

Communication

Titanium Alkoxide-Based Regioselective Alkyne-Alkyne Reductive Coupling Mediated by in situ Generated Arylamidate

Bin Cai, and James S. Panek

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.0c00550 • Publication Date (Web): 12 Feb 2020 Downloaded from pubs.acs.org on February 17, 2020

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Titanium Alkoxide-Based Regioselective Alkyne-Alkyne Reductive Coupling Mediated by in situ Generated Arylamidate

Bin Cai and James S. Panek*

Department of Chemistry, Metcalf Center for Science and Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States

Supporting Information Placeholder

ABSTRACT: A titanium alkoxide-based alkyne-alkyne reductive coupling mediated by in situ generated arylamidate is described. High level of regioselectivity is achieved in 37 examples, where (E,E)-dienes are formed exclusively. To the best of our knowledge, this study represents the first example of an apparent amide and carbamate directing effect in metal-mediated reductive coupling.

Stereochemically well-defined, functionalized (E,E)-dienes are common structural features embedded in polyketide-derived natural products and related pharmaceutical agents.¹ In that context, transition-metal-mediated alkyne-alkyne reductive coupling reactions have recently emerged as step- and atomeconomical carbon-carbon bond-forming reactions to access (E,E)-dienes by avoiding a prefunctionalization step. The principle challenges that lie within this strategy are the control of reactivity and olefin selectivity. In response to these challenges in the reductive coupling

Scheme 1. Alkyne-Alkyne Reductive Coupling for the Selective Synthesis of (*E*,*E*)-Dienes

between internal alkynes and carbonyl-based π -systems or alkynes, useful strategies to control regioselection have been

developed over the past decades. These strategies include steric differentiation,² π conjugation,³ and directed carbometalation,⁴ and have been actively implemented by research groups including Sato,^{2,5} Buchwald,⁶ Montgomery,⁷ Krische,⁸ Jamison,^{3,9} and Micalizio^{1f-h,4,10} (Scheme 1A and 1B). Among these strategies, substrate-directed transformations¹¹ enable the formation of highly organized transition states or intermediates through the association of a reagent with the substrate. The resulting conformationally rigid systems allow selective reactions, enabling useful levels of regioselectivity. The atom-economy and remarkable convergency provided by this strategy has been demonstrated by its application in several elegant total synthesis of natural products and complex molecules.¹² However, the use of in situ generated alkoxide was the only directing group strategy realized in the context of titanium-mediated reductive coupling. Underdevelopment limited the substrate scope for this transformation and subsequent applications, but allows for discovery and development of an alternative directing-group strategy.4

Scheme 2. Arylacetamide Directing Effect in Alkyne-

(A) Presence of the acidic proton greatly influences the reactivity and regioselectivity

Alkyne Reductive Coupling

In line with our previous studies on reductive couplings¹²ⁿ and inspired by Micalizio⁴ and Schafer's work,¹³ we report a highly

ACS Paragon Plus Environment

^aIsolated yield after chromatographic purification over silica gel. ^bRegioselectivity was based on the analysis of the ¹H NMR spectra of the crude products; r.r. = regioselectivity ratio.

the commonly used amine protecting groups, acetyl (Ac), *tert*butyloxycarbonyl (Boc), and carboxybenzyl (Cbz) groups, to render the directing effects and achieves useful levels of regioselectivity. This protocol represents the first examples of apparent amide and carbamate directing effects in metal-mediated reductive coupling.

The development of this methodology originated from our previous investigation concerning the reductive coupling between internal alkynes obtained from asymmetric propargylation reactions and acetylenic esters (Scheme 2).¹²ⁿ In an effort to apply this strategy to the total synthesis of NFAT-68,¹²ⁿ we were surprised to find that previous reaction conditions ("original conditions") for the reductive coupling failed to produce the desired diene 2 using alkynyl acetamide 1 and methyl propiolate, requiring reinvestigation of the reaction conditions (Scheme 2A). For the generation of the presumed titanacyclopropene complex, (1) two additional equivalents (six vs four) of the Grignard reagent were required to achieve full conversion, indicating that an excess amount of Grignard reagent was necessary for the deprotonation of the acetamide proton; (2) a higher reaction temperature was required to initiate the formation of int-1, where the thermodynamic effect of the deprotonated amide on the successful generation of Ti-alkyne complex has not been previously described in reductive coupling reactions. For the intermolecular carbometalation process, elevated coupling temperature was needed for complete consumption of int-1, producing **2** as a single regioisomer. Collectively, the presence of an acetamide on the aryl ring had a pronounced impact on the reactivity and selectivity of the reaction. Interestingly, the *N*methylated counterpart **3** (Scheme 2B) produced diene **4** with significantly eroded regioselectivity under the "original conditions" and led to decomposition under the updated conditions. This control experiment provided evidence that the in situ generated amidate anion may have played an important role on the selectivity of this coupling reaction. Enlightened by Schafer's work¹³ on employing monoanionic *N*,*O*-chelating ligands with a tight bite angle including amidates in titaniumcatalyzed reactions, we hypothesized that the in situ generated arylamidate might associate with the titanium center to direct the coupling reaction.

On that basis, we surveyed the coupling of alkynyl acetamide 1 with a range of terminal alkynes bearing diverse functionality (Table 1). To our delight, (E,E)-diene products (5-12) were formed with excellent regioselectivity in all cases. Aryl, pyridyl (5-7), silyl ether (10), alkyl amine (11) ,and ester (12) were all well-tolerated, demonstrating the broad functional group tolerance of this coupling reaction.

The alkyne substrate scope was evaluated subsequently, where the variation of acetamide substitution pattern, stereochemistry, electronics on the aryl ring, hydroxyl protecting groups, and tether length was investigated (Table 1). While *meta-* and *para*substituted arenes delivered dienes (13 and 14) with good

1 2

3

4

5

6

7

8 9

10 11

12

13

14

15

16

17

18

19

24 25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

of

reactivity and excellent selectivity, the ortho-substitution failed to

give a coupled product, but gave only alkyne reduction (15).

Table 2. Arylcarbamate Directing Effect in Alkyne-Alkyne Reductive Coupling

^aIsolated yield after chromatographic purification over silica gel. ^bRegioselectivity was based on the analysis of the ¹H NMR spectra of the crude products; r.r. = regioselectivity ratio.

Scheme 3. Control Experiments

^aCombined yields of all regioisomers after chromatographic purification over silica gel. ^bRegioselectivity was based on the analysis of the ¹H NMR spectra of the crude products; r.r. = regioselectivity ratio. ^c6 equivalents of cC_5H_9MgCl was used.

(A) Micalizio's alkoxide-directed Ti-mediated alkyne-alkyne reductive coupling highl х not obse minor iso 1. *n*BuLi CITi(OiPr) R2 Υ cC₅H₉MgC unfavorable ^tdeprotonation ligand exchange minor iso alkyne activation ^tdir Proposed Ti(II) dimer favorable major isome int-4 carbometalation (B) Monometallic binding modes of amidate with Ti (Schafer's work) (1) possible binding modes (2) steric effects on the binding modes Ti(NMe₂) 3 HNMe 25 °C, 2h mono Ar = 2,6-dimethylphenyl (C) Proposed amidate-mediated Ti-based regioselective reductive coupling (this work) (1) Reaction mechanism (arylacetamides and -carbamates not including ortho-acetamide) CITi(OiPr) Intermolecular cC₅H₉MgĈ carbometalatio deprotonation ligand exchange alkyne activation high selectivities R= OBn OfBi *dimer formation int-5 39 Proposed x¹(O)-amidate chelated Ti(II) dimer (2) Stereochemical model (Newman projection) A^{1,3} minimization of A^{1,3} strain minimization of strain int-7 int-8 Syn-stereoisomers Anti-stereoisomers

Contrary to Micalizio's study, substrate stereochemistry had little or no impact on reaction selectivity (16 and 17).^{1h} Additionally, placement of an electron-withdrawing group or electron-donating group *ortho* to the acetamide did not alter the selectivity, furnishing 18 and 19 as the only isomers. The yield of 18 was diminished presumably due to the metal/halogen exchange of Grignard reagent with arylbromide. Importantly, substrates with extended tether length also proved to be viable for the coupling to obtain products (20-22) with excellent regioselectivity. Given that excellent regiocontrol was achieved in complex molecular settings, we expect this methodology will find wide application in natural product and complex molecule synthesis. Accordingly, these results suggest that arylacetamides have a strong directing group effect on titanium alkoxide-mediated reductive couplings.

Encouraged by the success with acetamide bearing substrates, we investigated carbamates (Boc and Cbz) to determine if they would display a similar directing effect as the amides (Table 2). Gratifyingly, with a lower reaction temperature, (E,E)-dienes (20 examples) were obtained as the exclusive regioisomers in moderate yields. In an analogous fashion, factors such as substitution pattern (23-25), electronic contributions on the aryl ring (26-28), stereochemistry and hydroxyl protecting groups (25 and 29), and tether length (31-33) were evaluated. All products were obtained with useful levels of regioselectivity. A decreased selectivity (29) was observed, when the arene substrate was *para*-substituted and an *anti*-stereochemical relationship between benzylic methyl ether and homobenzylic methyl group was present. Accordingly, carbamates (Boc and Cbz) also displayed an apparent directing effect to render (*E*,*E*)-dienes with excellent levels of selectivity.

Control experiments were conducted to demonstrate the importance of the directing effect of acetamide¹⁴ or carbamate¹⁵ through in situ formation of arylamidate.¹⁶ As depicted in Scheme 3A and 3B, when the N-H proton was replaced with a methyl group on acetamide or carbamate, the reaction selectivity was significantly decreased along with the production of the other two regioisomers (**35-37**).¹²ⁿ Additionally, removal of the carbonyl functionality from the arylamine (Scheme 3C and 3D) led to a

Page 6 of 9

complex product mixture. Two additional equivalents of Grignard reagent were added for deprotonation of the acidic amine hydrogen, which excluded the possibility that the transformation was mediated by a deprotonated arylamine.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58 59

60

Based on the above-described experiments, we proposed a likely mechanism (Figure 1C) for reductive coupling mediated by in situ generated arylamidate that builds on Micalizio's^{1g}, Shafer's¹³ and our earlier work¹²ⁿ (Figure 1A and 1B). The Micalizio group has laid a solid foundation in the mechanistic interpretation of operational intermediates and transition states leading to selective reductive coupling in the field of directedmetalation mediated by titanium alkoxide. Specifically, in the case where the intramolecular coordination of homoallylic alkoxide with titanium is hampered by significant ring strain, a Ti (II) dimer is proposed to be the intermediate during the formation of titanacyclopropene complex. The selectivity of the subsequent carbometalation and formation of *E*,*E*-dienes can be rationalized by simple steric consideration, where the int-4 has the least unfavorable steric interactions between Ti(II) dimer and the incoming terminal alkyne (Figure 1A). On the other hand, the Shafer group has established the coordination modes of amidates with Ti(IV) (Figure 1B). The amidates bind in either a bidentate or monodentate mode through either nitrogen or oxygen atom. where κ^{1} -(O) binding will be favored in a sterically congested environment. Given the considerations described above, we propose a κ^{1} -(O)-amidate-chelated Ti(II) dimer (int-5) that is responsible for the unprecedented selectivity and reactivity (Figure 1C). In comparison to Micalizio's strategic placement of an alkoxide as a directing group, the use of arylamidate in our case creates a more sterically crowed environment resulting in better selectivities and lower reactivities (transition states I and II, highlighted in yellow). Based on this proposal, as the antistereoisomers (int-8) have the ether group (OR1) positioned closer to the titanium reacting center compared with the synstereoisomers (int-7), int-8 is sterically more congested than int-7. The proposition is consistent with the observation that the antisubstrates were less reactive than their syn-counterparts (Table 1, 14 vs. 16; Table 2, 23 vs. 29, where both the anti-substrates did not couple with the most sterically hindered terminal alkyne (A3). Furthermore, different positions of the acetamide and carbamate functionality on the aryl ring might produce geometrically different arylamidate-associated intermediates that have distinct stabilities and steric environment. In particular for parasubstituted carbamates (Table 2, 29), the combination of the destabilization effect of a bulky carbamate and more sp² character of the dimer might lead to a weaker coordination of the amidate with Ti. This may allow for the terminal alkyne to approach from the inner sphere of the dimer (resembling to pathway X in Figure 1A), explaining the formation of the other regioisomer. In contrast, a substrate with an ortho-substituted acetamide (15) would likely to form a dimer featuring less steric interactions and sp^2 character, permitting the possibility of a bidentate N,Ochelation. The ensuing higher coordinated dimer might have the titanium center shielded by the steric bulk, decreasing its reactivity for the coupling reaction (Table 1, 15).^{13b}

In summary, a highly regioselective alkyne-alkyne reductive coupling mediated by in situ generated arylamidate is described to provide access to a synthetically useful class of (E,E)-dienes. Excellent regioselectivity is achieved in 37 examples. Factors such as acetamide and carbamate substitution pattern, electronics of the aryl ring, stereochemistry, hydroxyl protecting groups, and tether length were investigated. Transition state models are proposed to rationalize the experimental observations. The utility of this methodology was first demonstrated in our convergent synthesis of NFAT-68.¹²ⁿ The extension of this methodology and application in the total synthesis of natural products and pharmaceutical agents are underway in our laboratory and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

Experimental details, analytical data, and $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra

AUTHOR INFORMATION

Corresponding Author

*E-mail: panek@bu.edu

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We are grateful for the financial support provided by the Department of Chemistry at Boston University. We would like to thank Dr. Jie Wu from the Department of Chemistry at the National University of Singapore for insightful discussions and help with the preparation of this manuscript. We would also like to thank Saishuai Wen (Porco group, Department of Chemistry, Boston University) for obtaining NMR data for **34a**, **34b** and **34c**. We thank Dr. Paul Ralifo and Dr. Norman Lee at the Boston University Chemical Instrumentation Center for helpful discussions and assistance with NMR and HRMS.

REFERENCES

(1) (a) Burres, N. S.; Premachandran, U.; Hoselton, S.; Cwik, D.; Hochlowski, J. E.; Ye, Q.; Sunga, G. N.; Karwowski, J. P.; Jackson, M.; Whittern, D. N.; Mcalpine, J. B. Simple aromatics identified with a NFAT-lacZ transcription assay for the detection of immunosuppressants. J. Antibiot. (Tokyo) 1995, 48, 380; (b) Delpierre, G. R.; Eastwood, F. W.; Gream, G. E.; Kingston, D. G.; Sarin, P. S.; Todd, L.; Williams, D. H. Antibiotics of the ostreogrycin complex. II. Structure of ostreogrycin A. J. Chem. Soc. Perkin. 1 1966, 19, 1653; (c) Desilva, E. D.; Williams, D. E.; Andersen, R. J.; Klix, H.; Holmes, C. F. B.; Allen, T. M. Motuporin, a potent protein phosphatase inhibitor isolated from the Papua New Guinea Sponge Theonella swinhoei gray. Tetrahedron Lett. 1992, 33, 1561; (d) Hamill, R. L.; Haney, M. E., Jr.; Stamper, M.; Wiley, P. F. Tylosin, a new antibiotic. II. Isolation, properties, and preparation of desmycosin, a microbiologically active degradation product. Antibiot. Chemother. (Northfield) 1961, 11, 328; (e) Kobayashi, M.; Higuchi, K.; Murakami, N.; Tajima, H.; Aoki, S. Callystatin A, a potent cytotoxic polyketide from the marine sponge, Callyspongia truncate. Tetrahedron Lett. 1997, 38, 2859; (f) Micalizio, G. C.; Hale, S. B. Reaction design, discovery, and development as a foundation to function-oriented synthesis. Acc. Chem. Res. 2015, 48, 663; (g) Reichard, H. A.; McLaughlin, M.; Chen, M. Z.; Micalizio, G. C. Regioselective reductive cross-coupling reactions of unsymmetrical alkynes. Eur. J. Org. Chem. 2010, 2010, 391; (h) Shimp, H. L.; Micalizio, G. C. Group 4 metals in polyketide synthesis: A convergent strategy for the synthesis of polypropionate-derived (E,E)trisubstituted 1,3-dienes. Org. Lett. 2005, 7, 5111; (i) Yoshida, M.; Kijima, M.; Akita, M.; Beppu, T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J. Biol. Chem. 1990, 265, 17174.

(2) Hamada, T.; Suzuki, D.; Urabe, H.; Sato, F. Titanium alkoxide-based method for stereoselective synthesis of functionalized conjugated dienes. *J. Am. Chem. Soc.* **1999**, *121*, 7342.

(3) (a) Liu, P.; McCarren, P.; Cheong, P. H. Y.; Jamison, T. F.; Houk, K. N. Origins of regioselectivity and alkene-directing effects in nickelcatalyzed reductive couplings of alkynes and aldehydes. *J. Am. Chem. Soc.* **2010**, *132*, 2050; (b) Miller, K. M.; Jamison, T. F. Ligand-switchable

2

3

4

5

59

60

directing effects of tethered alkenes in nickel-catalyzed additions to alkynes. J Am. Chem. Soc. 2004, 126, 15342; (c) Miller, K. M.; Luanphaisarnnont, T.; Molinaro, C.; Jamison, T. F. Alkene-directed, nickel-catalyzed alkyne coupling reactions. J. Am. Chem. Soc. 2004, 126, 4130

- (4) Perez, L. J.; Shimp, H. L.; Micalizio, G. C. Stereoselective synthesis of trisubstituted (E,E)-1,3-dienes by the site selective reductive crosscoupling of internal alkynes with terminal alkynes: A fragment coupling 6 reaction for natural product synthesis. J. Org. Chem. 2009, 74, 7211.
- 7 (5) Tanaka, R.; Hirano, S.; Urabe, H.; Sato, F. Concise and stereoselective synthesis of enamides and dienamides by a titanium-mediated coupling 8 method. Org. Lett. 2003, 5, 67. 9

(6) (a) Buchwald, S. L.: Nielsen, R. B. Selective, zirconium-mediated 10 cross-coupling of alkynes: The synthesis of isomerically pure 1,3-dienes and 1,4-diiodo-1,3-dienes. J. Am. Chem. Soc. 1989, 111, 2870; (b) 11 Buchwald, S. L.; Watson, B. T.; Huffman, J. C. The synthesis, reactions 12 and molecular structure of zirconocene-alkyne complexes. J. Am. Chem. 13 Soc. 1987, 109, 2544.

- (7) (a) Mahandru, G. M.; Liu, G.; Montgomery, J. Correction: Ligand-14 dependent scope and divergent mechanistic behavior in nickel-catalyzed 15 reductive couplings of aldehydes and alkynes. J. Am. Chem. Soc. 2004, 16 126, 15316; (b) Mahandru, G. M.; Liu, G.; Montgomery, J. Ligand-17 dependent scope and divergent mechanistic behavior in nickel-catalyzed reductive couplings of aldehydes and alkynes. J. Am. Chem. Soc. 2004, 18 126, 3698; (c) Malik, H. A.; Sormunen, G. J.; Montgomery, J. A general 19 strategy for regiocontrol in nickel-catalyzed reductive couplings of aldehydes and alkynes. J. Am. Chem. Soc. 2010, 132, 6304; (d) 20 Montgomery, J.; Sormunen, G. J. Metal Catalyzed Reductive C-C Bond 21 Formation: A Departure from Preformed Organometallic Reagents 2007, 22 279, 1; (e) Wang, H.; Lu, G.; Sormunen, G. J.; Malik, H. A.; Liu, P.; 23 Montgomery, J. NHC ligands tailored for simultaneous regio- and enantiocontrol in nickel-catalyzed reductive couplings. J. Am. Chem. Soc. 24 2017. 139. 9317.
- 25 (8) (a) Huddleston, R. R.; Jang, H. Y.; Krische, M. J. First catalytic 26 reductive coupling of 1,3-divnes to carbonyl partners: A new regio- and enantioselective C-C bond forming hydrogenation. J. Am. Chem. Soc. 27 2003, 125, 11488; (b) Jang, H. Y.; Huddleston, R. R.; Krische, M. J. 28 Hydrogen-mediated C-C bond formation: Catalytic regio- and 29 stereoselective reductive condensation of a-keto aldehydes and 1,3enynes. J. Am. Chem. Soc. 2004, 126, 4664; (c) Kong, J. R.; Cho, C. W.; 30 Krische, M. J. Hydrogen-mediated reductive coupling of conjugated 31 alkynes with ethyl (N-sulfinyl)iminoacetates: Synthesis of unnatural a-32 amino acids via rhodium-catalyzed C-C bond forming hydrogenation. J. 33 Am. Chem. Soc. 2005, 127, 11269; (d) Komanduri, V.; Krische, M. J. Enantioselective reductive coupling of 1,3-enynes to heterocyclic aromatic 34 aldehydes and ketones via rhodium-catalyzed asymmetric hydrogenation: 35 Mechanistic insight into the role of brønsted acid additives. J. Am. Chem. 36 Soc. 2006, 128, 16448; (e) Ngai, M. Y.; Barchuk, A.; Krische, M. J. 37 Iridium-catalyzed C-C bond forming hydrogenation: Direct regioselective reductive coupling of alkyl-substituted alkynes to activated ketones. J. 38 Am. Chem. Soc. 2007, 129, 280; (f) Itoh, J.; Han, S. B.; Krische, M. J. 39 Enantioselective allylation, crotylation, and reverse prenylation of substituted isatins: Iridium-catalyzed C-C bond-forming transfer 40 hydrogenation. Angew. Chem., Int. Ed. 2009, 48, 6313; (g) Guo, Y. A.; 41 Lee, W.; Krische, M. J. Enantioselective synthesis of oxetanes bearing 42 all-carbon quaternary stereocenters via iridium-catalyzed C-C 43 bond-forming transfer hydrogenation. Chem. Eur. J. 2017, 23, 2557. (9) (a) Patel, S. J.; Jamison, T. F. Catalytic three-component coupling of 44 alkynes, imines, and organoboron reagents. Angew. Chem. Int. Ed. 2003, 45 42, 1364; (b) Luanphaisarnnont, T.; Ndubaku, C. O.; Jamison, T. F. Anti-46 1,2-diols via Ni-catalyzed reductive coupling of alkynes and α -47 oxyaldehydes. Org. Lett. 2005, 7, 2937; (c) Moslin, R. M.; Miller-Moslin, K.; Jamison, T. F. Regioselectivity and enantioselectivity in nickel-48 catalysed reductive coupling reactions of alkynes. Chem. Commun. 2007, 49 4441; (d) Van Dyke, A. R.; Miller, K. M.; Jamison, T. F. 50 (S)-(+)-neomenthyldiphenylphosphine in nickel-catalyzed asymmetric reductive coupling of alkynes and aldehydes: Enantioselective synthesis of 51 allylic alcohols and α-hydroxy ketones. Org. Synth. Vol 84, 2007, 84, 111. 52 (10) (a) Bahadoor, A. B.; Flyer, A.; Micalizio, G. C. A pentenyl dianion-53 based strategy for convergent synthesis of ene-1,5-diols. J. Am. Chem. Soc. 2005, 127, 3694; (b) Reichard, H. A.; Micalizio, G. C. A site- and 54 stereoselective intermolecular alkene-alkyne coupling process. Angew. 55 Chem. Int. Ed. 2007, 46, 1440; (c) Perez, L. J.; Shimp, H. L.; Micalizio, G. 56 C. Stereoselective synthesis of trisubstituted (E,E)-1,3-dienes by the site-57 selective reductive cross-coupling of internal alkynes with terminal 58

alkynes: A fragment coupling reaction for natural product synthesis. J. Org. Chem. 2009, 74, 7211; (d) Reichard, H. A.; Micalizio, G. C. Metallacycle-mediated cross-coupling with substituted and electronically unactivated alkenes. Chem. Sci. 2011, 2, 573; (e) Greszler, S. N.; Reichard, H. A.; Micalizio, G. C. Asymmetric synthesis of dihydroindanes by convergent alkoxide-directed metallacycle-mediated bond formation. J. Am. Chem. Soc. 2012, 134, 2766; (f) Jeso, V.; Aquino, C.; Cheng, X.; Mizoguchi, H.; Nakashige, M.; Micalizio, G. C. Synthesis of angularly substituted trans-fused hydroindanes by convergent coupling of acyclic precursors. J. Am. Chem. Soc. 2014, 136, 8209.

(11) For reviews, see: (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Substrate-directable chemical reactions. Chem. Rev. 1993, 93, 1307; (b) Murakami, K.: Yorimitsu, H. Recent advances in transition-metalcatalyzed intermolecular carbomagnesiation and carbozincation. Beilstein J. Org. Chem. 2013, 9, 278; (c) Rousseau, G.; Breit, B. Removable directing groups in organic synthesis and catalysis. Angew. Chem. Int. Ed. 2011, 50, 2450. For recent application of directing group strategy in palladium catalysis, see: (d) Gurak, J. A., Jr.; Yang, K. S.; Liu, Z.; Engle, K. M. Directed, regiocontrolled hydroamination of unactivated alkenes via protodepalladation. J. Am. Chem. Soc. 2016, 138, 5805; (e) Liu, Z.; Zeng, T.; Yang, K. S.; Engle, K. M. β,γ-vicinal dicarbofunctionalization of alkenyl carbonyl compounds via directed nucleopalladation. J. Am. Chem. Soc. 2016, 138, 15122; (f) Derosa, J.; Cantu, A. L.; Boulous, M. N.; O'Duill, M. L.; Turnbull, J. L.; Liu, Z.; De La Torre, D. M.; Engle, K. M. Directed palladium(II)-catalyzed anti-hydrochlorination of unactivated alkynes with HCl. J. Am. Chem. Soc. 2017, 139, 5183; (g) Liu, Z.; Wang, Y.; Wang, Z.; Zeng, T.; Liu, P.; Engle, K. M. Catalytic intermolecular carboamination of unactivated alkenes via directed aminopalladation. J. Am. Chem. Soc. 2017, 139, 11261; (h) Nimmagadda, S. K.; Liu, M.; Karunananda, M. K.; Gao, D.-W.; Apolinar, O.; Chen, J. S.; Liu, P.; Engle, K. M. Catalytic, enantioselective α-alkylation of azlactones with non-conjugated alkenes via directed nucleopalladation. Angew. Chem. Int. Ed. 2019, 58, 3923; (i) Zhang, Z.-P.; Tanaka, K.; Yu, J.-Q. Remote siteselective C-H activation directed by a catalytic bifunctional template. Nature 2017, 543, 538; (j) Xu, H.-J.; Lu, Y.; Farmer, M. E.; Wang, H.-W.; Zhao, D.; Kang, Y.-S.; Sun, W.-Y.; Yu, J.-Q. Rh(III)-catalyzed meta-C-H olefination directed by a nitrile template. J. Am. Chem. Soc. 2017, 139, 2200; (k) Liu, Y.-J.; Xu, H.; Kong, W.-J.; Shang, M.; Dai, H.-X.; Yu, J.-Q. Overcoming the limitations of directed C-H functionalizations of heterocycles. Nature 2014, 515, 389; (l) Dai, H.-X.; Stepan, A. F.; Plummer, M. S.; Zhang, Y.-H.; Yu, J.-Q. Divergent C-H functionalizations directed by sufonamide pharmacophores: Late-stage diversification as a tool for drug discovery. J. Am. Chem. Soc. 2011, 133, 7222

(12) (a) Cho, C. W.; Krische, M. J. Enantioselective reductive coupling of alkynes and a-keto aldehydes via rhodium-catalyzed hydrogenation: An approach to bryostatin substructures. Org. Lett. 2006, 8, 891; (b) Moslin, R. M.; Jamison, T. F. Highly convergent total synthesis of (+)acutiphycin. J. Am. Chem. Soc. 2006, 128, 15106; (c) Woodin, K. S.; Jamison, T. F. Total synthesis of pumiliotoxins 209F and 251D via latestage, nickel-catalyzed epoxide-alkyne reductive cyclization. J. Org. Chem. 2007, 72, 7451; (d) Belardi, J. K.; Micalizio, G. C. Total synthesis of macbecin I. Angew. Chem. Int. Ed. 2008, 47, 4005; (e) Reichard, H. A.; Rieger, J. C.; Micalizio, G. C. Total synthesis of callystatin A by titanium-mediated reductive alkyne-alkyne cross-coupling. Angew. Chem. Int. Ed. 2008. 47. 7837: (f) Macklin, T. K.: Micalizio, G. C. Total synthesis and structure elucidation of (+)-phorbasin C. J. Am. Chem. Soc. 2009, 131, 1392; (g) Trenkle, J. D.; Jamison, T. F. Macrocyclization by nickel-catalyzed, ester-promoted, epoxide-alkyne reductive coupling: Total synthesis of (-)-gloeosporone. Angew. Chem. Int. Ed. 2009, 48, 5366; (h) Jeso, V.; Micalizio, G. C. Total synthesis of lehualide B by allylic alcohol-alkyne reductive cross-coupling. J. Am. Chem. Soc. 2010, 132, 11422; (i) Wu, J.; Panek, J. S. Total synthesis of (-)-virginiamycin M₂. Angew. Chem. Int. Ed. 2010, 49, 6165; (j) Jeso, V.; Cherry, L.; Macklin, T. K.; Pan, S. C.; LoGrasso, P. V.; Micalizio, G. C. Convergent synthesis and discovery of a natural product-inspired paralog-selective Hsp90 inhibitor. Org. Lett. 2011, 13, 5108; (k) Wu, J.; Panek, J. S. Total synthesis of (-)-virginiamycin M₂: Application of crotylsilanes accessed by enantioselective Rh(II) or Cu(I) promoted carbenoid Si-H insertion. J. Org. Chem. 2011, 76, 9900; (I) Yang, D.; Micalizio, G. C. Synthesis of alkaloid (-)-205B via stereoselective reductive cross-coupling and intramolecular [3+2] cycloaddition. J. Am. Chem. Soc. 2012, 134, 15237; (m) Schleicher, K. D.; Jamison, T. F. A reductive coupling strategy towards ripostatin A. Beilstein J. Org. Chem. 2013, 9, 1533; (n) Cai, B.; Evans, R. W.; Wu, J.; Panek, J. S. Total synthesis of nuclear factor of activated T-Cells-68 (NFAT-68): Sequential use of chiral allenylsilane and titanium alkoxide-mediated reductive coupling bond construction. Org. Lett. 2016, 18, 4304; (o) Cheng, X.; Micalizio, G. C. Synthesis of seco-prezizaane sesquiterpenes (1R,10S)-2-Oxo-3,4neurotrophic dehydroneomajucin, (2S)-hydroxy-3,4-dehydroneomajucin, and (-)-Jiadifenin. J. Am. Chem. Soc. 2016, 138, 1150.

1

2

3

4

5

6

7

8

9

15

16

17

18

19

20

60

(13) (a) Leitch, D. C.; Beard, J. D.; Thomson, R. K.; Wright, V. A.; Patrick, B. O.; Schafer, L. L. N,O-chelates of group 4 metals: Contrasting the use of amidates and ureates in the synthesis of metal dichlorides. Eur. J. Inorg. Chem. 2009, 2691; (b) Payne, P. R.; Thomson, R. K.; Medeiros, D. M.; Wan, G.; Schafer, L. L. Synthesis, structure, and reactivity of tris(amidate) mono(amido) and tetrakis(amidate) complexes of group 4 transition metals. Dalton Trans. 2013, 42, 15670; (c) Yim, J. C.; Bexrud, 10 J. A.; Ayinla, R. O.; Leitch, D. C.; Schafer, L. L. Bis(amidate)bis(amido) titanium complex: A regioselective intermolecular alkyne hydroamination 11 catalyst. J. Org. Chem. 2014, 79, 2015; (d) Ryken, S. A.; Schafer, L. L. 12 N,O-chelating four-membered metallacyclic titanium(IV) complexes for 13 atom-economic catalytic reactions. Acc. Chem. Res. 2015, 48, 2576. 14

(14) For selected examples using amides as directing groups (DG) in metal-catalyzed reactions, see: (a) Zultanski, S. L.; Fu, G. C. Catalytic asymmetric y-alkylation of carbonyl compounds via stereoconvergent Suzuki cross-couplings. J. Am. Chem. Soc. 2011, 133, 15362; (b) Zhang, X. G.; Dai, H. X.; Wasa, M.; Yu, J. Q. Pd(II)-catalyzed ortho trifluoromethylation of arenes and insights into the coordination mode of acidic amide directing groups. J. Am. Chem. Soc. 2012, 134, 11948; (c) Crisenza, G. E.; Sokolova, O. O.; Bower, J. F. Branch-selective alkene hydroarylation by cooperative destabilization: Iridium-catalyzed ortho-alkylation of acetanilides. Angew. Chem. Int. Ed. 2015, 54, 14866.

(15) For selected examples using carbamates as directing groups (DG) in metal-catalyzed reactions, see: (a) Wang, D. H.; Hao, X. S.; Wu, D. F.; Yu, J.-Q. Palladium-catalyzed oxidation of Boc-protected N-methylamines with IOAc as the oxidant: A Boc-directed sp3 C-H bond activation. Org. Lett. 2006, 8, 3387; (b) Wilsily, A.; Tramutola, F.; Owston, N. A.; Fu, G. C. New directing groups for metal-catalyzed asymmetric carbon-carbon bond-forming processes: Stereoconvergent alkyl-alkyl Suzuki crosscouplings of unactivated electrophiles. J. Am. Chem. Soc. 2012, 134, 5794; (c) Shaw, M. H.; Melikhova, E. Y.; Kloer, D. P.; Whittingham, W. G.; Bower, J. F. Directing group enhanced carbonylative ring expansions of amino-substituted cyclopropanes: Rhodium-catalyzed multicomponent synthesis of N-heterobicyclic enones. J. Am. Chem. Soc. 2013, 135, 4992. (16) For examples of metal-based reactions mediated by amidates, see: (a) Smitrovich, J. H.; Woerpel, K. A. Copper-mediated substitution reactions of alkylmagnesium reagents with allylic carbamates: (Z)-selective alkene synthesis. J. Am. Chem. Soc. 1998, 120, 12998; (b) Smitrovich, J. H; Woerpel, K. A. Stereoselective synthesis of (Z)- and (E)-allylic silanes by copper-mediated substitution reactions of allylic carbamates with Grignard reagents. J. Org. Chem. 2000, 65, 1601; (c) Kreft, A. A stereospecific approach to cis-p-menth-2-ene. Tetrahedron Lett. 1977, 18, 1035; (d) Gallina, C. Regio and stereospecific synthesis of and 3-methyl-6methylethyl cyclohexenes and 3-methyl-4-methylethylcyclohexenes. Reactions of allylic acetates and carbamates with Li2Cu3Me5 and LiCuMe2. Tetrahedron Lett. 1982, 23, 3093; (e)Goering, H. L.; Kantner, S. S.; Tseng, C. C. Alkylation of allylic derivatives. 4. On the mechanism of alkylation of allylic N-phenylcarbamates with lithium dialkylcuprates. J. Org. Chem. 1983, 48, 715.

For Table of Contents Only

