LETTERS

Nucleophilic Tetrafluoroethylation Employing in Situ Formed Organomagnesium Reagents

Alena Budinská,[†] Jiří Václavík,^{†,‡} Václav Matoušek,[§] and Petr Beier^{*,†}

[†]The Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic

[‡]Laboratory of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic

[§]CF Plus Chemicals s.r.o., Kamenice 771/34, 625 00 Brno, Czech Republic

Supporting Information

ABSTRACT: Tetrafluoroalkyl bromides are metalated with equimolar *i*PrMgCl·LiCl (Turbo Grignard) to form organomagnesium compounds which are stable at low temperatures and react with various electrophiles (aldehydes, ketones, CO₂, cyclic sulfate and sulfamidate, *N*-sulfonylimines, nitrone, chlorophosphate, nonaflyl

azide) to afford novel functionalized tetrafluoroethylene-containing products. Ease of operation, excellent selectivity, high nucleophilicity, and enhanced stability of the reactive species together with a broad substrate scope comprise a highly attractive nucleophilic tetrafluoroethylation protocol affording unique synthetic building blocks.

T he incorporation of a difluoromethylene (CF_2) group or perfluoroalkylidene groups $[(CF_2)_n]$ into organic molecules is a popular strategy for modification of various properties of molecules in life science and material science applications.¹⁻⁶ For instance, the difluoromethylene group can act as a bioisostere of ethereal oxygen, carbonyl, or CHOH groups, and the difluoromethyl group can also serve as a lipophilic hydrogen bond donor.^{5,7–9} In carbohydrates, the replacement of CHOH groups with CF_2 units causes only minimal steric and ring conformation perturbation, but because of attractive dipolar interactions of C–F bonds and hydrophobic desolvation, there is, in some cases, such as in a hexafluorinated sugar derivative, a dramatic improvement of transmembrane transport observed.^{10,11} In addition, tetrafluorinated sugar analogues are currently being investigated as enzyme inhibitors.^{12–14} For these reasons, there is a high demand for new synthetic methods enabling the incorporation of CF₂CF₂ groups.

Approaches to tetrafluoroethylene-containing compounds can be divided into fluorination methods, such as deoxofluorination of 1,2-dicarbonyl compounds,^{15,16} and fluoroalkyl-transfer methods.^{17–22} The latter approach is based on functionalization of suitable CF₂CF₂ precursors including tetrafluoroethylene or 1,2-dihalotetrafluoroethanes.^{23,24} We have recently reported heteroatom-substituted radical,²⁵ nucleophilic,^{26–29} and electrophilic³⁰ tetrafluoroethylene synthons starting from BrCF₂CF₂Br (Scheme 1). However, the preparation of the nucleophilic reagent silane from the bromide required an extra synthetic step and displayed limited reaction scope.^{26–29} The strategy used for the preparation of tetrafluorinated sugars and azasugars employed metal–halogen exchange followed by intramolecular cyclization.^{31–36} One report described metalation of 4-bromo-3,3,4,4-tetrafluorobut-1-ene with an excess of MeLi and addition to carbonyl compounds under Barbier conditions.³⁷ Given the

considerable body of literature on perfluoroalkyl organometallics, $^{38-43}$ we were curious to see whether metalation of $R^1CF_2CF_2Br$ provides stable metalated species and to explore their reactivity with electrophiles in a one-pot fashion. If successful, this methodology could serve as a tool for the synthesis of a variety of CF_2CF_2 -containing compounds.

Commercially available 1a was selected for the initial screening aimed at identification of a suitable metalation reagent R^2M (Table 1). The in situ produced organometallic species underwent reaction with the subsequently added electrophile (4-nitrobenzaldehyde, 2a) to provide 3aa. Side reactions included protonation to 4a, fluoride elimination to 5a, and reaction with R^2Br to give 6a. It was found that MeLi and *n*-BuLi metalated 1a rapidly at -78 °C; however, the main products were 6a and 5a, respectively (Table 1, entries 1 and 2). Under Barbier conditions the formation of 3aa increased dramatically. Unfortunately, adduct 7a arising from the reaction of R^2 M with 2a formed in about 10% yield, and some unreacted 1a was still present in the crude reaction mixture (Table 1, entries 3 and 4).

Received: September 26, 2016

Table 1. Metalation of 1a and Addition of the in Situ Formed Organometallic Species to 4-Nitrobenzaldehyde $(2a)^a$

4 nBuLi 15 65 17 1 0 5 iPrMgCl 10 0 64 15 12 0 iPrMgCl·LiCl 0 0 6 45 85 (80) 12 ۵ ^aReaction conditions: 1a (0.1 mmol), c(1a) = 0.2 M, R² M (1.05 equiv), THF, -78 °C, time; then 2a (2 equiv), THF, -78 °C to rt, 3 h.^{b19}F NMR yield using PhCF₃ as an internal standard, isolated yield in parentheses. Barbier conditions (R² M added at -78 °C to the mixture of 1a and 2a).

With *i*PrMgCl and its LiCl complex, known as the Turbo Grignard reagent, the metalation required a longer time than with organolithiums. On the other hand, fewer side products were formed, and the best result was obtained using Turbo Grignard (Table 1, entry 6). The organomagnesium formed from 1a and the Turbo Grignard reagent was stable for 4 h at -78 °C, at -50 °C decomposed to 5a with a half-life of 1.5 h, and fully decomposed within 50 min at -40 °C. Thus, *i*PrMgCl-LiCl outperformed other metalation reagents in terms of stability of the resulting fluorinated metalated species while maintaining their good nucleophilicity.

The observed differences in metalation times for 1a prompted us to investigate in more detail the effect of structure of 1 on metalation rates at -78 °C in THF using *i*PrMgCl·LiCl. ¹⁹F NMR analyses of the reaction mixture after addition of acetic acid at different reaction times allowed us to determine the minimal metalation times needed for complete conversion of 1 to 4 (Table 2). In general, metalation using LiCl-free Grignard reagent was faster than with the Turbo Grignard reagent, which is surprising since LiCl is known to break aggregates and make the organomagnesium species more reactive. 44,45 With Turbo Grignard, the metalation times varied from <5 min for 1f and aliphatic bromides 1h-j to 1 h for some of the aryloxy derivatives. Sulfone 1g quickly eliminated phenylsulfinate to give tetrafluoroethylene and was thus excluded from further reactions with electrophiles. Bromide 1i and 1i reacted with the Turbo Grignard reagent regioselectively on the CF₂ group bearing the bromine atom. Metalated species derived from bromide 1i and tosylate 1j mostly eliminated fluoride to form the trifluorovinyl compounds 5; however, at -90 °C this side reaction was reasonably suppressed. In the case of 11, further experiments with D_2O and **2a** revealed a rearrangement of the metal species due to appreciable acidity of the hydrogen atom on the imidazole ring, affording a mixture of products 3la, 3l'a, and 4l as shown in Scheme 2.

Having identified suitable metalation conditions, reactions of bromides **1** with a range of electrophiles leading to tetrafluoroethylene-containing products **3** were examined (Table 3).

Table 2. Metalation Times of 1 with Grignard Reagents^a

			8	0			
$R^{1} \xrightarrow{F} F$ Br		1. R ² M (1.05 equiv), THF, –78 °C, time $F_{V}F_{H}$					
		2. AcOH (excess), THF, –78 °C, 5 min					
	1			4			
entry	1	R ¹	R ² M	time (min) ^b			
1	1a	$4\text{-}BrC_6H_4O$	iPrMgCl	<10			
2	1a	$4-BrC_6H_4O$	<i>i</i> PrMgCl·LiCl	45			
3	1b	$4-(EtOOC)C_6H_4O$	iPrMgCl	<10			
4	1b	$4-(EtOOC)C_6H_4O$	<i>i</i> PrMgCl [·] LiCl	60			
5	1c		<i>i</i> PrMgCl [·] LiCl	60			
6	1d	4-(MeO)C ₆ H ₄ O	iPrMgCl·LiCl	30			
7	1e	4-FC ₆ H ₄ O	iPrMgCl·LiCl	45			
8	1f	PhS	iPrMgCl·LiCl	<5			
9°	1g	PhSO ₂	iPrMgCl·LiCl	<5			
10	1h	$N_3 C H_2 C H_2 \\$	iPrMgCl·LiCl	<5			
11^d	1 i	$BrCH_2CH_2$	iPrMgCl·LiCl	<5			
12^d	1j	$TsOCH_2CH_2$	iPrMgCl·LiCl	<5			
13	1k	N−ξ N	<i>i</i> PrMgCl·LiCl	30			
14	11	N=V-§	<i>i</i> PrMgCl·LiCl	45			

^{*a*}Reaction conditions: 1 (0.03 mmol), R² M (1.05 equiv), THF, c(1) = 0.2 M, -78 °C, time; then 10% AcOH in THF (1 mL), -78 °C, 5 min. ^{*b*}Time to reach >95% conversion of 1 to 4, determined by ¹⁹F NMR. ^{*c*}Tetrafluoroethylene formed instead of 4g. ^{*d*}Metalation was conducted at -90 °C.

Scheme 2. Metalation of 11 and the Reaction with D₂O or 2a

Metalation times corresponded to values shown in Table 2 (5 min for 1f,h-j). Reactions of a random selection of bromides 1 with electron-rich or electron-poor aromatic aldehydes, enolizable aliphatic aldehyde, or α_{β} -unsaturated aldehyde provided adducts in high yields (Table 3, entries 1-9). Addition to ketones also proceeded with good efficiency (Table 3, entries 10-14), which implies that the organomagnesium species derived from 1 are more nucleophilic than the previously reported PhSCF₂CF₂TMS with fluoride initiators.²⁶ With CO₂, novel tetrafluoropropionic acids were synthesized (Table 3, entries 15-17). Following a failed addition to unactivated imine (N-(4-(trifluoromethyl)benzylidene)aniline), N-sulfonylaldimine and cyclic ketimine yielded sulfonamides (Table 3, entries 18 and 19). Similarly, whereas reactions with epoxides (2ethyloxirane and 7-oxabicyclo[4.1.0]heptane) were unproductive, the ring opening of cyclic sulfate 2r and cyclic sulfamidate 2s provided 2-fluoroalkyl-substituted ethanols and amines, respec-

Organic Letters

			_1	1. <i>i</i> PrMgCl [.] LiCl (1.05 equiv) THF, –78 °C, 5–60 min					
			R'-CF ₂ CF ₂ Br 1	2. Electrophile THF, –78 °C	2 (2 equiv) to rt, 3 h	→ R'-0	CF ₂ CF ₂ -E 3		
entry	1	2 , electrophile	3, product	yield (%) ^b	entry	1	2 , electrophile	3, product	yield (%) ^b
1	la	2a	3aa Br OFFOH	80	15	la	20 CO ₂	3ao F Br	72
2	1b	2b	3bb	75	16	1d	20	3do	80
3	1c	2c	3cc	87	17	1e	20	3eo	78
4	le	ö 2d	3ed	76	18	la		$ \underset{Br}{\operatorname{Sap}} $	62
5	1f	2e	3fe	73	19	1h	$\frac{2q}{\int_{0}^{N} \int_{0}^{\infty} \int_{0}^{\infty$	OMe 3hq Na FF FF SO SO SO SO SO SO SO SO SO SO	27
6	1f	2f	3ff	71	20 ^f	la	2r ⊂°s≤°	3ar FF FF	86 ^g
7	1h	2g	$\underset{N_{3}}{\overset{F}{\underset{F}}}_{F} \overset{F}{\underset{OH}}_{Br}$	82	21 ^{<i>f</i>}	1d	2r	3dr	76 ^g
8	1k	2h	$\overset{3kh}{\underset{F}{\overset{P}{\underset{F}{\overset{P}{\underset{F}{\overset{P}{\underset{F}{\underset{D}{\underset{H}{\overset{P}{\underset{H}{\underset{F}{\underset{F}{\underset{D}{\underset{D}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{\underset{H}{H$	89	22^h	1e	2s	3es	76 ⁱ
9°	1i	2i	3ii Br	52	23	1d	2t	3dt	61
10^d	1f	2j	3fj	53	24	1e	2u	3eu	78
11^d	1f	2k	3fk	73	25	1i	2u	$\frac{1}{10} = \frac{1}{10} $	37
12	1b	2l	3bl	68°	26 ^c	1j	2u	3ju	48
13	1c	2m	3cm	85	27	la	2v nC4F9SO2N3	3av	71
14	1k	2n	3kn N ^N FF Ph FF OH	67	28 ^j	1e	2w CH₃I	Br F F 3ew F F CH ₃	66 ^k

Table 3. One-Pot Nucleophilic Tetrafluoroethylation Starting from Bromides $1a-k^a$

^{*a*}Reaction conditions: 1 (0.43–4.0 mmol), *i*PrMgCl·LiCl (1.05 equiv), THF, c(1) = 0.2 M, -78 °C, 5-60 min (see Table 2 for metalation times); then 2 (2 equiv), THF, -78 °C to rt, 3 h. ^{*b*}Isolated yield. ^{*c*}Metalation was conducted at -90 °C. ^{*d*}Using 1.05 equiv of 1 and 1 equiv of 2. ^{*e*}dr 95:5 (HPLC). ^{*f*}Using 1.2 equiv of 2. ^{*g*}After treatment with 16% aqueous H₂SO₄, reflux, overnight. ^{*h*}Using 0.95 equiv of 2. ^{*i*}After treatment with 10% aqueous H₂SO₄, rt, 1 h. ^{*j*}Using 4 equiv of 2. ^{*k*19}F NMR yield using internal standard (PhCF₃); 3ew was obtained together with 4e (24%) as an inseparable mixture.

tively in high yields after acidic hydrolysis (Table 3, entries 20-22).⁴⁶

Reaction with 3,4-dihydroisoquinoline 2-oxide (2t) resulted in the formation of the respective products (Table 3, entry 23) and with diethyl chlorophosphate (2u), moderate to good yields of the corresponding fluoroalkyl phosphonates were obtained (Table 3, entries 24–26). In the two latter cases, the reactions with 1i and 1j led to considerable elimination to trifluorovinyl compounds 5i and 5j both at -78 and -90 °C, causing reduced yields of the products. A highly electrophilic azide 2v afforded the corresponding fluoroalkyl azide 3av in good yield (Table 3, entry 27). Lastly, the formation of side product 6 in the metalation experiments shown in Table 1 prompted us to investigate alkyl halides as electrophiles. However, the reaction was only partially

successful with MeI where the methylated product **3ew** was obtained in good ¹⁹F NMR yield (Table 3, entry 28) in an inseparable mixture with **4e**, and no alkylated product could be detected in the reaction with allyl bromide.

In conclusion, metalation of structurally diverse 1-bromo-1,1,2,2-tetrafluoroalkanes with the Turbo Grignard reagent provided regioselective organomagnesium compounds which were found to be stable at low temperature and displayed excellent reactivity with a broad range of functionalized electrophiles, including carbonyl compounds, CO₂, cyclic sulfate and sulfamidate, N-sulfonylimines, nitrone, chlorophosphate, and an electrophilic azide. This approach toward nucleophilic tetrafluoroalkylation thus showed a favorable combination of reactivity and selectivity, surpassing the previously used fluoroalkyl silanes or organolithium compounds in terms of the scope of both nucleophiles and electrophiles and the yields of corresponding products. Many of the described products are inaccessible via other methods, and as all of them contain diverse functional groups allowing functionalization, they can serve as potentially promising building blocks for the design of drugs, pesticides, and advanced materials.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b02890.

Experimental procedures, product characterization, and ¹H, ¹³C, ¹⁹F, and ³¹P NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: beier@uochb.cas.cz.

Notes

The authors declare the following competing financial interest(s): CF Plus Chemicals s.r.o. (www.cfplus.cz) company, an ETHZ spin-off, commercializes the CF_2CF_2 building blocks used in this publication.

ACKNOWLEDGMENTS

This work was financially supported by the Academy of Sciences of the Czech Republic (RVO: 61388963). We thank Prof. Antonio Togni (ETH Zürich) for hosting A.B. and J.V. on internships.

REFERENCES

- (1) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
- (2) Prakash, G. K.; Hu, J. Acc. Chem. Res. 2007, 40, 921.
- (3) Hu, J.; Zhang, W.; Wang, F. Chem. Commun. 2009, 7465.
- (4) Liu, Y.-L.; Yu, J.-S.; Zhou, J. Asian J. Org. Chem. 2013, 2, 194.
- (5) Muller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
- (6) Bégué, J.-P.; Bonnet-Delpon, D. *Bioorganic and medicinal chemistry* of fluorine; Wiley-Interscience: Hoboken, 2008.
- (7) Blackburn, G. M.; England, D. A.; Kolkmann, F. J. Chem. Soc., Chem. Commun. 1981, 930.
- (8) Blackburn, G. M.; Kent, D. E.; Kolkmann, F. J. Chem. Soc., Perkin Trans. 1 1984, 1119.
- (9) Olsen, J. A.; Banner, D. W.; Seiler, P.; Obst Sander, U.; D'Arcy, A.; Stihle, M.; Muller, K.; Diederich, F. *Angew. Chem., Int. Ed.* **2003**, *42*, 2507.
- (10) Kim, H. W.; Rossi, P.; Shoemaker, R. K.; DiMagno, S. G. J. Am. Chem. Soc. 1998, 120, 9082.

- (11) Biffinger, J. C.; Kim, H. W.; DiMagno, S. G. *ChemBioChem* **2004**, *5*, 622.
- (12) Ioannou, A.; Cini, E.; Timofte, R. S.; Flitsch, S. L.; Turner, N. J.; Linclau, B. *Chem. Commun.* **2011**, *47*, 11228.
- (13) N'Go, I.; Golten, S.; Arda, A.; Canada, J.; Jimenez-Barbero, J.; Linclau, B.; Vincent, S. P. *Chem. - Eur. J.* **2014**, *20*, 106.
- (14) van Straaten, K. E.; Kuttiyatveetil, J. R.; Sevrain, C. M.; Villaume, S. A.; Jimenez-Barbero, J.; Linclau, B.; Vincent, S. P.; Sanders, D. A. J. Am. Chem. Soc. **2015**, *137*, 1230.
- (15) Christy, M. E.; Colton, C. D.; Mackay, M.; Staas, W. H.; Wong, J. B.; Engelhardt, E. L.; Torchiana, M. L.; Stone, C. A. J. Med. Chem. 1977, 20, 421.
- (16) Chang, Y.; Tewari, A.; Adi, A.-I.; Bae, C. *Tetrahedron* 2008, 64, 9837.
- (17) Watanabe, Y.; Konno, T. J. Fluorine Chem. 2015, 174, 102.
- (18) Saijo, H.; Ohashi, M.; Ogoshi, S. J. Am. Chem. Soc. 2014, 136, 15158.
- (19) O'Duill, M.; Dubost, E.; Pfeifer, L.; Gouverneur, V. Org. Lett. 2015, 17, 3466.
- (20) Long, Z.-Y.; Chen, Q.-Y. J. Org. Chem. 1999, 64, 4775.
- (21) Hu, C.-M.; Qiu, Y.-L. J. Fluorine Chem. 1991, 55, 109.
- (22) Hu, C.-M.; Qiu, Y.-L. J. Chem. Soc., Perkin Trans. 1 1992, 1569.
- (23) Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. *Chem. Rev.* 2015, 115, 973.
- (24) Dmowski, W. J. Fluorine Chem. 2012, 142, 6.
- (25) Chernykh, Y.; Beier, P. J. Fluorine Chem. 2013, 156, 307.
- (26) Chernykh, Y.; Hlat-Glembová, K.; Klepetářová, B.; Beier, P. Eur. J.
- Org. Chem. 2011, 2011, 4528. (27) Chernykh, Y.; Opekar, S.; Klepetářová, B.; Beier, P. Synlett 2012, 23, 1187.
- (28) Václavík, J.; Chernykh, Y.; Jurásek, B.; Beier, P. J. Fluorine Chem. 2015, 169, 24.
- (29) Chernykh, Y.; Jurásek, B.; Beier, P. J. Fluorine Chem. 2015, 171, 162.

(30) Matoušek, V.; Václavík, J.; Hájek, P.; Charpentier, J.; Blastik, Z. E.; Pietrasiak, E.; Budinská, A.; Togni, A.; Beier, P. *Chem. - Eur. J.* **2016**, *22*, 417.

(31) Boydell, A. J.; Vinader, V.; Linclau, B. Angew. Chem., Int. Ed. 2004, 43, 5677.

(32) Linclau, B.; Boydell, A. J.; Timofte, R. S.; Brown, K. J.; Vinader, V.; Weymouth-Wilson, A. C. *Org. Biomol. Chem.* **2009**, *7*, 803.

(33) Timofte, R. S.; Linclau, B. Org. Lett. 2008, 10, 3673.

- (34) Fontenelle, C. Q.; Tizzard, G. J.; Linclau, B. J. Fluorine Chem. 2015, 174, 95.
- (35) Konno, T.; Hoshino, T.; Kida, T.; Takano, S.; Ishihara, T. J. Fluorine Chem. 2013, 152, 106.
- (36) Bonnac, L.; Lee, S. E.; Giuffredi, G. T.; Elphick, L. M.; Anderson, A. A.; Child, E. S.; Mann, D. J.; Gouverneur, V. *Org. Biomol. Chem.* **2010**, *8*, 1445.

(37) Konno, T.; Takano, S.; Takahashi, Y.; Konishi, H.; Tanaka, Y.; Ishihara, T. *Synthesis* **2011**, 2011, 33.

- (38) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189.
- (39) Burton, D. J.; Lu, L. Top. Curr. Chem. 1997, 193, 45.
- (40) Guang, J.; Hopson, R.; Williard, P. G.; Fujiu, M.; Negishi, K.; Mikami, K. J. Org. Chem. **2016**, *81*, 5922.
- (41) Xue, C.; He, G.; Fu, C.; Xue, L.; Lin, Z.; Ma, S. Eur. J. Org. Chem. 2010, 2010, 7012.

(42) Paszkowska, J.; Fernandez, O. N.; Wandzik, I.; Boudesoque, S.; Dupont, L.; Plantier-Royon, R.; Behr, J.-B. *Eur. J. Org. Chem.* **2015**, 2015, 1198.

- (43) Fujiu, M.; Negishi, K.; Guang, J.; Williard, P. G.; Kuroki, S.; Mikami, K. Dalton. Trans. 2015, 44, 19464.
- (44) Krasovskiy, A.; Knochel, P. Angew. Chem., Int. Ed. 2004, 43, 3333.
- (45) Bao, R. L.; Zhao, R.; Shi, L. Chem. Commun. 2015, 51, 6884.
- (46) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921.