDCl3): δH 8.92 (1H, d, 3JHH = 8.8 Hz), 

8.28 – 8.25 (1H, m), 7.91 (1H, d, 3JHH = 8.0 Hz), 7.70 (1H, s), 7.68 – 7.64 (1H, m), 7.55 – 7.53 (1H, 

m), 7.47 – 7.43 (1H, m), 7.19 – 7.17 (2H, m), 6.66 (1H, br. t, 3JHH = 5.6 Hz), 3.59 (6H, s (with 

satellites)), 3.52 – 3.47 (2H, m), 1.71 – 1.64 (2H, m), 1.43 – 1.22 (18H, m), 0.87 (3H, t, 6.8 Hz) 

ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC
 207.1, 166.6, 166.1, 147.0, 146.6, 145.6, 142.5, 129.9, 

128.5, 127.8, 126.1, 125.4, 124.8, 114.2, 53.5, 46.2, 41.0, 40.3, 31.0, 29.7, 29.6, 29.6, 29.4, 29.3, 

14.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2681 ppm. MS(ES) found m/z = 683.3 for [M – 

DMSO – Cl + MeCN + MeOH]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 281 (20000), 363 

(5480) nm. IR (thin film): νmax 1645, 1543 cm-1. 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 16

Synthesis of [Pt(L3)(DMSO)Cl]: as for [Pt(L1)(DMSO)Cl], but using [Pt(L3)(µ-Cl)]2 (0.095 g, 

0.068 mmol). Yield = 0.071 g (67%). 1H NMR (400 MHz, CDCl3): δH 8.91 (1H, d, 3JHH = 8.8 Hz), 

8.27 – 8.25 (1H, m ), 7.91 (1H, d, 3JHH = 8.4 Hz), 7.71 (1H, s),  7.68 – 7.64 (1H, m),  7.55 – 7.53 

(1H, m), 7.47 – 7.43 (1H, m), 7.19 – 7.17 (2H, m), 6.90 (1H, br. t, 3JHH = 6.0 Hz), 3.58 (6H, s (with 

satellites)), 3.51 – 3.46 (2H, m), 1.70 – 1.63 (2H, m), 1.42 – 1.18 (26H, m), 0.86 (3H, t, 3JHH = 6.8 

Hz) ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2678 ppm. MS(ES) found m/z = 739.4 for [M – 

DMSO – Cl + MeCN + MeOH]+. HR MS found m/z = 813.2514; C34H49N2SO2Cl2
194Pt [M + Cl] 

requires 813.2513. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 265 (10130), 284 (9640), 365 (4460) 

nm. IR (thin film): νmax 1639, 1543 cm-1. 

 

Synthesis of [Pt(L1)(acac)]: [Pt(L1)(DMSO)Cl] (0.044 g, 0.066 mmol) and sodium acetylacetonate 

monohydrate (0.080 g, 0.660 mmol) was dissolved in 3-pentanone (5 mL). The reaction was stirred 

at room temperature for 16 h under dinitrogen. The solvent was removed in vacuo and the crude 

product dissolved in dichloromethane (10 mL) and filtered to remove any insoluble salts. The crude 

product was purified by column chromatography (silica, dichloromethane) where elution of the first 

yellow band with dichloromethane gave the desired product obtained as a dark yellow solid. Yield 

= 0.038 g (89%). 1H NMR (400 MHz, CDCl3): δH 9.43 (1H, d, 3JHH = 8.8 Hz), 8.00 (1H, dd, 3JHH = 

8.4 Hz, 4JHH = 1.2 Hz), 7.70 – 7.64 (2H, m), 7.57 (1H, s), 7.51 – 7.47 (1H, m), 7.33 (1H, dd, 3JHH = 

8.0 Hz, 4JHH = 1.2 Hz), 7.17 – 7.13 (1H, m), 7.02 – 6.98 (1H, m), 6.66 (1H, br. t, 3JHH = 6.0 Hz), 

5.57 (1H, s), 3.55 – 3.50 (2H, m), 2.04 (3H, s), 2.03 (3H, s), 1.75 – 1.67 (2H, m), 1.45 – 1.28 (10H, 

m), 0.91 (3H, t, 3JHH = 6.8 Hz) ppm. 13C{1H} NMR (75.6 MHz, CDCl3): δC
 185.7, 184.0, 169.3, 

166.8, 149.4, 145.7, 144.7, 139.8, 131.0, 129.7, 129.6, 127.1, 126.5, 125.2, 125.1, 124.5, 124.0, 

114.2, 101.9, 40.3, 31.9, 29.8, 29.4, 28.5, 27.3, 27.2, 22.8, 14.2 ppm. 195Pt NMR (107.51 MHz, 

CDCl3): -2776 ppm.  MS(ES) found m/z = 652.2 for [M - H]-. UV-vis (CHCl3): λmax (ε / dm3 mol-1 

cm-1) 300 (9920), 349 (2810), 368 (3126), 423 (2420) nm. IR (thin film): νmax 1738, 1643, 1582 cm-

1.    
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Synthesis of [Pt(L2)(acac)]: as [Pt(L1)(acac)], but using [Pt(L2)(DMSO)Cl] (0.035 g, 0.048 mmol) 

and sodium acetylacetonate monohydrate (0.059 g, 0.484 mmol). Yield = 0.031 g (90%). 1H NMR 

(500 MHz, CDCl3): δH 9.48 (1H, d, 3JHH = 9.0 Hz), 8.03 (1H, d, 3JHH = 8.0 Hz), 7.72 – 7.67 (2H, 

m), 7.63 (1H, s), 7.53 – 7.50 (1H, m), 7.40 – 7.38 (1H, d, 3JHH = 7.5 Hz), 7.19 – 7.16 (1H, m), 7.05 

– 7.02 (1H, m), 6.48 (1H, br. t, 3JHH = 6.0 Hz), 5.57 (1H, s), 3.56 – 3.52 (2H, m), 2.04 (3H, s), 2.03 

(3H, s), 1.73 – 1.67 (2H, m), 1.35 – 1.22 (18H, m), 0.83 – 0.89 (3H, t, 3JHH = 7.5 Hz) ppm. 13C{1H} 

NMR (75.6 MHz, CDCl3): δC
 185.7, 184.1, 169.5, 166.8, 149.5, 145.7, 144.7, 139.9, 131.1, 129.8, 

129.6, 127.2, 126.6, 125.2, 125.1, 124.5, 124.0, 114.2, 101.9, 40.4, 32.0, 29.7, 29.4, 28.5, 27.3, 

27.2, 22.8, 14.2 ppm. 195Pt NMR (107.51 MHz, CDCl3): -2779 ppm. MS(ES) found m/z = 708.5 for 

[M – H]-. HR MS found m/z = 725.2841; C33H43N2O4
194Pt [M + OH] requires 725.2844. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 284 (4180), 368 (2910) nm. IR (thin film): νmax 1668, 1523 cm-1.    

 

Synthesis of [Pt(L3)(acac)]: as [Pt(L1)(acac)], but using [Pt(L3)(DMSO)Cl] (0.071 g, 0.091 mmol) 

and sodium acetylacetonate monohydrate (0.111 g, 0.911 mmol). Yield = 0.034 g (49%). 1H NMR 

(400 MHz, CDCl3): δH 9.53 (1H, d, 3JHH = 8.8 Hz), 8.07 (1H, d, 3JHH = 8.4 Hz), 7.77 – 7.70 (3H, 

m), 7.57 – 7.53 (1H, m), 7.47 (1H, dd, 3JHH = 7.2 Hz, 4JHH = 1.2 Hz), 7.24 – 7.20 (1H, m), 7.12 – 

7.08 (1H, m), 6.29 (1H, br. t, 3JHH = 5.6 Hz), 5.58 (1H, s), 3.59 – 3.54 (2H, m), 2.05 (3H, s), 2.04 

(3H, s), 1.74 – 1.67 (2H, m), 1.46 – 1.24 (26H, m), 0.88 (3H, t, 3JHH = 7.2 Hz) ppm. 195Pt NMR 

(107.51 MHz, CDCl3): -2791 ppm. MS(ES) found m/z = 764.4 for [M - H]-. UV-vis (CHCl3): λmax 

(ε / dm3 mol-1 cm-1) 263 (7950), 293 (7580), 348 (2410), 357 (2720), 421 (1560) nm. IR (thin film): 

νmax 1669, 1548 cm-1.    

 

Synthesis of [Pt(L1)(8-Q)]: Based on a modified literature methodology,30  using 

[Pt(L1)(DMSO)Cl] (0.033 g, 0.049 mmol), Na2CO3 (0.010 g, 0.099 mmol) and 8-hydroxyquinoline 

(0.008 g, 0.054 mmol). The red solution was concentrated in vacuo and diethyl ether (5 mL) was 
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added. The precipitate was filtered, washed with diethyl ether (2 × 10 mL) to remove excess 8-

hydroxyquinoline, and methanol (1 × 5 mL). The solid was dissolved in dichloromethane and dried 

in vacuo to afford a red solid. Yield = 0.026 g, (76%). 1H NMR (400 MHz, CDCl3): δH 9.64 (1H, d, 

3JHH = 8.4 Hz), 8.95 (1H, m), 8.32 (1H, d, 3JHH = 8.4 Hz), 7.90 (1H, d, 3JHH = 8.0 Hz), 7.75 – 7.71 

(1H, m), 7.57 – 7.52 (2H, m), 7.43 – 7.38 (2H, m), 7.30 – 7.25 (2H, m), 7.18 – 7.12 (2H, m), 7.07 – 

7.04 (1H, m), 6.97 (H, d, 3JHH = 7.6 Hz), 6.88 – 6.85 (1H, m), 3.58 – 3.48 (2H, m), 1.81 – 1.72 (2H, 

m), 1.49 – 1.25 (10H, m), 0.92 (3H, t, 3JHH = 6.8 Hz) ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -

2998 ppm. MS(ES) found m/z = 753.3 for [M + MeOH + Na]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 

cm-1) 280 (10230), 370 (2530), 505 (750) nm. IR (thin film): νmax 1645, 1539 cm-1.   

 

Synthesis of [Pt(L2)(8-Q)]: as [Pt(L1)(8-Q)], but using [Pt(L2)(DMSO)Cl] (0.052 g, 0.072 mmol), 

Na2CO3 (0.038 g, 0.360 mmol) and 8-hydroxyquinoline (0.021 g, 0.145 mmol). Yield = 0.033 g 

(61%). 1H NMR (400 MHz, CDCl3): δH 9.61 (1H, d, 3JHH = 8.4 Hz), 8.94 – 8.88 (1H, m with 

satellites), 8.31 (1H, d, 3JHH = 8.0 Hz), 7.86 (1H, d, 3JHH = 8.0 Hz), 7.71 – 7.67 (1H, m), 7.56 – 7.50 

(3H, m), 7.39 – 7.35 (2H, m), 7.27 – 7.24 (1H, m) 7.14 – 6.97 (4H, m), 6.82 – 6.79 (1H, m), 3.57 - 

3.49 (2H, m), 1.81 – 1.75 (2H, m), 1.48 – 1.25 (18H, m), 0.89 (3H, t, 3JHH = 6.8 Hz) ppm. 195Pt 

NMR (107.51 MHz, CDCl3): δPt -2972 ppm. MS(ES) found m/z = 777.8 for [M + Na]+. UV-vis 

(CHCl3): λmax (ε / dm3 mol-1 cm-1) 265 (8640), 368 (2640), 506 (750) nm. IR (thin film): νmax 1646, 

1539 cm-1.    

 

Synthesis of [Pt(L3)(8-Q)]: as [Pt(L1)(8-Q)], but using [Pt(L3)(DMSO)Cl] (0.029 g, 0.037 mmol), 

Na2CO3 (0.020 g, 0.186 mmol) and 8-hydroxyquinoline (0.011 g, 0.074 mmol). Yield = 0.021 g 

(68%). 1H NMR (400 MHz, CDCl3): δH 9.64 (1H, d, 3JHH = 8.8 Hz), 8.93 (1H, d (with satellites), 

3JHH = 3.2 Hz), 8.31 (1H, d, 3JHH = 8.0 Hz), 7.88 (1H, d, 3JHH = 8.0 Hz), 7.74 – 7.70 (1H, m), 7.56 – 

7.52 (2H, m), 7.41 – 7.36 (3H, m), 7.29 – 7.24 (1H, m) 7.14 – 7.13 (2H, m), 7.06 – 7.03 (1H, m), 

6.97 (1H, d, 3JHH = 7.6 Hz), 6.85 – 6.82 (1H, m), 3.56 - 3.45 (2H, m), 1.80 – 1.71 (2H, m), 1.45 – 
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1.19 (26H, m), 0.88 (3H, t, 3JHH = 7.2 Hz) ppm. 195Pt NMR (107.51 MHz, CDCl3): δPt -2977 ppm. 

MS(ES) found m/z = 833.5 for [M + Na]+. UV-vis (CHCl3): λmax (ε / dm3 mol-1 cm-1) 352 (2750), 

369 (2590), 438 (1080), 504 (1190) nm. IR (thin film): νmax 1670, 1597 cm-1. 
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