JOC The Journal of Organic Chemistry

Article

Strategy for Extending the Nitrogen Chain: the Bis(1,2,3-triazole) Formation Reaction from Tosylhydrazones and N-Amino Azole

Hongwei Yang, Liping Huang, Minxian Xu, Yongxing Tang, Bohan Wang, and Guangbin Cheng J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.9b00801 • Publication Date (Web): 29 Jul 2019 Downloaded from pubs.acs.org on July 29, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Strategy for Extending the Nitrogen Chain: the Bis(1,2,3-triazole) Formation Reaction from Tosylhydrazones and N-Amino Azole

Hongwei Yang,⁺ Liping Huang⁺, Minxian Xu, Yongxing Tang, Bohan Wang, Guangbin Cheng*

School of Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei 200, Nanjing 210094, P. R. China

ABSTRACT: A facile and versatile synthesis strategy for the bis(1,2,3-triazole) formation reaction was developed from tosylhydrazones and *N*-amino (*N*-NH₂) azole instead of *C*-amino amine derivatives. The novel energetic compounds containing the bicycle catenated sixnitrogen chain (N₆) and the first example of N₇ neutral compounds were synthesized in a moderate or high yield. The possible mechanism of bis(1,2,3-triazole) formation reaction based on amino azole of *N*-NH₂ was verified by the X-ray crystal structure of key intermediates. In addition, four energetic compounds **4aa**, **4ba**, **4ac** and **4ad** containing N₆ and N₇ structure possess acceptable decomposition temperature(150.1-201.6 °C) and moderate calculated detonation performances(6850-7727 m/s). Among them, **4aa** (N₆ structure) and **4ad** (N₇ structure) could be used as melt-cast explosive candidate and the gas generation agent candidate, respectively. This type of nitrogen-nitrogen bonding formation opens a new method for discovery of novel high-nitrogen energetic compounds containing catenated multiple nitrogen atoms especially odd number nitrogen compounds.

INTRODUCTION

High nitrogen compounds that contain long catenated nitrogen chains (N_n) have attracted considerable attention in the research field of propellants, explosives, and gas generant due to their high heat of formation and clean decomposed product of nitrogen gas.^[1] However, a serious lack of nitrogen - nitrogen bond forming reactions has hindered the development of energetic compounds containing catenated N-N bonds. Although the oxidative azo coupling of the C-NH₂ functionality have been fully investigated and well documented, that of N-NH2 instead of C-NH₂ functionality is relatively unexplored. In 2010, the oxidative azo coupling of amino azole of N-NH₂ was developed to create a rather long chain of catenated tetrazene structure (N-N=N-N linkage) by the group of Pang S. P.^[2] Followed this effective method was applied sequentially in synthesizing of 2,2'-azobis(5-nitrotetrazole) $(III)^{[3]}$ with catenated N₈ structure, 1,1'-azobistetrazole $(\mathbf{II})^{[4]}$ and 1,1'-azobis(5-methyltetrazole) $(\mathbf{IV})^{[5]}$ with N₁₀ structure(Scheme 1, a). Unfortunately, these compounds are extremely sensitive to mechanical stimulation and physical unstable in solution, which limits their application. And this method is confined to the synthesis of catenated even nitrogen chains only. In 2013, our group achieved the first example of azo coupling reaction between the diazonium salt of N-NH2 and amine derivative to form the

(N=N-NH linkage) (Scheme 1, b). ^[6] Unfortunately, this method has not been exploited further due to strict operation condition and instability of triazene structure. Although high nitrogen compounds containing longer catenated nitrogen own higher heat of formation, compounds with large number of directly linked nitrogen atoms are sensitive, thermally unstable and physically unstable. Based on combination properties of the synthetic N_n compounds, the compound with catenated nitrogen atom (n = 6-8) was supposed to be the ideal energetic materials candidate.^[7] The compound containing the continuous odd number nitrogen chain (n \geq 6) was scarcely reported due to limitation of existing nitrogen-nitrogen formation reaction.

(b) *N*-azo reaction between amine derivative and its diazonium salt of *N*-NH₂

longest nitrogen chain (N_{11}) containing triazene structure Plus Environment

(c) This work: the bistriazole formation reaction from tosylhydrazones and amino azole of *N*-NH₂.

Scheme 1 Various routes to prepare compounds that contain long catenated nitrogen chains.

In 1986, Sakai et al. have first described the facile synthesis of triazoles from α_{α} -dichlorotosylhydrazones and primary amines of C-NH₂ instead of energetic azides.^[8] Despite of the evident potential of this reaction, it has less investigated and infrequent applications.^[9] If the amino group is connected to the nitrogen atom in the azole rings (N-NH₂), such reaction could result in a rather long chain of catenated nitrogen. And yet, this extended nitrogen chain reaction had rarely reported and exploited due to low reaction activity of N-amino azoles.[10] Herein, we employed the bis(1,2,3-triazole) formation reaction from tosylhydrazones and N-amino (N-NH₂) azole instead of the primary amine(C-NH₂) based Sakai reaction to synthesize some novel nitrogen chains compounds with N₆ structure or an unreported N_7 structure (Scheme 1, c). This approach could also be applied to extend the nitrogen chain for highnitrogen systems from both academic and practical considerations.

RESULTS AND DISCUSSION

In a preliminary set of experiments, we studied the reaction of α, α -dichlorotosylhydrazones(1a) with the amino azole of *N*-NH₂, 1-amino-1,2,3-triazole (2a), in the presence of alkaline reagents by using one-step method following the triazole formation reaction based on primary amines (*C*-NH₂) reported.^[9a] However, the isolation of 4-methyl-1,1'-bi(1,2,3-triazole) (4aa) was very difficult since the yield is very low with many unknown byproducts. To our delight, a modification of two-step method led to the formation of 4aa,

Table 1: P	reliminary study f	or the reaction	optimizatio	on. ^[a]
TsH NN CI	+ $H_2 N = N$ $H_2 N = N$ $H_2 N = N$ $H_3 N, CH_3 O$ $H_3 N, CH_3 O$		N <u>base, CH₃OH</u> 72 h, T	N=N N=N
1a	2a	3aa		4aa
Entry	Base	Substrate: base	T/°C	Yield %
1	DiPEA ^[b]	1:2.4	rt	80
2	t-BuOK	1:2.4	rt	75
3	Et ₃ N	1:2.4	rt	70
4	DABCO ^[c]	1:2.4	rt	65
5	DBU ^[d]	1:2.4	rt	32
6	Et ₂ NH	1:2.4	rt	53
7	L-proline	1:2.4	rt	-
8	K_2CO_3	1:2.4	rt	-
9	CH ₃ ONa	1:2.4	rt	59
10	CH ₃ CH ₂ ONa	1:2.4	rt	54
11	DiPEA	1:2.4	35	84
			Âĺ	SParadon

12	DiPEA	1:2.4	50	85
13	DiPEA	1:2.4	65	89
14	DiPEA	1:3.6	65	95

[a] Reaction conditions: **3aa** (0.5 mmol), base (1.2 mmol or 1.8 mmol)/ CH₃OH (2 mL) were stirred in another 4 mL of CH₃OH for 72 h. [b] DiPEA = N,N-diisopropylethylamine. [c] DABCO = 1,4-diazabicyclo[2.2.2]octane. [d] DBU = 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine.

which was easily separated by column chromatography in the improved synthetic pathway. A 91% yield of intermediate 3aa could be precipitated from the reaction mixture of 1a and 2a in presence of Et₃N. So we turned our attention to investigate the second step reaction of the formation of bis(1,2,3-triazole) 4aa by utilizing various alkali in methanol at room temperature. The addition of base L-proline and K₂CO₃ afford no product (Table1, entries 7-8). When t-BuOK, Et₃N, DABCO, DBU, Et₂NH, CH₃ONa, CH₃CH₂ONa as bases were used, the bis(1,2,3triazole) 4aa were obtained in moderate vield in the range of 32-75% (Table 1, entries 2-6, 9-10). In contrast, DiPEA presents the highest activity in methanol with 80% yield of 4aa (Table 1, entry 1), which indicating that DiPEA was the most favorable base among those examined for further studies. The reaction condition was further optimized for **3aa** as a model substrate to find the appropriate reaction temperature of 65 °C, methanol as solvent and 1: 2.4 of molar ratios of **3aa** to DiPEA, which can afford **4aa** in high yield of 95%(Table 1, entry 14).

This result encouraged us to investigate further the bis(1,2,3-triazole) formation reaction of tosylhydrazones and amino azole of N-NH₂ to examine the scope on the basis of the optimal conditions established. However, $\alpha_{,\alpha}$ dichlorotosylhydrazone 1c as key start material could not be obtained from 2,2-dichloro-1-phenylethanone and tosylhydrazine. Instead, the N-substituted triazole 1c' was isolated according to the Sakai and Westermann's reported.^[8, 9a] When we attempted to synthesize the **1c** by the addition the catalyst TiCl₄ following Lam's method, the isolation of 1c with column chromatography could not be accomplished due to low yield and many byproducts.^[9b] To our delight, the modification reaction condition such as catalyst loading, substrate ratio could afford 1c in a improved yield of 66%, which is precipitated and easily separated from the reaction mixture. This method also works for other α,α -dichlorotosylhydrazone substrate, which makes the N-amino azoles-based bis(1,2,3-triazole) formation reaction possible. As can be seen from Table 2, the two-step reaction of various α, α -dichlorotosylhydrazone 1 and N-amino azoles 2a proceeds smoothly to afford intermediate 3 and product 4 in yield of 84-92% and 75-95%, respectively. The benzene rings with electronwithdrawing groups of F, Cl, Br and electron-donating -CH₃ groups showed good reactivity in a 77-90% yield (Table2, entries 5-7). When 4-amino-1,2,4-triazole (2b) react with α,α -dichlorotosylhydrazone **1a** and **1c**, the twostep reaction proceeds smoothly and forms trizoles 4ab and

ACS Paragon Plus Ashiron 200d yield (Table2, entries 8-9). It is worth

1

 Table 2: Scope of substrates.^[a]

[a] Unless otherwise mentioned, reaction conditions: **3aa** (0.5 mmol), DiPEA (1.8 mmol)/CH₃OH (2 mL) were stirred in another 4 mL of CH₃OH at 65 °C for 72 h. [b] room temperature.

Although primary amines (C-NH₂) based the triazole formation reaction has been investigated, the mechanism of the reaction remains ambiguous due to lack of structure proof for key intermediate. Sakai suggested a general mechanism for the formation of 1,2,3-triazole (Scheme 2, Path A).^[8] The α , α -dichlorotosylhydrazone was deprotonated to vinyldiazine 5. Subsequent amine addition and p-toluenesulfinic acid elimination in 5 formed iminoethane-diazonium 6, which was then intramolecular cyclized to triazole after deprotonation. Hanselmann et al. proposed another possible mechanism (Scheme 2, Path B), wherein amine is added to vinyldiazine 5, but the tosyl group is retained without elimination.^[9c] In order to verify the mechanism for the N-amino azoles-based bistriazole formation reaction, the key intermediate 3ba (Table 2, entry 2) and 3ca (Table 2, entry 3) were further confirmed by single-crystal X-ray structure analyses. Based on the structure of intermediate 3, the bistriazole formation reaction α, α -dichlorotosylhydrazones and amino azole of N-NH₂ were verified to follow the Hanselmann's proposed mechanism.

Scheme 2. Two possible mechanisms for the triazole formation reaction.

 Table 3: Comparison of detonation properties of some energetic compounds with 4aa, 4ba, 4ac and 4ad.

Comp- ounds	4aa (N ₆)	4ba (N ₆)	4ac (N ₇)	4ad (N ₇)	I (N ₈) ^[h]	IV (N ₁₀) ^[i]	V (N ₁₁) ^[j]	TNT ^[k]
$T_m^{[a]}$ (°C)	74.1	132	76.6	75.2	-	-	143	81
$T_d^{[b]}$ (°C)	201.6	185.3	168.5	150.1	193.8	127.2	230.5	295
$\rho^{(c)}$ (g/cm ³)	1.414	1.515	1.466	1.517	1.62	1.482	1.563	1.65
V ^[d] (L/kg)	682	705	713	753	-	-	-	-
D ^[e] (m/s)	6850	7208	7342	7724	7764	7320	7220	6881
P ^[f] (GPa)	15.17	17.54	17.73	20.31	25.24	20.99	21.17	19.5
$\Delta_{f}H_{m}^{[j]}$ (kJ/mol)	628.32	664.92	699.62	747.17	962.27	986.05	1499.01	-295
FS(J)	18	17	13	14	4	-	10	15
IS(N)	260	290	270	250	-	-	160	353

ACS Paragon Plus Environment

ESD ^[1] (J)	0.52	0.43	0.33	0.38	-	-	0.32	-
Dmix ^[m] (m/s)	7515	7750	7725	7878	-	-	-	7585
Pmix ^[m] (GPa)	22.9	25.02	24.51	25.52	-	-	-	26.47

[a]Melting point. [b] Temperature of decomposition. [c] Density measured by gas pycnometer at 25 °C, except **4ba**, the density from single crystal X-ray diffraction. [d] Gas volume after detonation. [e] Detonation velocity. [f] Detonation pressure. [g] Calculated molar enthalpy of formation. [h] Ref. ^[2]. [i] Ref. ^[5]. [j] Ref. ^[6]. [k] TNT = trinitrotoluene.Ref. ^[14].[I]Electrostatic discharge sensitivity.[m] Compounds(50.4%) mixed with AP(39.1%) and fluororubber(($(C_2F_2H_2)_{0.8}(C_3F_6)_{0.2})(10.5\%)$.

The detonation parameters of compounds containing long catenated nitrogen atom chains were predicted based on the measured density and the heat of formation using the EXPLO5 program (version 6.01).^[11] The results were listed in Table 3. The heat of formation (HOF) plays an important role in evaluating the performance of energetic materials. Compounds 4aa and 4ba (N₆ structure) exhibits positive heats of formation of 628.32 and 664.92 kJ/mol(Table 3, entries 1-2), respectively. In contrast, compounds 4ac and 4ad (N₇ structure) possess higher heats of formation of 699.62 kJ/mol and 747.17 kJ/mol(Table 3, entries 3-4). The calculated volumes of detonation gases at standard temperature pressure are between 682 kg/L and 753 kg/L. compound 4ad has the highest volumes of detonation gases of 753 kg/L, which could be the potential gas generation agent candidate.

The thermal decomposition of 4aa and 4ba with N_6 structure occurs at 201.6 °C and 185.3 °C, which is higher than that of 4ac (168.5 °C) and 4ad (150.1°C) with N₇ structure, respectively (see Supplementary Figure S47-S48). It is worth pointing out that 4aa decomposes at 201.6 °C, which is 127.5 °C higher than its melting point (74.1 °C) (Table 3, entry 1), thus indicating that it can be candidate as melt-cast explosive. As we can see from the Table 3, the larger the number of directly linked nitrogen atoms, the more HOF and the less thermal stability are, which is attributed to a large number of N=N, N-N bonds within their structure. Owing to the high heat of formation, the detonation velocity of compound 4ba (7208 m/s), 4ac (7342 m/s) and 4ad (7724 m/s) is superior to that of TNT (6881 m/s). The detonation properties of the mixture of 4aa, 4ba, 4ac, 4ad, TNT(50.4% for each one), ammonium perchlorate(39.1%) and fluororubber($(C_2F_2H_2)_{0.8}(C_3F_6)_{0.2}$) (10.5%) were calulated and. The detonation velocity of a mixture of 4ad with 39.4% ammonium perchlorate was increased to 7878m/s, which is higher than that of TNT mixed with the same amount of ammonium perchlorate (7585m/s), demonstrating that 4ad is very competitive.

CONCLUSIONS

In conclusion, novel nitrogen chain compounds, which has an N₆ structure and an unreported N₇ structure, were designed and synthesized through a facile twostep reaction from tosylhydrazones and amino azole of *N*-NH₂.Importantly, X-ray crystal structure for intermediate revealed a convincing evidence for the ACS Paragon Plus Environment

mechanism of amino azole-based the bistriazole formation reaction. This N-N bonding-forming reaction provides a new efficient method for the discovery of novel high-nitrogen energetic compounds.

EXPERIMENT SECTION

Caution: Although we have not encountered any difficulties in preparing these new energetic materials, manipulations must be carried out by using standard safety precautions. Leather coat, ear protection, latex gloves, and face shield are strongly recommended for the experimental operation. All compounds should be handled with extreme care.

General Information

All commerical available reagents and solvents (analytical grade) were used as supplied without further purification unless otherwise stated. For chromatography, 100-200 and 200-300 mesh silica gel (Oingdao, China) was employed. ¹H and ¹³C NMR spectra were measured with a Bruker Avance III 300MHz Digital NMR Spectrometer and a Bruker Avance 75 instrument. NMR acquisitions were performed at 295 K unless otherwise noted. Abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Infrared (IR) spectra were recorded on a Perkin-Elmer Spectrum BX FT-IR instrument equipped with an ATR unit at 25 High resolution mass spectra were obtained using an Agilent 6210 Series TOFLC-MS equipped with electrospray ionization (ESI) probe operating in positive ion mode. The decomposition point was recorded on a DSC823^e at a heating rate of 5 °C·min⁻¹ in closed Al containers with a nitrogen flow of 30 mL·min⁻¹.

Data for 3ba, 4ba, 3ca and 4ca were collected on a Bruker three-circle platform diffractometer equipped with a SMART APEX II CCD detector. A Kryo-Flex low temperature device was used to keep the crystals at a constant 173 K during data collection. Data collection was performed and the unit cell was initially refined using APEX2 [v2010.3-0]. Data Reduction was performed using SAINT [v7.68A] and XPREP [v2008/2] Corrections were applied for Lorentz, polarization, and absorption effects using SADABS [v2008/1]. The structure was solved and refined with the aid of the programs in the SHELXTL-plus [v2008/4] system of programs. The full-matrix least-squares refinement on F² included atomic coordinates and anisotropic thermal parameters for all non-H atoms. The H atoms were included using a riding model. The structure was solved by direct methods with SHELXS-97 and expanded by using the Fourier technique. The nonhydrogen atoms were refined anisotropically. The hydrogen atoms were located and refined.

 α , α -dichlorotosylhydrazones $1a^{[12]}$ and $1b^{[13]}$ were

synthesized according to the literatures procedures.

N'-(2,2-dichloro-1-methylethylidene)-4-methylbenze nesulfonohydrazide (1a). White solid (6.10 g); Yield: 90%. ¹H NMR (300 MHz, Acetone- d_6) δ ppm:9.6 (s,1H), 7.8 (d, *J*=8.22 Hz, 2H), 7.4 (d, *J*=8.25 Hz,2H), Environment

56

57

58

59

60

3 4

- 5 6
- 7
- 8
- 9
- 10

22

- 134.4, 129.9, 127.8, 77.3, 67.3. General procedure for preparation of α,α -11 dichlorotosylhydrazones (1c-1g): 12
- TsNHNH₂ (2.79 g, 15.0 mmol) was swollen in a 13 mixture containing 20 mL CH₃OH and 1.5 mL of TiCl₄ 14 (1 mol/L) in CH₂Cl₂ for 1 h at room temperature. The 15 intermeidiate α, α -dichloroacetophenones (23.0 mmol) 16 was added and the reaction mixture was then stirred at 17 10 °C for 12 h. The precipitate was collected by 18 filtration and washed consecutively with CH₃OH, and 19 dried overnight in a vacuum oven at 40 °C. The yield 20 of the product was around 56-67% in general. 21

6.5 (s, 1H) . ¹³C {¹H} NMR (75 MHz, Acetone- d_6) δ

ppm:151.3, 144.9, 137.0, 130.3, 128.6, 73.9, 21.0, 10.7.

N'-(2,2-dichloroethylidene)-4-methylbenzenesulfono

hydrazide (1b). White solid (5.64 g); Yield: 83%.¹H

NMR (300 MHz, Acetone- d_6) δ ppm:8.34 (s, 1H), 7.81

(d, J=8.19Hz, 2H), 7.36 (d, J=8.07, 2H), 7.21 (d,

J=7.47Hz, 1H), 2.40 (d, J=7.44Hz, 3H). ¹³C {¹H}

NMR (75 MHz, Acetone-d₆) δ ppm: 144.9, 143.4,

N'-(2,2-dichloro-1-phenylethylidene)-4

23 methylbenzenesulfonohydrazide (1c). White solid 24 (3.54 g); Yield: 66%. ¹H NMR (300 MHz, Acetone- d_6) 25 δ ppm: 9.67 (s, 1H), 7.81 (d, J = 8.1 Hz, 2H), 7.53 (m, 26 3H), 7.40 (m, 4H), 6.85 (s, 1H), 2.44 (s, 3H). ¹³C {¹H} 27 NMR (75 MHz, Acetone- d_6) δ ppm: 151.1, 145.0, 28 137.0, 131.3, 130.4, 130.4, 129.8, 129.1, 128.7, 72.9, 29 21.5. Anal. Calcd for C₁₆H₁₆N₂O₂SCl₂: C, 51.76; H, 30 4.34; N, 7.55; S, 8.64.. Found: C, 51.77; H, 4.33; N, 31 7.54: S. 8.66.. 32

33 N'-(2,2-dichloro-1-(p-tolyl)ethylidene)-4-

methylbenzenesulfonohydrazide (1d). White solid 34 (3.11 g); Yield: 56%. ¹H NMR (300 MHz, Acetone- d_6) 35 δ ppm: 9.62 (s, 1H), 7.78 (d, J = 8.1 Hz, 2H), 7.41 (d, J36 = 7.5 Hz, 2H), 7.33 (d, J = 7.8 Hz, 2H), 7.26 (d, J = 8.137 Hz, 2H), 6.82 (s, 1H), 2.43 (s, 3H), 2.38 (s, 3H). ¹³C 38 {¹H} NMR (75 MHz, Acetone- d_6) δ ppm: 151.2, 145.0, 39 141.4, 137.4, 130.4, 130.4, 130.0, 128.7, 126.2, 73.1, 40 21.5, 21.4. Anal. Calcd for C17H18N2O2SCl2: C, 52.99; 41 H, 4.71; N, 7.27; S, 8.32.. Found: C, 52.97; H, 4.74; N, 42 7.26; S, 8.33.. 43

N'-(2,2-dichloro-1-(4-chlorophenyl)ethylidene)-4-44

methylbenzenesulfonohydrazide (1e). White solid 45 (3.82 g); Yield: 65%. ¹H NMR (300 MHz, Acetone- d_6) 46 δ ppm: 9.85 (s, 1H), 7.79 (d, J = 8.1 Hz, 2H), 7.57 (d, 47 J = 8.4 Hz, 2H), 7.42 (d, J = 2.4 Hz, 2H), 7.39 (d, J = 48 2.7 Hz, 2H), 6.86 (s, 1H), 2.43 (s, 3H). ¹³C {¹H} NMR 49 (75 MHz, Acetone- d_6) δ ppm: 149.7, 145.0, 137.0, 50 132.1, 130.4, 130.1, 129.3, 128.6, 127.9, 72.7, 21.5. 51 Anal. Calcd for C₁₆H₁₅N₂O₂SCl₃: C, 47.37; H, 3.73; N, 52 6.90; S, 7.90.. Found: C, 47.35; H, 4.75; N, 7.28; S, 53 8.31.. 54

N'-(1-(4-bromophenyl)-2,2-dichloroethylidene)-4-

55 methylbenzenesulfonohydrazide (1f). White solid 56 (4.35 g); Yield: 67%. ¹H NMR (300 MHz, Acetone-*d*₆) 57 δ ppm: 9.86 (s, 3H), 7.78 (d, J = 8.4 Hz, 2H), 7.71 (d, J58 = 8.4 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H) 7.34 (d, J = 8.4 59 Hz, 2H), 6.84 (s, 1H), 2.42 (s, 3H). ¹³C {¹H} NMR (75 129.8, 127.8 ACS Paragon Plus Environment 60

MHz, Acetone-*d*₆) δ ppm: 206.4, 149.8, 145.1, 136.9, 133.0, 132.2, 130.4, 128.6, 128.3, 125.3, 72.7, 21.5. Anal. Calcd for C₁₆H₁₅N₂O₂SCl₂Br: C, 42.69; H, 3.36; N, 6.22; S, 7.12.. Found: C, 42.64; H, 3.38; N, 6.20; S, 7.13.

N'-(2,2-dichloro-1-(4-fluorophenyl)ethylidene)-4-

methylbenzenesulfonohydrazide (1g). White solid (3.46 g); Yield: 62%. ¹H NMR (300 MHz, Acetone-*d*₆) δ ppm: 9.79 (s, 1H), 7.78 (d, J = 8.1 Hz, 2H), 7.44 (m, 4H), 7.28 (t, 2H), 6.83 (s, 1H), 2.41 (s, 3H). ¹³C {¹H} NMR (75 MHz, Acetone- d_6) δ ppm: 166.2, 145.0, 145.0, 137.0, 132.8, 130.4, 128.6, 125.3, 117.0, 116.7, 72.9, 21.5. Anal. Calcd for C₁₆H₁₅N₂O₂SCl₂F: C, 49.37; H, 3.88; N, 7.20; S, 8.24.. Found: C, 49.35; H, 3.90; N, 7.21; S, 8.23.

N-amino azoles 2a,^[4] 2b,^[5] 2c^[6] and 2d^[7] were synthesized according to the literatures procedures.

A solution of Et₃N (0.22 g, 2.2 mmol) in 10 mL methanol was added to a suspension of amino azoles (2, 2.0 mmol) and α_{α} -dichlorotosylhydrazone (1, 2.0 mmol), the reaction was stirred for 2-12 h at 0 °C. The precipitate was collected by filtration and washed consecutively with CH₃OH, then filtered and dried at 40 °C in vacuum. The yield of compounds 3 was around 83%-92% in general.

N'-(1-((1H-1,2,3-triazol-1-yl)imino)propan-2-ylidene)-4-methylbenzenesulfonohydrazide (3aa). 0.56 g of 3aa was obtained as light yellow solid from the reaction of 1a (0.59 g, 2.0 mmol) and 2a (0.17 g, 2.0 mmol) for 12 h. Yield: 91.0%. ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 11.61 (s, 1H), 8.62 (d, J = 7.8 Hz, 2H), 7.88 (s,1H), 7.80 (d, J = 7.5 Hz, 2H), 7.42 (d, J =7.5 Hz, 2H), 2.35 (s, 3H), 2.09 (s, 3H). ¹³C {¹H} NMR $(75 \text{ MHz}, \text{DMSO-}d_6) \delta \text{ ppm}: 155.6, 149.2, 144.0, 135.8,$ 134.1, 129.8, 127.5, 121.6, 21.1, 11.4. Anal. Calcd for C₁₂H₁₄N₆O₂S: C, 47.05; H, 4.61; N, 27.43; S, 10.47... Found: C, 47.02; H, 4.63; N, 27.44; S, 10.45..

N'-(2-((1H-1,2,3-triazol-1-yl)imino)ethylidene)-4-

methylbenzenesulfonohydrazide (3ba). 0.52 g of 3ba was obtained as white solid from the reaction of 1b (0.56 g, 2.0 mmol) and 2a (0.17 g, 2.0 mmol) for 2 h. Yield: 90%. ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 12.35 (s, 1H), 8.78 (d, J = 8.4, 1H), 8.22 (s, 1H), 7.72 (d, J = 8.0 Hz, 4H), 7.33 (d, J = 8.2 Hz, 2H), 2.37 (s, 3.1)3H). ¹³C {¹H} NMR (75 MHz, DMSO- d_6) δ ppm: 153.0, 143.6, 141.3, 135.5, 133.5, 129.37, 126.9, 121.7, 21.0. Anal. Calcd for C₁₁H₁₂N₆O₂S: C, 45.20; H, 4.14; N, 28.75; S, 10.97.. Found: C, 45.24; H, 4.13; N, 28.77; S, 10.98..

N'-(1-((4H-1,2,4-triazol-4-yl)imino)propan-2-ylidene)-4-methylbenzenesulfonohydrazide (3ab). 0.51 g of 3ab was obtained as light yellow solid from the reaction of 1a (0.59 g, 2.0 mmol) and 2b (0.17 g, 2.0 mmol) for 12 h; Yield: 83%. ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 11.58 (s, 1H), 9.17 (s, 2H), 8.51 (s, 1H), 7.81 (d, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 7.8 Hz, 2H), 2.37 (s, 3H), 2.08 (s, 3H). ¹³C {¹H} NMR (75 MHz, DMSO-*d*₆) δ ppm: 156.2, 149.8, 143.9, 139.2, 136.0, 129.8, 127.8, 21.0, 11.3. Anal. Calcd for C₁₂H₁₄N₆O₂S:

C. 47.05; H. 4.61; N. 27.43; S. 10.47.. Found: C. 47.02; H, 4.59; N, 27.46; S, 10.44..

4-methyl-N'-(1-((5-methyl-1H-tetrazol-1-

1

2

3

4

5

6

7

8

9

yl)imino)propan-2-lidene)benzenesulfonohydrazide (3ac). 0.56 g of 3ac as light yellow solid was obtained from the reaction of 1a (0.59 g, 2.0 mmol) and 2c (0.20 g, 2.0 mmol) for 4 h. Yield: 87%. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm: 11.73 (s, 1H), 8.57 (s, 1H), 7.82 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.1 Hz), 2.55 (s, 3H), 2.38 10 (s, 3H), 2.12 (s, 3H). ¹³C {¹H} NMR (75 MHz, DMSO-11 *d*₆) δ ppm: 157.4, 150.5, 148.7, 144.1, 135.7, 129.8, 12 127.5, 21.1, 11.3, 8.2. Anal. Calcd for C₁₂H₁₅N₇O₂S: C, 13 44.85; H, 4.71; N, 30.51; S, 9.98.. Found: C, 44.83; H, 14 4.69; N, 30.52; S, 9.95.. 15 16

N'-(1-((5-amino-1H-tetrazol-1-yl)imino)propan-2-

vlidene)-4-methylbenzenesulfonohydrazide 17 (3ad). 0.55 g of 3ad was obtained as yellow solid from the 18 reaction of 1a (0.59 g, 2.0 mmol) and 2d (0.20 g, 2.0 19 mmol) for 8 h. Yield: 85%. ¹H NMR (300 MHz, 20 DMSO-*d*₆) δ ppm: 11.46 (s, 1H), 8.33 (s, 1H), 7.81 (d, 21 J = 8.1 Hz, 2H), 7.42 (d, J = 8.1Hz, 2H), 7.24 (s, 2H), 22 2.37 (s, 3H), 2.13 (s, 3H). ¹³C {1H} NMR (75 MHz, 23 DMSO-d6) δ ppm: 152.8, 152.3, 149.8, 143.9, 135.8, 24 129.8, 127.5, 21.1, 11.2. Anal. Calcd for C₁₁H₁₄N₈O₂S: 25 C, 40.99; H, 4.38; N, 34.76; S, 9.95.. Found: C, 41.02; 26 H, 4.39; N, 34.74; S, 9.98.. 27

To a suspension of intermediate compounds 3 (0.5) 28 mmol) in methanol (4 mL) was added dropwise a 29 solution of DiPEA (0.23 g, 1.8 mmol) in 2 mL of 30 methanol at 65 °C or room temperature (only for 4ac 31 and 4ad). The reaction turned clear slowly and stirring 32 was continued for 72 h. After completion of the 33 reaction, all volatiles were removed under reduced 34 pressure. The residue was purified by column 35 chromatography using petroleum/ethyl acetate ether 36 (petroleum ether/ethyl acetate = 1/1) as the eluent. The 37 yield of compounds 4 was around 75%-95% in general. 38 4-methyl-1,1'-bi(1,2,3-triazole) (4aa). White solid 39 (0.071 g); Yield: 95%. DSC: m.p 74.1 °C, $T_{d, onset} =$ 40 160.8 °C, $T_{d, \text{ peak}} = 201.6$ °C. ¹H NMR (300 MHz, 41 DMSO- d_6) δ ppm: 9.01 (d, J = 1.2 Hz, 1H), 8.73 (s, 42 1H), 8.15 (d, J = 0.9 Hz, 1H), 2.38 (s, 3H). ¹³C {¹H} 43 NMR (75 MHz, DMSO-*d*₆) δ ppm: 142.7, 133.7, 126.6, 44 123.5, 10.65. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd 45 for C₅H₇N₆ 151.0732; Found: 151.0730. IR (KBr): 46 3162, 3146, 1550, 1475, 1227, 1004, 805, 623 cm⁻¹. 47

1,1'-bi(1,2,3-triazole) (4ba). White solid (0.051 g); 48 Yield: 75%. DSC: m.p 132.0 °C, $T_{d. onset} = 155.2$ °C $T_{d.}$ 49 $_{\text{peak}}$ = 185.3 °C. ¹H NMR (500 MHz, DMSO- d_6) δ ppm: 50 9.04 (d, J = 1.2 Hz, 1H), 8.17 (d, J = 1.2 Hz, 1H). ¹³C 51 {¹H} NMR (75 MHz, DMSO-*d*₆) δ ppm: 133.8, 126.5. 52 HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄H₅N₆ 53 137.0575; Found: 137.0597. IR (KBr): 3137, 3117, 54 1480, 1405, 1279, 1013, 939, 805, 602 cm⁻¹. 55

4-phenyl-1,1'-bi(1,2,3-triazole) (4ca). Light yellow 56 solid (0.087 g); Yield: 82%. DSC: m.p 140.1 °C, T_{d, onset} 57 = 155.3 °C, $T_{d, peak}$ = 185.2 °C. ¹H NMR (300 MHz, 58 DMSO- d_6) δ ppm: 9.51 (s, 1H), 9.10 (d, J = 0.3 Hz, 59 1H), 8.20 (d, J = 1.2 Hz, 1H), 7.97 (d, J = 6.0 Hz, 2H), ACS Paragon Plus Environment DMSO- d_6) δ ppm: 9.41 (s, 1H), 9.36 (s, 1H), 7.93 (d, J60

7.57-7.43 (m, 3H). ¹³C {¹H} NMR (75 MHz, DMSO- d_6) δ ppm: 146.3, 133.8, 129.2, 129.0, 126.4, 125.5, 122.6. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C₁₀H₉N₆ 213.0888; Found: 213.0890. IR (KBr): 3133, 1476, 1218, 1011, 811, 751, 682 cm⁻¹.

4-(p-tolyl)-1,1'-bi(1,2,3-triazole) (4da). White solid (0.087 g); Yield: 77%. DSC: m.p 106.7 °C, $T_{d, onset} =$ 147.5 °C, $T_{d, peak} = 179.2$ °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm: 9.44 (s, 1H), 9.08 (s, 1H), 8.19 (s, 1H), 7.86 (d, J = 6.0 Hz, 2H), 7.35 (d, J = 7.8 Hz, 2H), 2.35 (s, 3H). ¹³C {¹H} NMR (75 MHz, DMSO- d_6) δ ppm: 146.4, 138.7, 133.8, 129.8, 126.4, 126.3, 125.5, 122.2, 21.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C₁₁H₁₁N₆ 227.1045; Found: 227.1044. IR (KBr): 3094, 1500, 1256, 1003, 795, 505 cm⁻¹.

4-(4-chlorophenyl)-1,1'-bi(1,2,3-triazole) (4ea). White solid (0.108 g); Yield: 88%. DSC: m.p 142.7 °C, $T_{d, \text{ onset}} = 155.4 \text{ °C}, T_{d, \text{ peak}} = 187.8 \text{ °C}.$ ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 9.56 (s, 1H), 9.10 (d, J = 1.2Hz, 1H), 8.20 (d, J = 1.2 Hz, 1H), 8.00 (d, J = 8.4 Hz, 2H), 7.63 (d, J = 8.7 Hz, 2H). ¹³C {¹H} NMR (75 MHz, DMSO-*d*₆) δ ppm: 145.2, 133.8, 133.6, 129.3, 127.9, 127.2, 126.4, 123.0. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C₁₀H₈ClN₆ 247.0499, 249.0469; Found: 247.0494, 249.0464. IR (KBr): 3150, 3117, 1473, 1237, 1094, 1013, 798, 757, 512 cm⁻¹.

4-(4-bromophenyl)-1,1'-bi(1,2,3-triazole) (4fa). White solid (0.131 g); Yield: 90%. DSC: m.p 157.1 °C, $T_{d, \text{ onset}} = 166.8 \text{ °C}, T_{d, \text{ peak}} = 188.1 \text{ °C}.$ ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 9.53 (s, 1H), 9.06 (s, 1H), 8.19 (s, 1H), 7.92 (d, J = 8.4 Hz, 2H), 7.75 (d, J = 8.4Hz, 2H). ¹³C {¹H} NMR (75 MHz, DMSO- d_6) δ ppm: 145.4, 134.0, 132.3.0, 128.3, 127.6, 126.5, 123.0, 122.4. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C₁₀H₈BrN₆ 290.9993, 292.9973; Found: 290.9966, 291.9971. IR (KBr): 3122, 1486, 1402, 1242, 998, 781, 500 cm⁻¹. 4-(4-fluorophenyl)-1,1'-bi(1,2,3-triazole) (4ga). White solid (0.095 g); Yield: 83%. DSC: m.p 122.2 °C, $T_{d, \text{ onset}} = 157.8 \text{ °C}, T_{d, \text{ peak}} = 189.8 \text{ °C}.$ ¹H NMR (300 MHz, DMSO- d_6) δ ppm: 9.50 (s, 1H), 9.09 (s, 1H), 8.20 (s, 1H), 8.00 (m, 2H), 7.39 (m, 2H). ^{13}C {¹H} NMR (75 MHz, DMSO-*d*₆) δ ppm: 166.0, 145.4, 133.8, 127.6, 126.4, 125.6, 122.5, 116.4, 116.1. HRMS (ESI-TOF) m/z: $[M+C1]^{-}$ Calcd for $C_{10}H_8FN_6C1$ 265.0404; Found : 265.0401. IR (KBr): 3143, 1626, 1555, 1497, 1221, 1156, 1090, 1017, 836, 815, 777, 610, 509 cm⁻¹. 4-methyl-1-(4H-1,2,4-triazol-4-yl)-1H-1,2,3-triazole (4ab). White solid (0.066 g); Yield: 88%. DSC: m.p 120.4 °C, $T_{d, onset} = 185.0$ °C, $T_{d, peak} = 223.8$ °C. ¹H NMR (300 MHz, DMSO-*d*₆) δ ppm: 9.30 (s, 2H), 8.58 (s, 1H), 2.35 (s, 3H). ¹³C {¹H} NMR (75 MHz, DMSOd₆) δ ppm: 142.3, 142.1, 123.7, 10.6. HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₅H₇N₆ 151.0732; Found: 151.0729. IR (KBr): 3182, 3121, 1566, 1520, 1075, 1020, 612 cm⁻¹.

4-phenyl-1-(4H-1,2,4-triazol-4-yl)-1H-1,2,3-triazole (4cb). White solid (0.080 g); Yield: 76%. DSC: T_{d, onset} = 203.5 °C, $T_{d, peak}$ = 210.4 °C. ¹H NMR (300 MHz,

1

7

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

700, 586 cm⁻¹. 5-methyl-1-(4-methyl-1H-1,2,3-triazol-1-yl)-1H-

= 7.5 Hz, 2H), 7.54 (t, 2H), 7.46 (t, 2H). ^{13}C {¹H}

NMR (75 MHz, DMSO-*d*₆) δ ppm: 146.0, 142.1, 129.2,

129.0, 125.3, 122.9. HRMS (ESI-TOF) m/z: [M+H]+

Calcd for C₁₀H₉N₆ 213.0888; Found: 213.0890. IR

(KBr): 3100, 3065, 1468, 1177, 1045, 1018, 966, 762,

8 tetrazole (4ac). White solid (0.063 g); Yield: 77%. 9 DSC: m.p 76.6 °C, $T_{d, onset} = 134.8$ °C, $T_{d, peak} = 168.5$ 10 °C. ¹H NMR (300 MHz, DMSO-d₆) δ ppm: 8.65 (s, 11 1H), 2.46 (s, 3H), 2.40 (s, 3H).¹³C {¹H} NMR (75 12 MHz, DMSO-*d*₆) δ ppm: 152.5, 143.3, 123.7, 10.7, 7.7. 13 HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₅H₇N₇Na 14 188.0660; Found: 188.0663. IR(KBr): 3151, 3115, 15 1545, 1452, 1358, 1322, 1220, 1126, 1017, 959, 815, 16 613 cm⁻¹. 17

1-(4-methyl-1H-1,2,3-triazol-1-yl)-1H-tetrazol-5-18

amine (4ad). Red brown solid (0.063 g); Yield: 76%. 19 DSC: m.p 75.2 °C, $T_{d, onset} = 129.7$ °C, $T_{d, peak} = 150.1$ 20 °C.¹H NMR (300 MHz, DMSO-*d*₆) δ ppm: 8.59 (s, 1H), 21 7.67 (s, 2H), 2.36 (s, 3H). ¹³C {¹H} NMR (126 MHz, 22 DMSO-d₆) δ ppm: 153.8, 142.9, 124.1, 10.8. HRMS 23 (ESI-TOF) m/z: [M+H]⁺ Calcd for C₄H₇N₈ 167.0793; 24 Found: 167.0797. IR(KBr): 3369, 3285, 3165, 3109, 25 1667, 1538, 1410, 1272, 1215, 1126, 1017, 976, 802, 26 591cm⁻¹. 27

ASSOCIATED CONTENT

Supporting Information: concise list of types of data or files found in the SI

Optimization of Reaction Conditions for Preparation 4aa from 3aa; Computation Details; X-ray Structural Analysis of 3ba, 4ba, 3ca and 4ca.; NMR Spectra for New Compounds; DSC Curves of Compounds 4aa-4ga, 4ab-4ad.

AUTHOR INFORMATION

Corresponding Author

*E-mail: gcheng@njust.edu.cn.

⁺These authors contribute equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENT

This work was supported by the Science Challenge Project (TZ2018004), the National Natural Science Foundation of China (No. 21676147, 21875110) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

REFERENCES

1 a) R. Haiges, S. Schneider, T. Schroer, K. O. Christe. High-Energy-Density Materials: Synthesis and Characterization of $N_5^+[P(N_3)_6]^-$, $N_5^+ [B(N_3)_4]^ N_5^+[HF_2]^- \cdot n HF, N_5^+[BF_4]^-, N_5^+[PF_6]^-, and N_5^+[SO_3F]^-.$ Angew. Chem. Int. Ed. 2004, 43, 4919-4924. (b) Y. Zhang, D. A. Huang, Parrish, J. M. Shreeve. 4-Amino-3,5dinitropyrazolate salts-highly insensitive energetic materials. J. Mater. Chem. 2011, 21, 6891-6897; c) T. M. Klapötke, C. Petermayer, D. G. Piercey, J. Stierstorfer. 1,3-Bis(nitroimido)-1,2,3-triazolate Anion, the N-Nitroimide

Moiety, and the Strategy of Alternating Positive and Negative Charges in the Design of Energetic Materials. J. Am. Chem. Soc. 2012, 134, 20827-20836; d) T. M. Klapötke, F. A. Martin, J. Stierstorfer. N-Bound Primary Nitramines Based on 1,5-Diaminotetrazole. Chem. Eur. J. 2012, 18, 1487-1501; e) P. Yin, D. A. Parrish, J. M. Shreeve. N-Diazo-Bridged Nitroazoles: Catenated Compatible Nitrogen-Atom Chains with Nitro Functionalities. Chem. Eur. J. 2014, 20, 6707-6712; f) A. A. Dippold, D. Izsák, T. M. Klapötke, C. Pflüger. Combining the Advantages of Tetrazoles and 1,2,3-Triazoles: 4,5-Bis(tetrazol-5-yl)-1,2,-triazole, 4,5-Bis(1-hydroxytetrazol-5-yl)-1,2,3-triazole, and their Energetic Derivatives. Chem. Eur. J. 2016, 22, 1768-1778.

- 2 Y. Li, C. Qi, S. Li, H. Zhang, C. Sun, Y. Yu, S. Pang. 1,1'-Azobis-1,2,3-triazole: A High-Nitrogen Compound with Stable N8Structure and Photochromism. J. Am. Chem. Soc. 2010, 132, 12172-12173.
- T. M. Klapötke, D. G. Piercey, J. Stierstorfer. Amination of 3 energetic anions: high-performing energetic materials. Dalton Trans. 2012, 41, 9451-9459.
- T. M. Klapötke, C. Petermayer, D. G. Piercey. 1,1'-4 Azobis(tetrazole): A Highly Energetic Nitrogen-Rich Compound with a N₁₀ Chain. Inorg. Chem., 2011, 50, 2732-2734.
- 5 Y. Tang, H. Yang, J. Shen, B. Wu, X. Ju, C. Lu, G. Cheng. Synthesis and characterization of 1.1'-azobis(5methyltetrazole). New J. Chem. 2012, 36, 2447-2450.
- Y. Tang, H. Yang, B. Wu, X. Ju, C. Lu, G. Cheng, Synthesis and Characterization of a Stable, Catenated N11Energetic Salt. Angew. Chem. Int. Ed. 2013, 52, 4875-4877.
- 7 a) Y. Tang, H. Yang, G. Cheng. Recent Advanced Strategies for Extending the Nitrogen Chain in the Synthesis of High Nitrogen Compounds. Synlett. 2013. 24. 2183-2187; b) Q. Zhang, J. M. Shreeve. Growing Catenated Nitrogen Atom Chains. Angew. Chem. Int. Ed. 2013, 52, 8792-8794.
- R. Sakai, N. Hida, K. Kondo, Reactions of α-Polyhalo 8 Ketone Tosylhydrazones with Sulfide Ion and Primary Amines. Cyclization to 1,2,3-Thiadiazoles and 1,2,3-Triazoles. Bull. Chem. Soc. Jpn. 1986, 59, 179-183.
- 9 a) S. S. van Berkel, S. Brauch, L. Gabriel, M. Henze, S. Stark, D. Vasilev, L. A. Wessjohann, M. Abbas, B. Westermann. Traceless Tosylhydrazone-Based Triazole Formation: A Metal-Free Alternative to Strain-Promoted Azide-Alkyne Cycloaddition. Angew. Chem. Int. Ed. 2012, 51, 5343-5346; b) M. S. Raghavendra, Y. Lam. Regiospecific solid-phase synthesis of substituted 1,2,3triazoles. Tetrahedron Lett. 2004, 45, 6129-6132; c) R. Hanselmann, G. E. Job, G. Johnson, R. Lou, J. G. Martynow, M. M. Reeve. Synthesis of an Antibacterial Compound Containing a 1,4-Substituted 1H-1,2,3-Triazole: A Scaleable Alternative to the "Click" Reaction. Org. Process Res. Dev. 2010, 14, 152-158.
- 10 T. Shoz. BIS-1,2,3-TRIAZOLE, ITS PRODUCTION AND GAS-GENERATING AGENT CONTAINING THE COMPOUND. JP2000178261A[P]. 2000.

- 11 M. Sućeska, EXPLO5 6.01, Brodarski Institute, Zagreb, Croatia, **2013**.
- 12 S.S.van Berkel, S. Brauch, L. Gabriel, M. Henze, S. Stark, D. Vasilev, L. A. Wessjohann, M. Abbas, B. Westermann. Traceless Tosylhydrazone-Based Triazole Formation: A Metal-Free Alternative to Strain-Promoted Azide-Alkyne Cycloaddition. *Angew. Chem.Int. Ed.* 2012, *51*, 5343-5346.
- 13 T. Shozo. BIS-1,2,3-TRIAZOLE, ITS PRODUCTION AND GAS-GENERATING AGENT CONTAINING THE COMPOUND.JP20001782614[P]. 2000.
- COMPOUND.JP2000178261A[P]. 2000.
 14 Z. Xu, G. Cheng, H. Yang, X.Ju, P. Yin, J. Zhang and J. M. Shreeve, Angew. Chem., Int. Ed., 2017, 56, 5877-5881