Accepted Manuscript

Tetrahydroquinoline-based tricyclic amines as potent and selective agonists of the 5-HT $_{\rm 2C}$ receptor

Thomas O. Schrader, Michelle Kasem, Albert Ren, Konrad Feichtinger, Bilal Al Doori, Jing Wei, Chunrui Wu, Huong Dang, Minh Le, Joel Gatlin, Kelli Chase, Jenny Dong, Kevin T. Whelan, Carleton Sage, Andrew J. Grottick, Graeme Semple

PII: DOI: Reference:	S0960-894X(16)31156-8 http://dx.doi.org/10.1016/j.bmcl.2016.11.016 BMCL 24411
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date: Revised Date: Accepted Date:	29 September 20164 November 20167 November 2016

Please cite this article as: Schrader, T.O., Kasem, M., Ren, A., Feichtinger, K., Al Doori, B., Wei, J., Wu, C., Dang, H., Le, M., Gatlin, J., Chase, K., Dong, J., Whelan, K.T., Sage, C., Grottick, A.J., Semple, G., Tetrahydroquinolinebased tricyclic amines as potent and selective agonists of the 5-HT_{2C} receptor, *Bioorganic & Medicinal Chemistry Letters* (2016), doi: http://dx.doi.org/10.1016/j.bmcl.2016.11.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Tetrahydroquinoline-based tricyclic amines as potent and selective agonists of the 5-HT _{2C} receptor	Leave this area blank for abstract info.
Thomas O. Schrader, Michelle Kasem, Albert Ren, Konrad Fei Huong Dang, Minh Le, Joel Gatlin, Kelli Chase, Jenny Dong, I Grottick, and Graeme Semple $R^{2} + H_{n} + $	chtinger, Bilal Al Doori, Jing Wei, Chunrui Wu Kevin T. Whelan, Carleton Sage, Andrew J. \downarrow_{N} EC ₅₀ = 0.2 nM ivo (1 mg/kg, PO)

Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

Tetrahydroquinoline-based tricyclic amines as potent and selective agonists of the 5-HT_{2C} receptor

Thomas O. Schrader ^{a,}*, Michelle Kasem ^a, Albert Ren ^a, Konrad Feichtinger ^a, Bilal Al Doori ^a, Jing Wei ^b, Chunrui Wu ^b, Huong Dang ^a, Minh Le ^a, Joel Gatlin ^a, Kelli Chase ^a, Jenny Dong ^a, Kevin T. Whelan ^a, Carleton Sage ^a, Andrew J. Grottick ^a, and Graeme Semple ^a

^aDepartment of Medicinal Chemistry, Arena Pharmaceuticals, 6154 Nancy Ridge Drive, San Diego, CA, 92121, USA ^bWuXi AppTec (Wuhan) Co Ltd., 666 Gaoxin Road, East Lake High-tech Development Zone, Wuhan 430075, China

ARTICLE INFO

Article history: Received Revised Accepted Available online

Keywords: 5-HT_{2C} agonists Lorcaserin Tetrahydroquinoline CNS drugs Tricyclic amines ABSTRACT

The syntheses, structure-activity relationships (SARs), and biological activities of tetrahydroquinoline-based tricyclic amines as 5-HT_{2C} receptor agonists are reported. An early lead containing a highly unique 6,6,7-ring system was optimized for both *in vitro* potency and selectivity at the related 5-HT_{2B} receptor. Orally bioactive, potent, and selective 6,6,6-tricyclic 5-HT_{2C} agonists were identified.

2009 Elsevier Ltd. All rights reserved.

By the late 1990s, significant evidence had emerged concerning the role of the 5-HT_{2C} receptor (5-HT_{2C}R) in mediating satiety and food intake.¹ The advent of 5-HT receptor subtype-selective ligands was crucial to this understanding.² In particular, rodent studies using selective 5-HT_{2C}R antagonists revealed the anorectic effects of the previously FDA-approved weight loss agents fenfluramine (Pondimin, figure 1) and its Sisomer dexfenfluramine (Redux) were mediated, in part, by potent agonism of the 5-HT_{2C}R by the drugs' primary metabolites norfenfluramine and nordexfenfluramine respectively.³ These data were consistent with a previous human clinical study which demonstrated that the anorectic effect of dexfenfluramine was attenuated with the nonselective 5-HT_{2C}R antagonist ritanserin.⁴ Other antagonist experiments performed in rodents with the nonselective 5-HT_{2C} agonist *meta*-chlorophenylpiperazine (mCPP), another clinically validated anorectic, confirmed these results.⁵ Additional studies involving variably selective 5-HT_{2C} ligands,⁵ as well as data obtained from 5-HT_{2C} receptor knockout mice,⁶ suggested that agonism of the 5-HT_{2C} receptor was a viable mechanism for the treatment of obesity.

Complicating matters was the 1997 withdrawal⁷ of both fenfluramine and dexfenfluramine due to drug related cardiac fibroses and related valvulopathies,⁸ side-effects later associated with agonism of the related 5-HT_{2B} receptor (5-HT_{2B}R) in cardiac

tissue.9 Other adverse events including hallucinations¹⁰ and cardiovascular effects,¹¹ are associated with agonism of another closely related target, the 5-HT_{2A} receptor (5-HT_{2A}R). These findings led to an industry-wide effort to discover and develop selective 5-HT_{2C}R agonists which did not affect 5-HT_{2B}R and 5- $HT_{2A}R$ function.¹² The result was the 2012 FDA approval of the 5-HT_{2C}R selective agonist lorcaserin (1, Belviq[®])¹³ for weight management in obese (BMI >30) or overweight (BMI 27-30) patients with a weight-related medical condition.¹⁴ In addition to obesity, selective 5-HT_{2C}R agonists have the rapeutic potential for a wide variety of neuropsychiatric disorders.¹⁵ To this end, we report the identification of a series of tetrahydroquinoline-based tricyclic amines as potent and selective agonists of the $5-HT_{2C}$ receptor. Details of the syntheses and biological activities of these compounds are provided herein.

* Corresponding author. Tel.: +1-858-453-7200; fax: +1-858-453-7210; e-mail: tschrader619@gmail.com

Early in our investigations the racemic 6,6,7-tricyclic amine, 1.2.3.4.5.5a.6.7-octahydro-[1,4]diazepino[1,2-a]quinoline (2,scheme 1) was identified as a moderately potent agonist of the 5- $HT_{2C}R$ (EC₅₀ = 130 nM in IP₃ accumulation assay). The synthesis of this novel compound starts from commercially available 2-quinolinemethanamine (3). Benzamide formation via amide coupling was followed by hydrogenation to give the racemic tetrahydroquinoline intermediate (4) in 53% yield (two steps). Selective alkylation of the aniline nitrogen was accomplished by heating a mixture of 4 and 3-bromopropan-1-ol in the absence of solvent at 120 °C for 1 h to yield compound 5. Conversion of the alcohol (of 5) to the bromide is accomplished by treatment of 5 with aqueous HBr which gives concomitant deprotection of the benzamide group. Finally, base promoted cyclization forms the C-ring to produce 2. To provide some initial analogs to probe aromatic ring substitution SARs, the racemic mono-chlorinated compounds 6 and 7 were prepared by protecting the free nitrogen of 2 by trifluoracetylation, reaction with NCS, and deprotection with methanolic ammonia.

Scheme 1. Reagents and conditions: (a) PhCOOH, EDCHCl, DMAP, DCM, 40 °C; (b) H₂, PtO₂, MeOH, rt; (c) 3-bromopropan-1-ol, 120 °C; (d) 48 wt.% aq. HBr, rt; (e) Cs_2CO_3 , ACN, rt 15 h, 81%, (f) $(CF_3CO)_2O$, Et₃N, DCM, rt; (g) NCS, ACN, 65 °C; (h) NH₃, MeOH, rt.

We previously reported a general asymmetric route to this class of fused tricyclic (R)-2,3,4,4a,5,6-hexahydro-1H-pyrazino[1,2-a]quinolines and (R)-1,2,3,4,5,5a,6,7-octahydro-[1,4]diazepino[1,2-a]quinolines.¹⁶ Starting from various N-Boc-o-toluidines (**8**, Table 1) and (S)-tert-butyldimethyl(oxiran-2-ylmethoxy)silane (**9**), the enantiopure analogs **2**R, **10a-c,e,i-j**, as well as 6,6,6-tricylic compound **11** were prepared. The synthesis of **2**R by this method served as a stereochemical structure proof for the individual enantiomers of **2**, which had been originally separated via chiral HPLC. Additional SAR analogs **10d,f-g** were prepared by chlorination of **10c** and **10e**. The benzylated analog **10h** was prepared from **10e** by a four step sequence involving bromination with NBS, Boc-protection, Negishi coupling, and Boc-deprotection (see Supplementary Material).

To assess 5-HT_{2C}R agonism, as well as potential valvulopathogenic activities related to 5-HT_{2B}R activation, functional activities (pEC₅₀ and E_{max} values) for prepared compounds were determined in IP₃ accumulation assays.¹ As shown in Table 1, the agonist activity of racemic compound 2 at both 5-HT_{2C}R and 5-HT_{2B}R was entirely attributed to the R-enantiomer enantiomer (2R). Other SAR analyses revealed most single substitutions of fluoro (10a), chloro (6, 7) and methoxy (10e,j) are well tolerated and did not result in significant changes in 5-HT_{2C}R activity as compared with the parent compound 2R. Exceptions are the methoxy analogs 10b $(pEC_{50} = 6.2)$ and **10i** $(pEC_{50} = 6.0)$ which exhibited decreased potency. However, in the case of 10b, 5-HT_{2C}R activity is returned by adding one (10c, $pEC_{50} = 7.4$) or two (10d, $pEC_{50} =$ 8.0) additional chloro substituents. A similar potency increase at the 5-HT_{2C}R is observed when the methoxy analog 10e (pEC₅₀ = 7.1) is chlorinated at the position para to the aniline nitrogen (10g, pEC₅₀ = 8.4). Further elaboration at the *para* position with a larger benzyl substituent decreased activity significantly (10h, pEC₅₀ = <6) at both receptors. Of particular note is the increase in 5-HT_{2C}R potency observed with the 6,6,6-tricyclic analog 11 (pEC₅₀ = 8.6). While none of the compounds displayed meaningful improvements in 5-HT_{2C}R versus 5-HT_{2B}R selectivity as compared with 2*R*, analogs which contained a chloro substituent at the *ortho* position relative to the aniline nitrogen (7, 10d,f) led to significant decreases in receptor intrinsic activity ($E_{max} \le 20\%$) at the 5-HT_{2B}R. The high binding potency of partial agonist 10d ($E_{max} < 5\%$) was confirmed in [¹²⁵I]-DOI competition binding assays (5-HT_{2B}R pK_i = 8.3).

Table 1. 5-HT_{2C}R and 5-HT_{2B}R functional activities in intracellular IP₃accumulation assay for mCPP and tetrahydroquinoline-based tricycliccompounds 2, 6,7, 10, and 11.

$\begin{array}{c} \begin{array}{c} \begin{array}{c} \text{optional} \\ \text{halogenation} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{NH} \\ \text{Boc} \end{array} \\ \begin{array}{c} \text{ref. 14} \\ \text{functionalization} \\ \end{array} \\ \begin{array}{c} \text{functionalization} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{NH} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{NH} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{3} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \text{R}^{4} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array}	R ² R ³ R ⁴ 2,6,7			
<u>5-HT_{2C}R 5-HT</u> 2	5-HT _{2B} R			
$Cmpd R^1 R^2 R^3 R^4 pEC_{50}{}^a E_{max}{}^b pEC_{50}{}^a$	E_{\max}^{b}			
mCPP 7.9 [0.1] 90 7.4 [0.6]	22			
2 H H H H 6.9 [0.1] 99 6.0 [0.1]	60			
2 <i>R</i> H H H H 7.2 [0.2] 86 6.3 [0.1]	53			
2 <i>S</i> H H H H <5 <5				
6 H Cl H H 6.7 [0.7] 83 6.2 [0.2]	71			
7 H H H Cl 7.6 [0.3] 85 7.0 [0.1]	20			
10a H F H H 7.6 [0.2] 94 6.2 [0.2]	59			
10b H OMe H H 6.2 [0.4] 80 5.9 [0.5]	76			
10c H OMe Cl H 7.4 [0.2] 91 6.8 [0.2]	23			
10d H OMe Cl Cl 8.0 [0.3] 80 N.D. ^c	<5			
10e H H OMe H 7.1 [0.3] 95 6.2 [0.1]	37			
10f H H OMe Cl 6.8 [0.9] 72 8.1 [1.3]	7			
10g H Cl OMe H 8.4 [0.3] 85 7.2 [0.3]	84			
10h H Bn OMe H <6 <6				
10i OMe H H H 6.0 [1.5] 92 6.4 [1.5]	74			
10j H H H OMe 7.5 [0.2] 17 7.0 [0.8]	55			
11 H H H H 8.6 [0.6] 97 7.2 [0.2]	28			

^{*a*}pEC₅₀ values are geometric means of at least two experiments. Numbers in brackets are 95% confidence intervals. ^{*b*} E_{max} % based on maximum asymptote at 10 μ M relative to serotonin (5-HT). ^{*c*}Due to low intrinsic activity ($E_{max} < 5\%$), pEC₅₀ was not determined (N.D).

The finding that 6,6,6-tricyclic compound 11 displayed the most potent agonist activity at the 5-HT_{2C}R without negatively impacting selectivity versus the 5-HT_{2B}R prompted further investigations of this scaffold. In order to efficiently prepare SAR analogs (12a-c,h-x, Scheme 2) with varied aromatic ring substituents, we opted to prepare the compounds as racemates using chemistry developed by Bernotas.¹⁸ In this method, the lithium anion of ethyl propiolate is reacted with orthofluorobenzyaldehydes (13a-g), and the resultant alcohols are rearranged to enones 14a-g by treatment with Et₃N in dioxane at 60 °C. A key one-step double cyclization is accomplished by reaction of enones 14a-g with 1,2-diaminoethane in DMF at 60 °C to provide tricyclic ketones 15a-g. Compounds 12a-c were prepared from 15a-c by ketone removal with TFA and Et₃SiH followed by amide reduction with either LiAlH₄ or BH₃THF. Chlorination of 12c with NCS gave the bis-halogenated compound 12h. Methyl analog 12j was prepared from $15d (R^1 =$

Br) by palladium-catalyzed coupling with trimethlboroxine followed by reductions of the carbonyl groups. The brominated Boc-protected intermediates 16d-g, were also prepared from 15dg respectively by the ketone removal/amide reduction sequence, with an added Boc-protection. The bromine atoms served as handles to perform palladium-catalyzed coupling reactions, which delivered analogs 12i,k-t after acid-mediated Bocdeprotections. Aldehyde 17 was prepared from 16d via lithiumbromine exchange and formylation with DMF. Reduction of the aldehyde (17) with NaBH₄ and conversion to the benzyl chloride (18) allowed the synthesis of benzyl analogs 12u-v by Suzuki couplings. Lastly, conversion of the bromine atom of 16d to phenol 19 was accomplished by palladium-catalyzed pinacolboration followed by oxidative deboronation. Alkylation of 19 with cyclobutyl bromide or copper-mediated coupling with phenylboronic acid gave 12w and 12x after Boc-group removal with 4N HCl in dioxane.

Scheme 2. Reagents and conditions: (a) ethyl propiolate, LDA, THF, 0 °C, 0.5 h then 13a-g, THF, -78 °C to rt; (b) Et_3N , dioxane, 60 °C; (c) 1,2-diaminoethane, DMF, 60 °C; (d) TFA, Et_3SiH , rt; (e) $LiAlH_4$, THF, rt; (f) BH₃ THF, reflux; (g) Trimethylboroxine, cat. Pd(PPh₃)₄, K₂CO₃, dioxane, 100 °C; (h) NCS, DCM, rt; (i) Boc₂O, DCM, rt; (j) Pd-catalyzed coupling reactions, see Supplementary Material; (k) TFA, DCM, rt; (l) 4N HCl, dioxane, rt; (m) *n*-BuLi, THF, -78 °C, 0.75 h then DMF; (n) NaBH₄, EtOH, 0 °C to rt; (o) MsCl, Et_3N , DCM, rt; (p) ArB(OH)₂, cat. Pd(dppf)Cl₂DCM, Na₂CO₃, dioxane, H₂O, 90 °C; (q) bis(pinacolato)diboron, cat. Pd(dppf)Cl₂DCM, KOAc, THF, 100 °C; (r) 30% aq. H₂O₂, THF, rt; (s) cyclobutyl bromide, K₂CO₃, DMF, 65 °C; (t) PhB(OH)₂, Et_3N , Cu(OAc)₂, DCM, rt.

Analogs **20a-c**, which contained gem-dimethyl substituents on the saturated B-ring of the tricycle, were prepared as shown in scheme 3. In this sequence, intramolecular reductive aminations of nitrophenyl ketones **21a-b** produced the tetrahydroquinoline esters **22a-b**. Alkylation of the nitrogen atom with ethyl bromoacetate followed by LiAlH₄ reduction gave diols **23a-b**. The C-rings are formed via reaction of **23a-b** with MsCl and DIEA, followed by amination with aqueous ammonia to deliver tricycles **20a-b**. An additional molecule (**20c**) containing a chloro-substituent adjacent the aniline nitrogen was prepared from **20b** by chlorination with NCS.

The identification of $5\text{-HT}_{2C}R$ agonists in the 6,6,6-tricyclic series which displayed exceptional functional selectivity over the $5\text{-HT}_{2B}R$ encouraged us to reexamine a number of similar analogs in the 6,6,7-series. Therefore compounds **24** and **25** (Scheme 4) were prepared. Expanding the scope of the Berntoas¹⁸ methodology, the synthesis of the racemic 6,6,7-ring compound **24** employed 1,2-diaminopropane in the double-cyclization reaction of **14d** to give ketone **26** in 42% yield. The remaining steps were performed in similar fashion as described previously. The enantiopure compound **25**, was prepared from previously reported tricycle **27**¹⁶ by a Suzuki coupling with benzyltrifluoroborate and benzyl deprotection under transfer hydrogenation conditions.

Scheme 3. Reagents and conditions: (a) 10% Pd/C, H₂, MeOH, rt; (b) ethyl bromoacetate, K₂CO₃, ACN, 80-100 °C: (c) LiAlH₄, THF, rt; (d) MsCl, DIEA, DCM; (e) NH₃, H₂O, ACN, 80 °C; (f) NCS, DCM, rt.

Scheme 4. Reagents and conditions: (a) 1,3-diaminopropane, DMF, 60 °C; (b) TFA, Et₃SiH, rt; (c) BH₃THF, reflux; (d) Boc₂O, DCM, rt; (e) (cyclobutylmethyl)zinc bromide, cat. Pd(dppf)Cl₂DCM, THF, 90 °C; (f) 4N HCl, dioxane, rt; (g) Potassium benzyltrifluoroborate, cat. Pd(OAc)₂, RuPhos, K₂CO₃, PhMe, H₂O, 115 °C; (h) 10% Pd/C, NH₄⁺COO⁻, MeOH, 40 °C.

5-HT_{2C}R and 5-HT_{2B}R functional activities for second generation 6,6,6- and 6,6,7-tricyclic compounds are presented in Table 2. 5-HT_{2A}R functional activities and binding affiinities $(pKi)^{19}$ for all 5-HT₂ receptors are included for potent 5-HT_{2C}R agonists (pEC₅₀ > 8) which exhibited significantly greater potencies versus the 5-HT_{2B}R ($\Delta pEC_{50}[2C-2B] \ge 2.7$). Similar to trends observed for the compounds in Table 1, the methoxy subsituent *para* (\mathbb{R}^2) to the aniline nitrogen (**12a**, pEC₅₀ = 6.6) resulted in decreased 5-HT_{2C}R activity versus the enantiopure parent compound (11, $pEC_{50} = 8.6$) while the para (R²) fluoro substituent (12i, $pEC_{50} = 8.5$) had little effect. However, a small increase in activity was observed with the meta (R^3) fluoro analog 12c (pEC₅₀ = 9.1). Substitutions of methyl (12b) and chloro (12h) at the position *ortho* (\mathbb{R}^4) to the aniline nitrogen led to a significant decrease in 5-HT_{2B}R signaling (E_{max}) as was also observed in the 6,6,7-series. While smaller substitutions at all aromatic positions did not result in any significant improvement in 5-HT_{2C}R versus 5-HT_{2B}R selectivities, an increase in alkyl chain length from methyl (12j, $\Delta pEC_{50}[2C-2B] = 1.2$) to propyl

(12k, $\Delta pEC_{50}[2C-2B] = 3.0$) at the R¹ position had a significant impact. In addition, the $\Delta pK_i[2C-2B]$ and $\Delta pK_i[2C-2A]$ binding selectivities observed for 12k (1.8 and 1.2 respectively) provide an adequate safety margin for avoiding 5-HT_{2B}R and 5-HT_{2A}R agonism related side effects.²¹ Examination of the *n*-propyl substituent at the alternate R² (12s) and R³ positions (12t) did not yield the same results. This discovery led us to further probe the SARs at the R¹ position. Though R¹ substitutions of cyclobutyl (12l) and phenyl (12n) did not show increases in 5-HT_{2C}R receptor activities or selectivities over the 5-HT_{2B}R, extension of these substitutions with a methylene linker (12m,0-p) did improve the compound profiles. However, the benzyl substituent at R¹ (120-p) led to a decrease in 5-HT_{2C}R versus 5-HT_{2A}R binding (pK*i*) selectivities (Δ pK_{*i*}[2C-2A] < 0.4). The cyclobutylmethyl and benzyl substituents at R¹ were also studied in the 6,6,7-series (24 and 25) but the results were not as impactful. Similar to the benzyl substituent in 6,6,6-analogs 120p, the methylene linked 2-thiophene (12u) and 1,3-benzodioxole (12v) at R¹ showed good 5-HT_{2C}R versus 5-HT_{2B}R receptor selectivities but suffered from decreased selectivities over the 5-HT_{2A}R. Other R¹ variants which incorporated sulfur (12r) or oxygen (12q,w-x) linkers, were not as advantageous as the analogous carbon linked R¹ substitutions.

Table 2. 5-HT₂R functional activities in intracellular IP₃ accumulation assays and [^{125}I]-DOI competition binding (pK_i) data for mCPP and tetrahydroquinoline-based tricyclic compounds **11**, **12**, **20**, **24**-25.

					5-HT _{2C} R			5-HT _{2B} R			5-HT _{2A} R		
Cmpd	\mathbb{R}^1	\mathbb{R}^2	\mathbb{R}^3	\mathbb{R}^4	pEC ₅₀ ^a	$E_{\max}^{\ \ b}$	pK_i^a	pEC ₅₀ ^a	$E_{\max}^{\ \ b}$	pK_i^a	pEC ₅₀ ^a	$E_{\max}^{\ \ b}$	pK_i^a
mCPP					7.9 [0.1]	90	8.1 [<0.1]	7.4 [0.6]	22	8.0 [0.1]	6.6 [0.2]	12	7.6 [<0.1]
11	Н	Н	Н	Н	8.6 [0.6]	97		7.2 [0.2]	28				
12a	Н	OMe	Н	Н	6.6 [0.7]	101		6.1 [<0.1]	57				
12b	Н	Н	Н	Me	7.2 [0.7]	86		7.3 [1.8]	10				
12c	Н	Н	F	Н	9.1 [0.2]	100		7.5 [0.2]	38				
12h	Н	Н	F	Cl	8.2 [0.2]	94		8.7 [2.3]	12				
12i	Н	F	Н	Н	8.5 [0.4]	96		6.9 [0.3]	44				
12j	Me	Н	Н	Н	8.7 [0.5]	108		7.5 [0.2]	65				
12k	<i>n</i> -Pr	Н	Н	Н	9.7 [0.2]	101	9.4 [0.1]	6.7 [0.1]	80	7.6 [0.2]	6.3 [0.3]	104	8.2 [0.1]
121	cВu	Н	Н	Н	8.5 [0.3]	110		7.4 [0.3]	112				
12m	CH ₂ cBu	Н	Н	Н	8.5 [0.2]	106	9.2 [0.1]	5.7 [0.4]	31	7.2 [0.2]	5.7 [0.2]	135	8.1 [0.1]
12n	Ph	Н	Н	H	6.9 [0.1]	97		5.6 [0.4]	72				
120	CH_2Ph	Н	Н	Н	8.8 [0.2]	104	9.2 [0.1]	5.6 [0.5]	20	7.4 [0.2]	6.9 [0.2]	85	8.8 [0.1]
12p	CH_2Ph	F	Н	Н	9.0 [0.5]	102	9.4 [0.3]	6.2 [0.4]	32	7.9 [0.2]	7.0 [0.8]	114	9.2 [0.3]
12q	CH ₂ OMe	Н	Н	Н	7.7 [0.6]	113		5.9 [0.3]	77				
12r	SEt	Н	Н	Н	9.5 [0.2]	101		7.1 [0.2]	46				
12s	Н	<i>n</i> -Pr	Н	Н	7.7 [0.3]	100		6.2 [0.9]	9				
12t	Н	Н	<i>n</i> -Pr	Η	7.2 [0.9]	87		6.7 [0.2]	19				
12u	Ar^1	н	Η	Η	9.1 [0.7]	106	9.5 [0.4]	6.4 [0.3]	24	7.6 [0.6]	7.1 [0.6]	94	7.6 [0.6]
12v	Ar ²	Н	Η	Η	8.2 [0.4]	100	9.1 [0.1]	5.4 [0.5]	26	6.9 [0.6]	6.7 [0.2]	64	8.8 [0.2]
12w	O-cBu	Н	Н	Н	7.7 [0.1]	98		6.1 [0.1]	9				
12x	OPh	Н	Н	Н	7.0 [3.3]	112		5.2 [<0.1]	94				
20a					5.9 [0.4]	84		<5					
20b				Η	<6			<6					
20c				Cl	<5		6.1 [0.2]	7.0 [1.0]	84	8.2 [0.6]	<5		5.7 [0.3]
24	CH_2cBu	Н	Н	Н	6.9 [0.2]	116		<6					
25	CH ₂ Ph	F	Н	Н	7.7 [0.1]	108		5.1 [0.6]	71				

 a pEC₅₀ and pK_i values are geometric means of at least two experiments. Numbers in brackets are 95% confidence intervals. ${}^{b}E_{max}$ % based on maximum asymptote at 10 μ M relative to serotonin (5-HT).

Exploration of gem-dimethyl substitutions on the aliphatic B ring revealed that compounds **20a-c** displayed little or weak agonism on the 5-HT_{2C}R. Interestingly, the chlorinated analog **20c** did display appreciable agonism at the 5-HT_{2B}R (pEC₅₀ = 7.0, $E_{\text{max}} = 84\%$) with no agonism observed at either the 5-HT_{2C}R or the 5-HT_{2A}R. Good binding (pK*i*) selectivities were also observed for **20c** (Δ pK_{*i*}[2B-2C] = 2.1 and Δ pK_{*i*}[2B-2A] = 2.5).

To our knowledge this represents the first example of a selective $5\text{-HT}_{2B}R$ agonist and further characterization of this molecule (**20c**) both *in vitro* and *in vivo* may be warranted.

To assess both pharmacodynamic and pharmacokinetic properties of identified potent and selective $5-HT_{2C}R$ agonists **12k** and **12m**, their effects on acute food intake in male Sprague-

Dawley rats were measured (Figure 2). Oral doses of **12k** (3 mg/kg) and **12m** (10 mg/kg) both produced full suppression (99%) of food intake measured at 1 h. At doses of 1 mg/kg compound **12k** produced a 66% decrease in food intake as compared to a 27% decrease observed for **12m**. In a separate study (see Supplementary Material), the effects of compound **12m** (5 mg/kg) were abrogated by preadministration (IP) with the selective 5-HT_{2C}R antagonist SB242084 (1 mg/kg).²² These studies demonstrated compounds **12k** and **12m** were orally bioavailable, and doses of as low as 1 mg/kg provided adequate brain exposures to elicit 5-HT_{2C}R mediated hypophagia.

In conclusion, the syntheses, SARs, and biological activities of a series of tetrahydroquinoline-based tricyclic amines as $5-HT_{2C}R$ receptor agonists was reported. An early lead containing a novel 6,6,7-ring system was optimized for *in vitro* potency as well as selectivity versus the related $5-HT_{2B}R$ and $5-HT_{2A}R$. Ultimately, two potent, selective, orally bioactive 6,6,6-tricyclic $5-HT_{2C}R$ agonists were identified. Further evaluation of these and other structurally related molecules will be disseminated in future publication(s).

References and notes

- (a) Burke, L. K.; Heisler, L. K. J. Neuroendocrinol. 2015, 27, 389-398. (b) Smith, B. M.; Thomsen, W. J.; Grottick, A. J. Expert Opin. Invest.Drugs 2006, 15, 257-266. (c) Bickerdike, M. J.; Vickers, S. P.; Dourish, C. T. Diabetes, Obes. Metab. 1999, 1, 207-214.
- 2. Vickers, S. P.; Dourish, C. T. Curr. Opin. Invest. Drugs 2004, 5, 377–88.
- Vickers, S. P.; Dourish, C.T.; Kennett, G.A. *Neuropharmacology*, 2001, 41, 200-209.
- 4. Goodall, E. M.; Cowen, P. J.; Franklin, M.; Silverstone, T. *Psychopharmacology* **1993**, 112, 461-466.
- 5. Bickerdike, M. J. Curr. Top. Med. Chem. 2003, 3, 885-897.
- (a) Tecott, L. H.; Sun, L. M.; Akana, S. F.; Strack, A. M.; Lowenstein, D. H.; Dallman, M. F.; Julius, D. *Nature* 1995, *374*, 542-546. (b) Vickers, S. P.; Clifton, P. G.; Dourish, C. T.; Tecott, L. H. *Psychopharmacology* 1999, 143, 309-314.
- http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInfo rmationforPatientsandProviders/ucm179871.htm.
- Connolly, H. M.; Crary, J. L.; Mcgoon, M. D.; Hensrud, D. D.; Edwards, B. S., Edwards, W. D. Schaff, H. V. N. Engl. J. Med. 1997, 337, 581-588.
- (a) Rothman, R. B.; Baumann, M. H.; Savage, J. E.; Rauser, L.; McBride, A.; Hufeisen, S. J.; Roth, B. L. *Circulation* 2000, 102, 2836-284.
 (b) Fitzgerald, L. W.; Burn, T. C.; Brown, B. S.; Patterson, J. P.; Corjay, M. H.; Valentine, P. A.; Sun, J. H.; Link, J. R.; Abbaszade, I.; Hollis, J. M.; Largent, B. L.; Hartig, P. R.; Hollis, G. F.; Meunier, P. C.; Robichaud, A. J.; Robertson, D. W. *Mol. Pharmacol.* 2000, 57, 75–81.
- 10. Nichols, D. Pharmacol. Ther. 2004, 101, 131-181.
- Dawson, P.; Moffatt, J. D. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 39, 244-252.

- (a) Lee, J.; Jung, M. E.; Lee, J. *Expert Opin. Ther. Pat.* **2010**, *20*, 1429–1455.
 (b) Wacker, D. A.; Miller, K. J. *Curr. Opin. Drug Discovery Dev.* **200**8, *11*, 438–45.
- 13. www.belviq.com.
- Smith, B. M.; Smith, J. M.; Tsai, J. H.; Schultz, J. A.; Gilson, C. A.; Estrada, S. A.; Chen, R. R.; Park, D. M.; Prieto, E. B.; Gallardo, C. S.; Sengupta, D.; Dosa, P. I.; Covel, J. A.; Ren, A.; Webb, R. R.; Beeley, N. R. A.; Martin, M; Morgan, M.; Espitia, S.; Saldana, H. R.; Bjenning, C.; Whelan, K. T.; Grottick, A. J.; Menzaghi, F.; Thomsen, W. J. J Med. Chem. 2008, 51, 305-313.
- (a) Di Giovanni, G.; De Deurwaerdere, P. *Pharmacol.Ther.* 2016, 157, 125-162.
 (b) Higgins, G.A., Sellers, E.M., Fletcher, P.J. *Trends Pharmacol. Sci.* 2013, 34, 560-570.
 (c) Higgins, G. A.; Fletcher, P. J. ACS Chem. Neurosci. 2015, 6, 1071-1088.
- Schrader, T. O.; Kasem, M.; Sun, Q.; Wu, C.; Ren, A.; Semple, G. Tetrahedron Lett. 2016, 57, 4730-4733.
- 17. The IP₃ accumulation assays were performed in stably-transfected HEK293 cell lines with low expression (low density) of 5-HT₂ receptors and no detectable receptor reserve effects. The significance of receptor reserve effects in 5-HT₂ expressing cell lines are addressed here: (a) Cavero, I.; Guillon J. M. J. *Pharmacol. Toxicol. Methods* **2014**, *69*, 150–61. (b) Unett, D. J.; Gatlin, J.; Anthony, T. L.; Buzard, D. J.; Chang, S.; Chen, C.; Chen, X.; Dang, H. T.; Frazer, J.; Le, M. K.; Sadeque, A. J.; Xing, C.; Gaidarov, I. J. *Pharmacol. Exp. Ther.* **2013**, *347*, 645–659.
- 18. Bernotas, R. C. Synlett 2004, 2165-2166.
- 19. Competition binding (pK_i) studies were performed with $[^{125}I]$ -DOI as radioligand using HEK293 cells stably expressing recombinant human 5-HT₂ receptors. Experiments performed with $[^{3}H]$ -serotonin produced variable results, where often compounds did not displace or only partially displaced the radioligand. This phenomena was observed across all 5-HT₂R subtypes and the results were largely inconsistent.
- 20. The differential 5-HT₂ selectivities of evaluated compounds are lower when evaluated in [125 I]-DOI (pK*i*) binding studies rather than functional studies. For a discussion see ref. 14a.
- In vitro pharmacological characterization data for lorcarserin is provided here: (a) Thomsen, W. J.; Grottick, A. J.; Menzaghi, F.; Reyes-Saldana, H.; Espitia, S.; Yuskin, D.; Whelan, K.; Martin, M.; Morgan, M.; Chen, W.; Al-Shamma, H.; Smith, B.; Chalmers, D.; Behan, D. J. Pharmacol. Exp. Ther. 2008, 325, 577–587. For clinical data related to the safety and efficacy of lorcaserin, see: (b) Smith, S. R.; Weissman, N. J.; Anderson, C. M.; Sanchez, M.; Chuang, E.; Stubbe,S.; Bays, H.; Shanahan, W. R. N. Eng. J. Med. 2010, 363, 245-256.
- Kennett, G. A.; Wood, M. D.; Bright, F.; Trail, B.; Riley, G.; Holland, V.; Avenell, K. Y.; Stean, T.; Upton, N.; Bromidge, S.; Forbes, I. T.; Brown, A. M.; Middlemiss, D. N.; Blackburn, T. P. *Neuropharmacology* **1997**, *36*, 609-620.

Supplementary Material

Supplementary data (experimental procedures and compound characterization data) associated with this article can be found, in the online version, at: .