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ABSTRACT: O-Perfluoropyridin-4-yl group was firstly installed onto cycloketone 

oximes as a new electrophore, which were proven to be efficient iminyl radical 

precursors under photocatalytic and thermal conditions. A range of O-perfluoropyridin-

4-yl oximes were successfully utilized in C(sp2)-C(sp3) bond formations of quinoxalin-

2(1H)-ones and alkenes, providing facile accesses to a range of functionalized 

alkylnitriles.

INTRODUCTION

Over the last decade, iminyl radical chemistry1 has garnered intensive efforts due 

to its unique reactivity in C-C bond-forming events. In general, iminyl radicals are 
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prone to proceeding radical transposition to generate C-centered alkyl radicals via the 

classical Norrish type-1 fragmentation2 or intramolecular hydrogen-atom abstraction3 

(i.e., 1,5-HAT) (Scheme 1a), providing alternative accesses to C-centered alkyl 

radicals. Pioneered by Forrester’s group,4 oxime derivatives have been extensively 

utilized in the generation of iminyl radicals,5 owing to their readily cleavable N-O bond. 

To date, three major activation modes for N-O bond cleavage of oximes, including 

homolytic bond cleavage under harsh conditions,6 transition-metal-catalyzed7 or 

visible-light-driven8,9 SET-mediated N-O bond cleavage of redox-active oximes, have 

progressively evolved. In particular, visible-light-driven photoredox catalysis has 

significantly boosted the advance of this field.1c In general, introducing an electrophore 

to oxime is usually necessitated to modulate its redox potential, matching that of the 

visible-light-excited photocatalyst. To this end, various oxime esters and oxime ethers 

have been designed and used in a range of radical-involved transformations, thus 

offering new synthetic opportunities in modern organic chemistry.

Previous reports disclosed that oxime ethers usually deliver the corresponding 

iminyl radicals under harsh conditions, such as microwave and elevated 

temperature.6a,6b Specifically, electron-poor oxime ethers possess lower reduction 

potentials, compatible with single electron transfer (SET) reduction by visible-light-

excited photocatalysts.1c Following this rationale, a range of aromatic moieties bearing 

strong electron-withdrawing groups were installed onto the oxime skeletons to tailor 

their redox properties. O-2,4-dinitrophenyl oximes9 possessing low reduction potentials 

and  LUMO energies were found to be suitable for the SET process with the 

commonly used photocatalysts. Despite these advances, new readily available 

electrophore is still highly desirable to broadly tune the redox potentials of the oxime 

derivatives, facilitating the extension of the boundary of the iminyl radical chemistry.
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Scheme 1. Synthetic Profiles of O-aryl Oximes as Iminyl Radical Precursors 
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Pentafuoropyridine,10 a readily available multifluorinated arene (1.35 $/g), is 

highly electron-deficient and thus susceptible to nucleophilic attack due to the presence 

of high electronegative fluorine atoms. Realizing this fact, we envisaged that installing 

perfluoropyridin-4-yl moiety onto oximes might offer an effective pathway to markedly 

modulate their redox potentials, therefore facilitating the generation of the 

corresponding iminyl radicals. Based on our previous work on the radical-mediated N-

O cleavage of strained cycloketone oximes,11 we designed a series of O-

perfluoropyridin-4-yl cycloketone oximes and evaluated their behaviors under both 

thermal- and photocatalytic conditions. Interestingly, it turned out that O-

perfluoropyridin-4-yl oximes are able to serve as reliable iminyl racial precursors under 

photocatalytic and thermal conditions, enabling the subsequent radical-involved C-C 

bond formations (Scheme 1b). 
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Figure 1. Preliminary studies on the properties of O-perfluoropyridin-4-yl oxime 
3a: a) CV studies; b) quenching experiments; c) 1H NMR and 19F NMR studies.

RESULTS AND DISSUSSION

Initially, in order to verify the viability of our hypothesis, O-perfluoropyridin-4-yl 

cyclobutanone oxime 3a was prepared via a straightforward one-step process in high 

yield. The reduction potential of 3a was then examined by cyclic voltammetry, which 

would be crucial for the studies on its photochemical behaviors (Figure 1a, see SI for 

details). It was found that a reduction wave was recorded at -1.52 V vs. Ag/AgCl (  Ep/2
red

= -1.45 V vs. SCE. in MeCN, see SI for details). Interestingly, adding 1 mol% of fac-

Ir(ppy)3 resulted in a significant positive-shift for the Ered value, suggesting that fac-

Ir(ppy)3 could enhance the oxidizing ability of 3a. At this stage, we realized that the 

photocatalyst fac-Ir(ppy)3  (Ered = -1.73 V vs. SCE. in MeCN)12 could serve as an 

electron donor to directly reduce O-perfluoropyridin-4-yl cyclobutanone oxime 3a 

from its excited state, which was further confirmed by the Stern−Volmer plot 
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measurements (kq = 8.95*102 mL-1·s-1, Figure 1b, see SI for details). The low kq value 

indicates that a reaction-controlled process might be involved in this photocatalytic 

transformation. Furthermore, 1H NMR and 19F NMR experiments were also carried out 

to further examine the interaction of fac-Ir(ppy)3 with 3a (Figure 1c, see SI for details). 

Upon mixing 3a with 5 mol% of fac-Ir(ppy)3, new distinct peaks in 1H and 19F spectra 

were observed immediately, suggesting that the N-O bond cleavage of 3a might occur 

in the presence of fac-Ir(ppy)3.

Once understanding the inherent features of 3a, we next investigated its reactivity 

as an iminyl precursor for the functionalization of C=N or C=C bonds (Scheme 2). As 

a result, quinoxalin-2(1H)-ones and alkenes were employed as the radical trapping 

reagents to explore the reactivity of 3a. Gratifyingly, under the optimized reaction 

conditions (see SI for details), the resulting C(sp2)-C(sp3) coupling products 6a and 7a 

were furnished through a homolytic process under elevated temperature (conditions a), 

or a photocatalytic SET process (conditions b). Interestingly, 6a and 7a were also 

accessible without blue-LED irradiation (conditions c). Based on these results, 

incomparable features of O-perfluoropyridin-4-yl oximes can be obviously identified 

in the context of radical generation as well as radical-involved transformations.

Scheme 2. Reactivities of O-Perfluoropyridin-4-yl Oxime 3a
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To gain better mechanistic understanding on the process, additional control 

experiments were also carried out (Figure 2). On/off and off/on experiments on the 

reaction of 3a and 4a demonstrate that the corresponding product 6a can be formed 

upon constant irradiation and in the dark, though a much slower reaction was achieved 

in the dark. This suggests a photochemical pathway and a redox process might be 

effective concurrently in the process of the title reaction. Radical inhibition experiments 

were also conducted by adding 2,2,6,6-tetramethyl-1-piperdinyloxy (TEMPO) under 

the corresponding reaction conditions, and all the reactions were significantly inhibited 

(Figure 2c). These results indicate that a free-radical pathway might be involved in the 

transformations. Additionally, we also studied the spin-trapping reactions of the 

involved radicals by adding N-benzylidene-tert-butylamine N-oxide (PBN) under the 

standard reaction conditions (see the Supporting Information). Under irradiation with 

blue LED, a EPR signal for CN(CH2)3•/PBN adduct was clearly observed,13 which was 

also identified by HRMS analysis. On the other hand, upon heating the reaction system, 

the superposition of EPR signals for radical CN(CH2)3•/PBN and C5F4NO•/PBN 

adducts were detected, and their molecular ions were detected in HRMS analysis as 

well. The observation of PBN adducts derived from C- and O-centered radicals shows 

the difference in the pathway for the photo- and thermal-induced N-O bond cleavage of 

3a (please see structures 10 & 11 in the SI).
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Figure 2. Control experiments. a) On/off experiments; b) Off/on experiments; c) 
Radical trapping experiments.

On the basis of previous reports and the above-mentioned results, a plausible 

mechanism for this process is proposed in Scheme 3. In the case of photocatalytic 

pathway (Scheme 3, path a), photocatalyst fac-Ir(ppy)3 was converted to a highly 

reducing excited *fac-Ir(ppy)3 (E1/2(IrIV/*IrIII) = −1.73 V vs SCE)12 under the irradiation 

of blue light, which was subsequently oxidatively quenched by oxime 3a. As a result,  

a reductive N–O bond cleavage of 3a occurred via a single-electron-transfer process to 

deliver iminyl radical A. Alternatively, promoted by fac-Ir(ppy)3 without irradiation 

(path b) or heating (path c), iminyl radical A could be generated via a homolytic N–O 

bond fragmentation. A facile radical transposition through a strain relieved C–C single 

bond cleavage delivered a cyanoalkyl radical species B, which could be rapidly 

intercepted by quinoxalin-2(1H)-one 1 and alkene 2 through a radical addition process 

to yield a new radical intermediate C. This radical was further oxidized to cation D by 

fac-Ir(IV) species (or oxime 3a, or C5F4NO•) via a SET process, thus completing the 

photocatalytic cycle with releasing the ground state fac-Ir(ppy)3. In the presence of base 

or C5F4NO-, the subsequent deprotonation of intermediate D gave the final C(sp2)-C(sp3) 

coupling product.
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Scheme 3. Proposed Mechanism
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Ultimately, the versatility and reliability of this developed strategy as well as the 

compatibility of the reaction conditions were extensively evaluated in various 

transformations (Scheme 4). A wide range of quinoxalin-2(1H)-ones and alkenes 

bearing various substituents were proven to be suitable partners for this transformation, 

giving the corresponding C(sp2)-C(sp3) coupling products in good to excellent yields. 

It is worth mentioning that the photocatalytic conditions usually gave superior results, 

especially for the alkene substrates. As for the thermal processes, unidentified by-

products were also observed at the elevated reaction temperature, resulting in lower 

chemical yields. Interestingly, unprotected quinoxa-lin-2(1H)-one also delivered the 

desired product 6d in good yield. Noticeably, this newly developed activation module 

is also amenable to other ring systems such as N- or O-heterocyclobutane and 

cyclohexane, delivering the corresponding products (6q-6u) in satisfactory yields. It is 

noteworthy that oxime ester 3f was unable to furnish the desired product under the 

photocatalytic conditions, possibly due to its lower strain of the six-membered ring. 

Encouragingly, this strategy was further extended to linear oxime 3g, successfully 

giving 8a via a 1,5-HAT process. However, other simple alkenes including styrene and 

cyclohexene only rendered a fairly complex reaction, and the corresponding products 

was unable to be isolated. Impressively, the practicality and scalability of this protocol 
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were demonstrated by running the title reaction of 3a with 4a on a large scale under 

sunlight for 12 h, which also proceeded smoothly to give 6a in 72% yield.

Scheme 4. Scope of the Construction of C(sp3)-C(sp2) Bonds based on O-
Perfluoropyridin-4-yl Oximes
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CONCLUSIONS
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In summary, a range of readily prepared, bench-stable O-perfluoropyridin-4-yl 

oximes served as effective iminyl radical precursors for the first time. These newly 

developed precursors were demonstrated to be compatible with photocatalytic and 

thermal reaction conditions. A variety of quinoxalin-2(1H)-ones and alkenes were 

functionalized through facile radical-involved C(sp2)−C(sp3) bond-forming processes. 

This research opens a door for the synthetic applications of O-perfluoropyridin-4-yl 

moiety as an activation module in the generation of radicals, thus building up a platform 

for broadly exploring radical-involved transformations.

EXPERIMENTAL SECTION

General Experimental Methods. Unless otherwise noted, all the reagents were purchased 

from commercial suppliers and used without further purification. And the light source used for 

illuminating the reaction vessel (commercial supplier: Synthware) consisted of blue LEDs (λmax = 

460 nm) purchased from Taobao (https://gpiled.taobao.com). 1H NMR spectra were recorded at 400 

MHz. The chemical shifts were recorded in ppm relative to tetramethylsilane and with the solvent 

resonance as the internal standard. Data were reported as follows: chemical shift, multiplicity (s = 

singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), coupling constants (Hz), 

integration. 13C NMR data were collected at 100 MHz with complete proton decoupling. Chemical 

shifts were reported in ppm from the tetramethylsilane with the solvent resonance as internal 

standard. 19F NMR data were collected at 376 MHz with complete proton decoupling. UV–Vis 

spectra were recorded using a Shimadzu UV-2600. Infrared spectra (IR) were measured by FT-IR 

apparatus. High resolution mass spectroscopy (HRMS) was recorded on TOF MS ES+ mass 

spectrometer and acetonitrile was used to dissolve the sample. Cyclic Voltammetry (CV) 

experiments were recorded on a CHI650D electrochemical workstation. Emission intensities were 

recorded using Perkin-Elemer LS 55 Fluorescence Spectrometer. Continuous-wave (CW) electron 

paramagnetic resonance (EPR) measurements were performed on a JEOL JES-FA200 X-band 

spectrometer. Column chromatography was carried out on silica gel (200-300 mesh).

General procedure for the preparation of 3a-3g. Step1: To a mixture of ketone (5 mmol, 

1.0 equiv.) and hydroxylamine hydrochloride (6 mmol, 1.2 equiv.) in MeOH (30 mL) was added 

NaOAc (7.5 mmol, 1.5 equiv.). The mixture was heated to reflux until the reaction was monitored 
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to be completed by TLC analysis. Methanol was then removed under vacuum, and ethyl acetate and 

saturated solution of NaHCO3 were added. The aqueous layer was extracted once with EtOAc (100 

mL). The combined organic layers were washed twice with water (20 mL), dried over anhydrous 

Na2SO4, filtered and evaporated under reduced pressure to afford crude product oxime. Step2: A 

mixture of oxime (3.8 mmol, 1.0 equiv.), potassium carbonate (7.6 mmol, 2.0 equiv.) and MeCN 

(20 mL) were stirred at room temperature for 3 h. Then pentafluoropyridine (3.8 mmol, 1.0 equiv) 

was added and the obtained mixture was stirred overnight at room temperature. Afterwards, brine 

was added, and the mixture was diluted with EtOAc (100 mL). The organic layer was washed twice 

with water (30 mL), dried over Na2SO4 and concentrated. The residue was purified by column 

chromatography (PE/EtOAc = 100:1 or 25:1) to afford the corresponding O-aryl oximes.

General procedure for the preparation of 4a-4q. The starting materials 4a-4q were prepared 

according to the previously described method.14 The data of known compounds are consistent with 

the previously reports14,15 and the copies of their 1HNMR spectra are included in the Supporting 

Information. The characterization data of new compounds 4b, 4e, 4f, 4j, 4m, 4n and 4p are also 

provided herein. 

General procedure for the synthesis of compound 5a-5g. Compound 5a was purchased from 

Energy Chemistry Company and used without any further purification. The starting materials 5b-

5g were prepared according to the previously described method.16 The data of known compounds 

are consistent with the previously reports16,17 and the copies of their 1HNMR spectra are included 

in the Supporting Information. 

General procedure for the synthesis of compound 6a-6u, 7a-7g, 8a. Conditions A [Δ]: To 

an oven-dried 15 mL Schleck flask equipped with a magnetic stir bar, o-aryl oximes 3 (0.3 mmol, 

1.5 equiv.), quinoxalin-2(1H)-ones 4 or alkenes 5 (0.20 mmol, 1.0 equiv.) and MeCN (2 mL) were 

added. The vessel was evacuated and backfilled with Ar. The tube was screw-capped and stirred at 

100 ℃ (oil bath) for 12 h. The solvent was removed under reduced pressure, and then the residue 

was purified by flash column chromatography (PE/EtOAc = 4:1 or 20:1) to afford the desired 

products 6 or 7. Conditions B [hv] : To an oven-dried 15 mL Schleck flask equipped with a magnetic 

stir bar, o-aryl oximes 3 or 3a (0.3 mmol, 1.5 equiv.), quinoxalin-2(1H)-ones 4 or alkenes 5 (0.20 

mmol, 1.0 equiv.), fac-Ir(ppy)3 (5% mmol), Na2CO3 (0.4 mmol, 2 equiv.) and MeCN (2 mL) were 

added. The vessel was evacuated and backfilled with Ar. The tube was screw-capped and stirred at 
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room temperature under irradiation of 30 W blue LEDs (distance app. 5 cm) for 12 h. The solvent 

was removed under reduced pressure, and then the residue was purified by flash column 

chromatography (PE/EtOAc = 4:1 or 20:1) to afford the desired products 6, 7 or 8.

Scale-up Reaction. To an oven-dried 100 mL Schleck flask equipped with a magnetic stir bar, 

o-aryl oximes 3a (3 mmol, 1.5 equiv.), quinoxalin-2(1H)-ones 4a (2 mmol, 1.0 equiv.), fac-Ir(ppy)3 

(5% mmol), Na2CO3 (4 mmol, 2 equiv.) and MeCN (20 mL) were added. The vessel was evacuated 

and backfilled with Ar. The tube was screw-capped and stirred at room temperature under sunlight 

for 12 h. The solvent was removed under reduced pressure, and then the residue was purified by 

flash column chromatography (PE/EtOAc = 4:1) to afford the desired products 6a (327mg, 72 yield).

Characterization Data of Compound 3a-3g, 4b, 4e, 4f, 4j, 4m, 4n, 4p, 6a-6u, 7a-7g, 8a.

Cyclobutanone O-perfluoropyridin-4-yl oxime (3a). Yellow oil, 755.8 mg, yield 85%; IR (neat) 

ν 1636, 1473, 1412, 1068, 981, 822 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 3.11 (t, J = 8.0 Hz, 

2H), 3.02 (t, J = 8.0 Hz, 2H), 2.03 – 2.12 (m, 2H); 19F NMR (376 MHz, Chloroform-d) δ -90.51 – 

-90.34 (m), -155.72 – -155.55 (m); 13C{1H} NMR (100 MHz, Chloroform-d) δ 167.7, 147.4 – 147.7 

(m), 145.0 – 145.4 (m), 142.6 – 142.9 (m), 136.0 – 136.3 (m), 133.4 – 133.7 (m), 31.4, 31.2, 14.3; 

HRMS (ESI): C9H6F4N2NaO+ [M+Na]+ Calcd 257.0308, Found 257.0308.

3-(Naphthalen-2-yl)cyclobutan-1-one O-perfluoropyridin-4-yl oxime (3b). White solid, 1.067 

g, yield 78%, m.p. 114-116 ℃; IR (neat) ν 1469, 1400, 1062, 965, 809, 750, 723, 471 cm-1; 1H NMR 

(400 MHz, Chloroform-d) δ 7.80 – 7.86 (m, 3H), 7.69 (s, 1H), 7.45 – 7.52 (m, 2H), 7.38 – 7.40 (m, 

1H), 3.83 – 3.91 (m, 1H), 3.68 – 3.61 (m, 1H), 3.53 – 3.61 (m, 1H), 3.27 – 3.38 (m, 2H); 19F NMR 

(376 MHz, Chloroform-d) δ -90.26 – -90.09 (m), -155.55 – -155.38 (m); 13C{1H} NMR (100 MHz, 

Chloroform-d) δ 164.5, 148.0 – 146.7 (m), 145.9 – 144.3 (m), 143.6 – 142.0 (m), 139.9, 137.1 – 

135.5 (m), 134.0 – 133.4 (m), 133.3, 132.4, 128.8, 127.7, 127.7, 126.6, 126.0, 124.8, 124.5, 39.0, 

38.8, 32.8. HRMS (ESI): C19H12F4N2NaO+ [M+Na]+ Calcd 383.0778, Found 383.0776.

tert-Butyl (3-(((perfluoropyridin-4-yl)oxy)imino)cyclobutyl)carbamate (3c). White solid, 

1.061 g, yield 80%, m.p. 155-156 ℃; IR (neat) ν 1680, 1528, 1467, 1275, 1162, 1065, 984, 833 

cm-1; 1H NMR (400 MHz, Chloroform-d) δ 5.02 (s, 1H), 4.31 (s, 1H), 3.56 – 3.62 (m, 1H), 3.42 – 

3.48 (m, 1H), 3.05 – 3.15 (m, 2H), 1.47 (s, 9H); 19F NMR (375 MHz, Chloroform-d) δ -90.23 – -

90.06 (m), -155.57 – -157.40 (m); 13C{1H} NMR (100 MHz, Chloroform-d) δ 162.1, 154.9, 147.1 

– 147.4 (m), 145.0 – 145.4 (m), 142.6 – 142.9 (m), 136.0 – 136.3 (m), 133.4 – 133.7 (m), 80.4, 40.2, 
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40.0, 39.8, 28.3; HRMS (ESI): C14H15F4N3NaO3
+ [M+Na]+ Calcd 372.0942, Found 372.0969.

tert-Butyl 3-(((perfluoropyridin-4-yl)oxy)imino)azetidine-1-carboxylate (3d). White solid, 

967.5 mg, yield 76%, m.p. 146-147 ℃; IR (neat) ν 1688, 1473, 1401, 1123, 1061, 972, 839 cm-1; 

1H NMR (400 MHz, Chloroform-d) δ 4.85 – 4.87 (m, 2H), 4.78 – 4.79 (m, 2H), 1.49 (s, 9H); 19F 

NMR (376 MHz, Chloroform-d) δ -89.34 – -89.16 (m), -155.26 – -155.09 (m); 13C{1H} NMR (100 

MHz, Chloroform-d) δ 157.5, 155.9, 146.5 – 146.8 (m), 145.0 – 145.3 (m), 142.5 – 142.9 (m), 136.0 

– 136.3 (m), 133.4 – 133.7 (m), 81.3, 58.1, 57.2, 28.2; HRMS (ESI): C13H13F4N3NaO3
+ [M+Na]+ 

Calcd 358.0785, Found 358.0796.

Oxetan-3-one O-perfluoropyridin-4-yl oxime (3e). Pale yellow oil, 672.8 mg, yield 75%; IR 

(neat) ν 1639, 1469, 1063, 959, 865, 835, 723 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 5.41 – 

5.42 (m, 2H), 5.33 – 5.35 (m, 2H); 19F NMR (376 MHz, Chloroform-d) δ -90.00 – -89.84 (m), -

155.70 – -155.54 (m); 13C NMR (100 MHz, Chloroform-d) δ 161.9, 146.4 – 146.7 (m), 144.9 – 

145.3 (m), 142.5 – 142.9 (m), 135.9 – 136.3 (m), 133.3 – 133.7 (m), 78.0, 77.8; HRMS (ESI): 

C8H4F4N2NaO2
+ [M+Na]+ Calcd 259.0101, Found 259.0114.

5-Methylhexan-2-one O-perfluoropyridin-4-yl oxime (3f). Yellow oil, 1.066 g, yield 83%; as 

an inseparable mixture of Z/E isomers (0.66/1.00); IR (neat) ν 1637, 1494, 1471, 1068, 973, 819, 

698 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.28 – 7.38 (m, 8H), 4.95 (br s, 0.66H), 3.71 (dd, J 

= 5.2, 8.0 Hz, 1H), 2.80 – 2.86 (m, 1H), 2.62 – 2.69 (m, 1H), 2.48 – 2.55 (m, 1H), 2.06 – 1.80 (m, 

10.41H). 19F NMR (376 MHz, Chloroform-d) δ -90.50 – -90.33 (m, 1.48F), -90.85 – -90.68 (m, 

2.26F), -155.02 – -155.85 (m, 1.28F), -155.59 – -155.42 (m, 2.00F); 13C{1H} NMR (100 MHz, 

Chloroform-d) δ 169.7M (169.3m), 147.5 – 147.8M/m (m), 145.0 – 145.4 (m), 142.6 – 143.0 (m), 

138.7M (137.6m), 136.0 – 136.7 (m), 133.4 – 134.1 (m), 129.0m (128.5M), 128.0M (127.2m), 126.9M 

(126.8m), 46.8M (38.3m), 32.6M, 26.1M, 25.1M, (29.0m, 28.8m, 26.8 m), 23.5M (20.7 m); HRMS (ESI): 

C17H14F4N2NaO+ [M+Na]+ Calcd 361.0934, Found 361.0933.

Oxetan-3-one O-perfluoropyridin-4-yl oxime (3g). Colorless liquid, 709.1 mg, yield 85%; as 

an inseparable mixture of Z/E isomers (0.77/2.01); IR (neat) ν 1638, 1496, 1471, 1074, 976, 837 

cm-1; 1H NMR (400 MHz, Chloroform-d) δ 2.53 – 2.58 (m, 0.77H), 2.31 – 2.35 (m, 2.01H), 2.11 (s, 

3.03H), 2.11 (s, 1.07H), 1.57 – 1.60 (m, 1.68H), 1.44 – 1.48 (m, 2.80H), 0.93 (d, J = 6.4 Hz, 8.21H); 

19F NMR (376 MHz, Chloroform-d) δ -90.71 – -90.49 (m), -155.57 – -155.40 (m); 13C{1H} NMR 

(100 MHz, Chloroform-d) δ 167.0m (166.3M), 147.43 – 147.67 (m), 145.03 – 145.36 (m), 142.62 – 
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142.95 (m), 136.11 – 136.47 (m), 133.52 – 133.88 (m), 34.7M, 34.5m, 33.3M, 28.2m, 28.1m, 27.7M, 

22.25M, 22.23m, 19.37m, 14.73M; HRMS (ESI): C12H15F4N2O+ [M+H]+ Calcd 279.1115, Found 

279.1115.

1-Ethylquinoxalin-2(1H)-one (4b). White solid, 219 mg, yield 42%; m.p. 80-82℃; IR (neat) ν 

1656, 1593, 1449, 1316, 1150, 1058, 760; 1H NMR (400 MHz, Chloroform-d) δ 8.31 (s, 1H), 7.90 

(d, J = 7.6 Hz, 1H), 7.61 (t, J = 7.8 Hz, 1H), 7.35 – 7.39 (m, 2H), 4.33 (q, J = 7.2 Hz, 2H), 1.39 (t, 

J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 154.6, 150.3, 133.7, 132.2, 131.0, 130.8, 

123.6, 113.6, 37.0, 12.5; HRMS (ESI): C10H10N2NaO+ [M+Na]+ Calcd 197.0686, Found 197.0709.

1,5-Dimethylquinoxalin-2(1H)-one (4e). White solid, 378 mg, yield 72%; m.p. 144-146℃; IR 

(neat) ν 1653, 1531, 1461, 1309, 1062, 934, 763; 1H NMR (400 MHz, Chloroform-d) δ 8.31 (s, 1H), 

7.48 (t, J = 8.0, 1H), 7.17 – 7.23 (m, 2H), 3.68 (s, 3H), 2.68 (s, 3H); 13C{1H} NMR (100 MHz, 

Chloroform-d) δ 155.0, 148.4, 139.2, 133.3, 132.0, 130.8, 125.1, 111.7, 28.9, 17.6; HRMS (ESI): 

C10H10N2NaO+ [M+Na]+ Calcd 197.0685, Found 197.0703.

1,6-Dimethylquinoxalin-2(1H)-one (4f). White solid, 280 mg, yield 54%; m.p. 133-135℃; IR 

(neat) ν 1646, 1445, 1311, 1058, 805, 579, 477; 1H NMR (400 MHz, Chloroform-d) δ 8.26 (d, J = 

18.8 Hz, 1H), 7.75 (d, J = 8.0 Hz, 0.5 H), 7.67 (s, 0.5H), 7.41 – 7.43 (m, 0.5H), 7.24 (d, J = 8.4 Hz, 

0.5H), 7.18 (d, J = 8.4 Hz, 0.5H), 7.13 (s, 0.5H), 3.68 (s, 3H), 2.50 (d, J = 26.8 Hz, 3H); 13C{1H} 

NMR (101 MHz, Chloroform-d) δ 155.2, 155.0, 150.1, 148.9, 142.0, 133.7, 133.3, 133.1, 132.2, 

131.6, 131.0, 130.3, 130.2, 125.1, 113.9, 113.5, 28.7, 28.7, 22.2, 20.6; HRMS (ESI): C10H10N2NaO+ 

[M+Na]+ Calcd 197.0685, Found 197.0698. 

1-Methyl-6-(trifluoromethyl)quinoxalin-2(1H)-one (4j). White solid, 242 mg, yield 35%; m.p. 

105-107℃; IR (neat) ν 1H NMR (400 MHz, Chloroform-d) δ 8.38 (s, 1H), 8.17 (s, 1H), 7.83 (d, J = 

8.4 Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 3.73 (s, 3H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 

154.8, 151.7, 135.6, 132.7, 128.0 (q, JC-F = 3.9 Hz), 127.43 (q, JC-F = 3.5 Hz), 126.1 (q, JC-F = 33.8 

Hz), 123.6 (q, JC-F = 271.8 Hz), 114.5, 29.0; HRMS (ESI): C10H7N2F3NaO+ [M+Na]+ Calcd 

251.0403, Found 251.0431.

1,6,7-Trimethylquinoxalin-2(1H)-one (4m). Pale yellow solid, 538 mg, yield 95%; m.p. 175-

177℃; IR (neat) ν 1644, 1532, 1447, 1032, 992, 930, 583; 1H NMR (400 MHz, Chloroform-d) δ 

8.22 (s, 1H), 7.61 (s, 1H), 7.09 (s, 1H), 3.66 (s, 3H), 2.42 (s, 3H), 2.35 (s, 3H); 13C{1H} NMR (100 

Hz, Chloroform-d) δ 155.1, 148.9, 141.0, 132.7, 131.8, 131.2, 130.4, 114.3, 28.6, 20.6, 19.1; HRMS 
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(ESI): C11H12N2NaO+ [M+Na]+ Calcd 211.0842, Found 211.0861.

6,7-Difluoro-1-methylquinoxalin-2(1H)-one (4n). White solid, 438 mg, yield 74%; m.p. 124-

126℃; IR (neat) ν 1667, 1601, 1452, 1308, 1119, 887, 828, 522; 1H NMR (400 MHz, Chloroform-

d) δ 8.27 (s, 1H), 7.68 – 7.73 (m, 1H), 7.14 – 7.19 (m, 2H), 3.66 (s, 3H); 13C{1H} NMR (100 MHz, 

Chloroform-d) δ 154.5, 152.0 (dd, JC-F = 254.7, 14.3 Hz), 150.5 (d, JC-F = 3.6 Hz), 146.7 (dd, JC-F 

= 247.8, 14.0 Hz), 130.6 (dd, JC-F = 9.1, 1.7 Hz), 129.6 (dd, JC-F = 9.2, 2.9 Hz), 118.2 (dd, JC-F = 

18.1, 2.3 Hz), 102.5 (d, JC-F = 23.2 Hz), 29.3; HRMS (ESI): C9H6F2N2NaO+ [M+Na]+ Calcd 

219.0340, Found 219.0340.

6,7-Dibromo-1-methylquinoxalin-2(1H)-one (4p). Pale yellow solid, 249 mg, yield 26%; m.p. 

262-264℃; IR (neat) ν 1659, 1525, 1447, 1392, 1285, 921, 799; 1H NMR (400 MHz, Chloroform-

d) δ 8.29 (s, 1H), 8.12 (s, 1H), 7.62 (s, 1H), 3.65 (s, 3H); 13C{1H} NMR (100 MHz, Chloroform-d) 

δ 154.3, 151.5, 134.4, 133.1, 133.0, 127.7, 119.0, 118.5, 29.0; HRMS (ESI): C9H6Br2N2NaO+ 

[M+Na]+ Calcd 338.8739, Found 338.8728.

4-(4-Methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6a).6d Pale yellow solid, 34.5 mg, 

yield: 76% [Δ]; 45.2mg, yield >99% [hv]; m.p. 110-111 ℃; 1H NMR (400 MHz, Chloroform-d) δ 

7.82 (d, J = 8.0 Hz, 1H), 7.56 (t, J = 7.6 Hz, 1H), 7.30 – 7.42 (m, 2H), 3.70 (s, 3H), 3.09 (t, J = 7.2 

Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.19 – 2.26 (m, 2H); HRMS (ESI): C13H13N3NaO+ [M+Na]+ Calcd 

250.0951, Found 250.0955.

4-(4-Ethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6b). Pale yellow solid, 32.2 mg, 

yield: 67% [Δ]; 47.3mg, yield 98% [hv]; m.p. 102-103 ℃; IR (neat) ν 2921, 1645, 1596, 1463, 1165, 

1092, 759, 712 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.84 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.2 

Hz, 1H), 7.33 – 7.36 (m, 2H), 4.33 (q, J = 7.2 Hz, 2H), 3.09 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.2 Hz, 

2H), 2.20 – 2.27 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 158.5, 

154.2, 132.8, 132.0, 130.1, 130.0, 123.5, 119.6, 113.5, 37.4, 32.2, 22.1, 16.8, 12.4; HRMS (ESI): 

C14H15N3NaO+ [M+Na]+ Calcd 264.1107, Found 264.1115.

4-(4-Benzyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6c).6d Pale yellow solid, 42.9 mg, 

yield: 71% [Δ]; 58.3mg, yield 96% [hv]; m.p. 116-117 ℃; 1H NMR (400 MHz, Chloroform-d) δ 

7.84 (d, J = 8.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.23 – 7.33 (m, 7H), 5.50 (s, 2H), 3.15 (t, J = 7.2 

Hz, 2H), 2.58 (t, J = 7.6 Hz, 2H), 2.24 – 2.31 (m, 2H); HRMS (ESI): C19H17N3NaO+ [M+Na]+ Calcd 

326.1264, Found 326.1272.
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4-(3-oxo-3,4-Dihydroquinoxalin-2-yl)butanenitrile (6d).6d Pale yellow solid, 20.1 mg, yield: 

47% [Δ]; 30.3mg, yield 71% [hv]; m.p. 190-192 ℃; 1H NMR (400 MHz, DMSO-d6) δ 12.34 (s, 

1H), 7.73 (d, J = 8.0 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.26 – 7.30 (m, 2H), 2.90 (t, J = 7.2 Hz, 2H), 

2.64 (t, J = 7.2 Hz, 2H), 2.00 – 2.07 (m, 2H); HRMS (ESI): C12H11N3NaO+ [M+Na]+ Calcd 236.0794, 

Found 236.0809.

4-(4,8-Dimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6e).8g Pale yellow solid, 27.5 

mg, yield: 57% [Δ]; 45.7mg, yield 95% [hv]; m.p. 128-130 ℃; 1H NMR (400 MHz, Chloroform-d) 

δ 7.42 (t, J = 8.0 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 3.70 (s, 3H), 3.10 (t, J 

= 6.8 Hz, 2H), 2.67 (s, 3H), 2.58 (t, J = 7.2 Hz, 2H), 2.22 – 2.29 (m, 2H); HRMS (ESI): 

C14H15N3NaO+ [M+Na]+ Calcd 264.1107, Found 264.1120.

4-(4,7-Dimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile(6f).6d Pale yellow solid, 33.7 

mg, yield: 70% [Δ]; 46.2 mg, yield 96% [hv]; m.p. 112-114 ℃; as an inseparable (1:1) mixture of 

6-methyl and 7-methylquinoxalin-2(1H)-ones was used as the substrate; 1H NMR (400 MHz, 

Chloroform-d) δ 7.70 (d, J = 8.0 Hz, 0.5H), 7.63 (s, 0.5H), 7.37 (d, J = 8.4 Hz, 0.5H), 7.16 – 7.22 

(m, 1H), 7.10 (s, 0.5H), 3.69 (s, 3H), 3.07 (q, J = 6.8 Hz, 2H), 2.52 – 2.56 (m, 3.5H), 2.46 (s, 1.5H), 

2.23 (m, 2H); HRMS (ESI): C14H15N3NaO+ [M+Na]+ Calcd 264.1107, Found 264.1102.

4-(7-Fluoro-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6g).6d Pale yellow 

solid, 20.1 mg, yield: 41% [Δ]; 37.9 mg, yield 77% [hv]; m.p. 101-103 ℃; 1H NMR (400 MHz, 

Chloroform-d) δ 7.53 (dd, J = 8.8, 2.4 Hz, 1H), 7.28 – 7.33 (m, 2H), 3.71 (s, 3H), 3.10 (t, J = 6.8 

Hz, 2H), 2.54 (t, J = 7.2 Hz, 2H), 2.18 – 2.26 (m, 2H); HRMS (ESI): C13H12FN3NaO+ [M+Na]+ 

Calcd 268.0857, Found 268.0859.

4-(7-Chloro-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6h).6d Pale yellow 

solid, 22.2 mg, yield: 43% [Δ]; 36.8 mg, yield 70% [hv]; m.p. 112-114 ℃; 1H NMR (400 MHz, 

Chloroform-d) δ 7.83 (d, J = 2.4 Hz, 1H), 7.51 (dd, J = 2.4, 8.8 Hz, 1H), 7.26 (d, J = 8.9 Hz, 1H), 

3.69 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.18 – 2.25 (m, 2H); HRMS (ESI): 

C13H12ClN3NaO+ [M+Na]+ Calcd 284.0561, Found 284.0574.

4-(7-Bromo-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6i).6d Pale yellow solid, 

33.7 mg, yield: 55% [Δ]; 35.8mg, yield 59% [hv]; m.p. 100-102 ℃; 1H NMR (400 MHz, 

Chloroform-d) δ 7.98 (d, J = 2.0 Hz, 1H), 7.63 (dd, J = 2.0, 8.8 Hz, 1H), 7.19 (d, J = 8.8 Hz, 1H), 

3.68 (s, 3H), 3.09 (t, J = 7.2 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.18 – 2.25 (m, 2H); HRMS (ESI): 
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C13H12BrN3NaO+ [M+Na]+ Calcd 328.0056, Found 328.0074.

4-(4-Methyl-3-oxo-7-(trifluoromethyl)-3,4-dihydroquinoxalin-2-yl)butanenitrile (6j). Pale 

yellow solid, 23.6 mg, yield: 40% [Δ]; 50.8mg, yield 86% [hv]; m.p. 110-112 ℃; IR (neat) ν 1663, 

1618, 1312, 1218, 1169, 1106, 831, 655 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 8.12 (s, 1H), 

7.78 (d, J = 8.8 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 3.73 (s, 3H), 3.12 (t, J = 7.2 Hz, 2H), 2.56 (t, J = 

7.2 Hz, 2H), 2.20 – 2.27 (m, 2H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 160.3, 154.5, 135.4, 

131.8, 127.2 (q, JC-F = 4.0 Hz, ), 126.4 (q, JC-F = 3.5 Hz), 126.0 (q, JC-F = 33.7 Hz), 123.7 (q, JC-F = 

271.8 Hz), 119.5, 114.3, 32.2, 29.4, 21.7, 16.7; HRMS (ESI): C14H12F3N3NaO+ [M+Na]+ Calcd 

318.0825, Found 318.3008.

Methyl 3-(3-cyanopropyl)-1-methyl-2-oxo-1,2-dihydroquinoxaline-6-carboxylate (6k).6d Pale 

yellow solid, 25.6 mg, yield: 45% [Δ]; 43.2 mg, yield 76% [hv]; m.p. 134-136 ℃; 1H NMR (400 

MHz, Chloroform-d) δ 7.98 – 8.02 (m, 2H), 7.87 (d, J = 8.4 Hz, 1H), 3.99 (s, 3H), 3.75 (s, 3H), 3.12 

(t, J = 7.2 Hz, 2H), 2.56 (t, J = 7.2 Hz, 2H), 2.21 – 2.28 (m, 2H); HRMS (ESI): C15H15N3NaO3
+ 

[M+Na]+ Calcd 308.1006, Found 308.1018.

4-(4-Methyl-7-nitro-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6l).6d Pale yellow solid, 

12.5 mg, yield: 23% [Δ]; 35.1 mg, yield 65% [hv]; m.p. 127-129 ℃; 1H NMR (400 MHz, 

Chloroform-d) δ 8.72 (d, J = 2.4 Hz, 1H), 8.41 (dd, J = 9.2, 2.4 Hz, 1H), 7.42 (d, J = 9.2 Hz, 1H), 

3.76 (s, 3H), 3.15 (t, J = 6.8 Hz, 2H), 2.58 (t, J = 7.2 Hz, 2H), 2.21 – 2.28 (m, 2H); HRMS (ESI): 

C13H12N4NaO3
+ [M+Na]+ Calcd 295.0802, Found 295.0821.

4-(4,6,7-Trimethyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6m). Pale yellow solid, 

37.6 mg, yield: 74% [Δ]; 50.8 mg, yield >99% [hv]; m.p. 162-164 ℃; IR (neat) ν 1614, 1583, 1463, 

1172, 1088, 1013, 502 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.57 (s, 1H), 7.07 (s, 1H), 3.67 

(s, 3H), 3.05 (t, J = 7.2 Hz, 2H), 2.53 (t, J = 7.2 Hz, 2H), 2.42 (s, 3H), 2.35 (s, 3H), 2.17 – 2.24 (m, 

2H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 157.1, 154.8, 139.8, 132.7, 131.1, 130.9, 129.9, 

119.7, 114.2, 32.3, 29.0, 22.2, 20.5, 19.2, 16.8; HRMS (ESI): C15H17N3NaO+ [M+Na]+ Calcd 

278.1264, Found 278.1260.

4-(6,7-Difluoro-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6n). Pale yellow 

solid, 28.3 mg, yield: 54% [Δ]; 47.1 mg, yield 90% [hv]; m.p. 136-138 ℃; IR (neat) ν 1648, 1603, 

1366, 1255, 918, 780 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.65 (dd, J = 9.9, 8.4 Hz, 1H), 

7.12 (dd, J = 11.2, 7.0 Hz, 1H), 3.66 (s, 3H), 3.08 (t, J = 7.1 Hz, 2H), 2.54 (t, J = 7.2 Hz, 2H), 2.36 
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– 1.90 (m, 2H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 159.1 (d, JC-F = 3.5 Hz), 154.3, 151.3 

(dd, JC-F = 253.3, 14.4 Hz), 146.7 (dd, JC-F = 247.3, 13.9 Hz), 130.3 (dd, JC-F = 8.8, 1.7 Hz), 128.7 

(dd, JC-F = 9.3, 2.9 Hz), 119.5, 117.5 (dd, JC-F = 18.0, 2.0 Hz), 102.4 (d, JC-F = 23.1 Hz), 32.2, 29.6, 

21.8, 16.7; HRMS (ESI): C13H11F2N3NaO+ [M+Na]+ Calcd 286.0762, Found 286.0763.

4-(6,7-Dichloro-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6o).6d Pale yellow 

solid, 21.6 mg, yield: 37% [Δ]; 46 mg, yield 78% [hv]; m.p. 143-145 ℃; 1H NMR (400 MHz, 

Chloroform-d) δ 7.92 (s, 1H), 7.41 (s, 1H), 3.66 (s, 3H), 3.08 (t, J = 6.8 Hz, 2H), 2.54 (t, J = 7.2 Hz, 

2H), 2.17 – 2.24 (m, 2H); HRMS (ESI): C13H11Cl2N3NaO+ [M+Na]+ Calcd 318.0171, Found 

318.0182.

4-(6,7-Dibromo-4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)butanenitrile (6p). Pale yellow 

solid, 31.2 mg, yield: 41% [Δ]; 52.5 mg, yield 69% [hv]; m.p. 143-145 ℃; IR (neat) ν 2919, 1657, 

1456, 1393, 1102, 406 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 8.07 (s, 1H), 7.58 (s, 1H), 3.65 

(s, 3H), 3.07 (t, J = 7.2 Hz, 2H), 2.54 (t, J = 7.2 Hz, 2H), 2.17 – 2.24 (m, 2H); 13C{1H} NMR (100 

MHz, Chloroform-d) δ 160.3, 154.1, 133.8, 133.0, 132.2, 126.3, 119.4, 118.9, 118.4, 32.3, 29.3, 

21.7, 16.7; HRMS (ESI): C13H11Br2N3NaO+ [M+Na]+ Calcd 405.9161, Found 405.9185.

4-(4-Methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)-3-(naphthalen-2-yl)butanenitrile (6q). Pale 

yellow solid, 43.9 mg, yield: 62% [Δ]; 61.6 mg, yield 87% [hv]; m.p. 170-172 ℃; IR (neat) ν 2978, 

2905, 1649, 1405, 1063, 750 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.77 – 7.83 (m, 5H), 7.40 

– 7.52 (m, 4H), 7.31 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 4.8 Hz, 1H), 4.06 (p, J = 7.2, 1H), 3.62 (s, 3H), 

3.56 (dd, J = 16.4, 6.3 Hz, 1H), 3.44 (dd, J = 16.4, 8.4 Hz, 1H), 2.83 – 2.94 (m, 2H); 13C{1H} NMR 

(100 MHz, Chloroform-d) δ 157.3, 154.8, 139.1, 133.5, 133.0, 132.8, 132.5, 130.2, 129.8, 128.7, 

127.9, 127.6, 126.3, 126.2, 125.9, 125.5, 123.7, 118.5, 113.7, 39.0, 38.6, 29.1, 24.4; HRMS (ESI): 

C23H19N3NaO+ [M+Na]+ Calcd 376.1420, Found 376.1425.

tert-Butyl (1-cyano-3-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)propan-2-yl)carbamate 

(6r).6d Pale yellow solid, 36.7 mg, yield: 50% [Δ]; 67.7 mg, yield >99% [hv]; m.p. 151-153 ℃; 1H 

NMR (400 MHz, Chloroform-d) δ 7.84 (d, J = 8.0 Hz, 1H), 7.56 – 7.60 (m, 1H), 7.32 – 7.39 (m, 

2H), 5.56 (d, J = 6.4 Hz, 1H), 4.46 (d, J = 5.2 Hz, 1H), 3.72 (s, 3H), 3.28 (d, J = 6.4 Hz, 2H), 2.95 

(dd, J = 16.7, 5.1 Hz, 1H), 2.84 (dd, J = 16.6, 4.2 Hz, 1H), 1.37 (s, 9H); HRMS (ESI): 

C18H22N4NaO3
+ [M+Na]+ Calcd 365.1584, Found 365.1568.

tert-Butyl (cyanomethyl)((4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methyl)carbamate (6s). 
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Pale yellow solid, 21.6 mg, yield: 33% [Δ]; 58.0 mg, yield 88% [hv]; m.p. 153-155 ℃, as an 

inseparable mixture of atropisomers; IR (neat) ν 1708, 1647, 1456, 1256, 1159, 1130, 757, 727 cm-1; 

1H NMR (400 MHz, Chloroform-d,) δ 7.86 M/m (d, J = 7.6 Hz, 1H), 7.55 – 7.61M/m (m, 1H), 7.30 – 

7.39M/m (m, 2H), 4.77 – 4.79M/m (m, 2H), 4.45 M (s, 1.11H), 4.32 m (s, 0.88H), 3.72M (s, 1.66H), 

3.68m (s, 1.33H), 1.56m (s, 4.00H), 1.39M (s, 5.00H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 

155.2M, 154.4m, 154.1, 153.8, 153.7M, 133.1 , 132.4m, (132.3M), 130.6M (130.5m), 130.22M/m, 124.0M 

(123.8m), 116.1M/m, 113.8M (113.7m), 82.1m (81.7 M), 49.9m (49.5M), 37.34m (36.29M), 28.91M 

(28.85m), 28.2m (28.1M); HRMS (ESI): C17H20N4NaO3
+ [M+Na]+ Calcd 351.1428, Found 351.1454.

2-((4-Methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)methoxy)acetonitrile (6t).6d Pale red solid, 

28.5 mg, yield 62% [hv]; m.p. 112-113 ℃; 1H NMR (400 MHz, Chloroform-d) δ 7.94 (d, J = 8.0 

Hz, 1H), 7.61 (t, J = 7.6 Hz, 1H), 7.35 – 7.42 (m, 2H), 4.95 (s, 2H), 4.58 (s, 2H), 3.72 (s, 3H); 

HRMS (ESI): C12H11N3NaO2
+ [M+Na]+ Calcd 252.0743, Found 252.0764.

6-(4-Methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)-6-phenylhexanenitrile (6u).8g Pale yellow 

solid, 29.8 mg, yield: 45% [Δ]; m.p. 111-112 ℃; 1H NMR (400 MHz, Chloroform-d) δ 7.92 (d, J = 

8.0 Hz, 1H), 7.52 (t, J = 8.4 Hz, 1H), 7.43 (d, J = 7.2 Hz, 2H), 7.35 (t, J = 7.2 Hz, 1H), 7.25 – 7.29 

(m, 3H), 7.18 (t, J = 7.6 Hz, 1H), 4.67 (t, J = 7.6 Hz, 1H), 3.62 (s, 3H), 2.32 (t, J = 7.2 Hz, 3H), 2.04 

– 2.13 (m, 1H), 1.67 – 1.76 (m, 2H), 1.40 – 1.54 (m, 2H); HRMS (ESI): C21H21N3NaO+ [M+Na]+ 

Calcd 354.1577, Found 354.1566.

6,6-Diphenylhex-5-enenitrile (7a).8b Colorless oil, 16.4 mg, yield: 33% [Δ]; 44.4 mg, yield 90% 

[hv]; 1H NMR (400 MHz, Chloroform-d) δ 7.31 – 7.39 (m, 3H), 7.20 – 7.27 (m, 5H), 7.15 (d, J = 

6.8 Hz, 2H), 6.01 (t, J = 7.2 Hz, 1H), 2.22 – 2.30 (m, 4H), 1.74 – 1.81 (m, 2H); HRMS (ESI): 

C18H17NNa+ [M+Na]+ Calcd 270.1253, Found 270.1273.

6-Phenyl-6-(p-tolyl)hex-5-enenitrile (7b).8b Colorless oil, 24.0 mg, yield: 46% [Δ]; 38.3mg, 

yield 73% [hv]; as an inseparable mixture of Z/E isomers; IR (neat) ν 1648, 1597, 1464, 1312, 752, 

703 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.03 – 7.39 (m, 9H), 5.97 (t, J = 7.2 Hz, 1H), 2.22 

– 2.38 (m, 7H), 1.75 – 1.83 (m, 2H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 143.74 (143.65), 

142.4, 139.8 (139.34), 137.1 (136.9), 136.61, 129.68 (129.60), 129.07 (128.89), 128.34 (128.15), 

127.24 (127.19), 127.07, 126.5, 125.7, 119.59 (119.58), 28.77 (28.68), 25.82, 21.26 (21.08), 16.71 

(16.69); HRMS (ESI): C19H19NNa+ [M+Na]+ Calcd 284.1410, Found 284.1424.

6-([1,1'-Biphenyl]-4-yl)-6-phenylhex-5-enenitrile (7c). Colorless oil, 13.6 mg, yield: 21% [Δ]; 
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50.0mg, yield 77% [hv]; as an inseparable mixture of Z/E isomers (0.28/0.68); IR (neat) ν 1487, 

1445, 840, 762, 736, 696 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.56 – 7.64 (m, 3.5H), 7.32 – 

7.51 (m, 4.5H), 7.18 – 7.30 (m, 6H), 6.01 – 6.10 (m, 1H), 2.25 – 2.36 (m, 4H), 1.79 – 1.86 (m, 2H); 

13C{1H} NMR (100 MHz, Chloroform-d) δ 143.5M (143.4m), 142.2, 141.0m (140.7M), 140.1M 

(139.5m), 138.6, 130.2M (129.7m), 128.81M (128.77m), 128.5m (128.2M), 127.5m (127.4M), 127.3, 

127.1M (127.0m), 126.9M (126.6m), 119.53M (119.51m), 28.84M (28.78m), 25.83M (25.78m), 16.74M 

(16.72m); HRMS (ESI): C24H21NNa+ [M+Na]+ Calcd 346.1566, Found 346.1570.

6-(4-Fluorophenyl)-6-phenylhex-5-enenitrile (7d). Colorless oil, 18.1 mg, yield: 34% [Δ]; 38.7 

mg, yield 73% [hv]; as an inseparable mixture of Z/E isomers (0.41:0.49); IR (neat) ν 1503, 1223, 

1158, 835, 764, 701 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.06 – 7.41 (m, 8H), 6.93 – 6.97 

(m, 1H), 5.93 – 6.03 (m, 1H), 2.23 – 2.34 (m, 4H), 1.76 – 1.84 (m, 2H); 13C NMR (100 MHz, 

Chloroform-d) δ 162.2 (d, JC-F = 246.5.2 Hz) [162.0 (d, JC-F = 246.3 Hz)], 142.8, 142.0 (139.43), 

138.29 (d, JC-F = 3.3 Hz) [135.45 (d, JC-F = 3.5 Hz)], 131.3 (d, JC-F = 7.9 Hz) [128.8, (d, JC-F = 7.9 

Hz)], 129.6 (128.5), 128.3 (127.2), 127.41 (127.40), 127.0, 126.47 (126.46), 119.46 (119.43), 115.4 

(d, JC-F = 21.3 Hz) [115.0 (d, JC-F = 21.4 Hz)], 28.72 (28.70), 25.71 (25.69), 16.7; HRMS (ESI): 

C18H16FNNa+ [M+Na]+ Calcd 288.1159, Found 288.1171.

6-(4-Chlorophenyl)-6-phenylhex-5-enenitrile (7e). Colorless oil, 10.8 mg, yield: 19% [Δ]; 27.5 

mg, yield 49% [hv]; as an inseparable mixture of Z/E isomers; IR (neat) ν 1590, 1562, 1445, 1419, 

1078, 775, 699 cm-1; 1H NMR (400 MHz, Chloroform-d) δ 7.05 – 7.41 (m, 9H), 6.00 – 6.05 (m, 

1H), 2.23 – 2.34 (m, 4H), 1.76 – 1.84 (m, 2H), 1.57 – 1.58 (m, 1H); 13C{1H} NMR (100 MHz, 

Chloroform-d) δ 142.6M, 141.47M, 141.44M (144.0m, 142.7m, 138.9m), 134.3M (134.2m), 129.71m 

(129.65M), 129.6M (129.4m), 128.6m (128.3M), 127.93M (127.89m), 127.6m (127.5M), 127.4, 127.24, 

127.21, 127.1M 125.4, 119.4, 28.73M (28.70m), 25.66M (25.63m), 16.7; HRMS (ESI): C18H16ClNNa+ 

[M+Na]+ Calcd 304.0863, Found 304.0888.

6-(4-Chlorophenyl)-6-phenylhex-5-enenitrile (7f).8b Colorless oil, 19.1 mg, yield: 35% [Δ]; 

40.4mg, yield 73% [hv]; 1H NMR (400 MHz, Chloroform-d) δ 7.18 (d, J = 7.6 Hz, 2H), 7.02 – 7.12 

(m, 6H), 5.94 (t, J = 7.6 Hz, 1H), 2.38 (s, 3H), 2.32 (s, 3H), 2.23 – 2.29 (m, 4H), 1.78 (q, J = 7.2 

Hz, 2H); HRMS (ESI): C20H21NNa+ [M+Na]+ Calcd 298.1566, Found 298.1572.

6,6-Bis(4-chlorophenyl)hex-5-enenitrile (7g). Colorless oil, 11.3 mg, yield: 18% [Δ]; 44.7 mg, 

yield 71% [hv]; IR (neat) ν 2916, 1488, 1089, 1012, 823, 516 cm-1; 1H NMR (400 MHz, Chloroform-
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d) δ 7.37 (d, J = 8.0 Hz, 2H), 7.22 – 7.26 (m, 2H), 7.07 – 7.23 (m, 4H), 6.01 (t, J = 7.6 Hz, 1H), 

2.23 – 2.33 (m, 4H), 1.76 – 1.83 (m, 2H); 13C{1H} NMR (100 MHz, Chloroform-d) δ 141.6, 140.2, 

137.5, 133.5, 133.4, 131.0, 128.8, 128.44, 128.42, 127.7, 119.3, 28.8, 25.6, 16.8; HRMS (ESI): 

C18H15Cl2NNa+ [M+Na]+ Calcd 338.0474, Found 338.0501.

1-Methyl-3-(2-methyl-5-oxohexan-2-yl)quinoxalin-2(1H)-one (8a).17 Pale yellow solid, 16.2 

mg, yield 30% [hv]; m.p. 71-72 ℃; 1H NMR (400 MHz, Chloroform-d) δ 7.75 (d, J = 8.0 Hz, 1H), 

7.46 (t, J = 7.6 Hz, 1H), 7.25 (m, 2H), 3.60 (s, 3H), 2.20 – 2.27 (m, 4H), 2.03 (s, 3H), 1.39 (s, 6H); 

HRMS (ESI): C16H20N2NaO2
+ [M+Na]+ Calcd 295.1417, Found 295.1410.
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