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ABSTRACT: A titanium alkoxide-based alkyne-alkyne 
reductive coupling mediated by in situ generated arylamidate is 
described. High level of regioselectivity is achieved in 37 
examples, where (E,E)-dienes are formed exclusively. To the best 
of our knowledge, this study represents the first example of an 
apparent amide and carbamate directing effect in metal-mediated 
reductive coupling.

Stereochemically well-defined, functionalized (E,E)-dienes are 
common structural features embedded in polyketide-derived 
natural products and related pharmaceutical agents.1 In that 
context, transition-metal-mediated alkyne-alkyne reductive 
coupling reactions have recently emerged as step- and atom-
economical carbon-carbon bond-forming reactions to access 
(E,E)-dienes by avoiding a prefunctionalization step. The 
principle challenges that lie within this strategy are the control of 
reactivity and olefin selectivity. In response to these challenges in 
the reductive coupling
Scheme 1. Alkyne-Alkyne Reductive Coupling for the 
Selective Synthesis of (E,E)-Dienes

between internal alkynes and carbonyl-based π-systems or 
alkynes, useful strategies to control regioselection have been 

developed over the past decades. These strategies include steric 
differentiation,2 π conjugation,3 and directed carbometalation,4 
and have been actively implemented by research groups including 
Sato,2,5 Buchwald,6 Montgomery,7 Krische,8 Jamison,3,9 and 
Micalizio1f-h,4,10 (Scheme 1A and 1B). Among these strategies, 
substrate-directed transformations11 enable the formation of 
highly organized transition states or intermediates through the 
association of a reagent with the substrate. The resulting 
conformationally rigid systems allow selective reactions, enabling 
useful levels of regioselectivity. The atom-economy and 
remarkable convergency provided by this strategy has been 
demonstrated by its application in several elegant total synthesis 
of natural products and complex molecules.12 However, the use of 
in situ generated alkoxide was the only directing group strategy 
realized in the context of titanium-mediated reductive coupling. 
Underdevelopment limited the substrate scope for this 
transformation and subsequent applications, but allows for 
discovery and development of an alternative directing-group 
strategy.4 
Scheme 2. Arylacetamide Directing Effect in Alkyne-

Alkyne Reductive Coupling
In line with our previous studies on reductive couplings12n and 

inspired by Micalizio4 and Schafer’s work,13 we report a highly 
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regiocontrolled synthesis of (E,E)-dienes mediated by in situ 
generated arylamidate (Scheme 1C). This strategy takes 

advantage of 

Table 1. Arylacetamide Directing Effect in Alkyne-Alkyne Reductive Coupling

aIsolated yield after chromatographic purification over silica gel. bRegioselectivity was based on the analysis of the 1H NMR spectra of the 
crude products; r.r. = regioselectivity ratio.
the commonly used amine protecting groups, acetyl (Ac), tert-
butyloxycarbonyl (Boc), and carboxybenzyl (Cbz) groups, to 
render the directing effects and achieves useful levels of 
regioselectivity. This protocol represents the first examples of 
apparent amide and carbamate directing effects in metal-mediated 
reductive coupling.

The development of this methodology originated from our 
previous investigation concerning the reductive coupling between 
internal alkynes obtained from asymmetric propargylation 
reactions and acetylenic esters (Scheme 2).12n In an effort to apply 
this strategy to the total synthesis of NFAT-68,12n we were 
surprised to find that previous reaction conditions (“original 
conditions”) for the reductive coupling failed to produce the 
desired diene 2 using alkynyl acetamide 1 and methyl propiolate, 
requiring reinvestigation of the reaction conditions (Scheme 2A). 
For the generation of the presumed titanacyclopropene complex, 
(1) two additional equivalents (six vs four) of the Grignard 
reagent were required to achieve full conversion, indicating that 
an excess amount of Grignard reagent was necessary for the 
deprotonation of the acetamide proton; (2) a higher reaction 
temperature was required to initiate the formation of int-1, where 
the thermodynamic effect of the deprotonated amide on the 
successful generation of Ti-alkyne complex has not been 
previously described in reductive coupling reactions. For the 
intermolecular carbometalation process, elevated coupling 
temperature was needed for complete consumption of int-1, 

producing 2 as a single regioisomer. Collectively, the presence of 
an acetamide on the aryl ring had a pronounced impact on the 
reactivity and selectivity of the reaction. Interestingly, the N-
methylated counterpart 3 (Scheme 2B) produced diene 4 with 
significantly eroded regioselectivity under the “original 
conditions” and led to decomposition under the updated 
conditions. This control experiment provided evidence that the in 
situ generated amidate anion may have played an important role 
on the selectivity of this coupling reaction. Enlightened by 
Schafer’s work13 on employing monoanionic N,O-chelating 
ligands with a tight bite angle including amidates in titanium-
catalyzed reactions, we hypothesized that the in situ generated 
arylamidate might associate with the titanium center to direct the 
coupling reaction.

On that basis, we surveyed the coupling of alkynyl acetamide 1 
with a range of terminal alkynes bearing diverse functionality 
(Table 1). To our delight, (E,E)-diene products (5-12) were 
formed with excellent regioselectivity in all cases. Aryl, pyridyl 
(5-7), silyl ether (10), alkyl amine (11) ,and ester (12) were all 
well-tolerated, demonstrating the broad functional group tolerance 
of this coupling reaction.

The alkyne substrate scope was evaluated subsequently, where 
the variation of acetamide substitution pattern, stereochemistry, 
electronics on the aryl ring, hydroxyl protecting groups, and tether 
length was investigated (Table 1). While meta- and para-
substituted arenes delivered dienes (13 and 14) with good 

+

1. 2 equiv ClTi(OiPr)3
6 equiv cC5H9MgCl
PhMe, -40 oC, 3h

2. -78 oC to rt
R3AcHN

OR1 Me

Me

R2

AcHN

OR1

Me

R2

Me

R3
n n* * * *

n= 1, 2 n= 1, 2
(entry, yield,a, r.r.b)

OMe

OMe

AcHN
OBn

Me Me

OMe

OMe

AcHN
OBn

Me Me

OMe

OMe

AcHN
OBn

Me Me
N

5, 57%, E,E only, r.r. > 20:1 6, 50%, E,E only, r.r. > 20:1 7, 61%, E,E only, r.r. > 20:1

A: Terminal Alkyne Substrate Scope
OMe

OMe

AcHN
OBn

Me Me
Me

8, 62%, E,E only, r.r>20:1
8, 62%, E,E only, r.r. > 20:1

OMe

OMe

AcHN
OBn

Me Me
Me

OMe

OMe

AcHN
OBn

Me Me
OTBS

9, 61%, E,E only, r.r. > 20:1 10, 60%, E,E only, r.r. > 20:1

OMe

OMe

AcHN
OBn

Me Me
N

OMe

OMe

AcHN
OBn

Me Me
OMe

O

11, 65%, E,E only, r.r. > 20:1 12, 45%, E,E only, r.r. > 20:1

B: Internal Alkyne Substrate Scope

OBn

Me Me

Me
OTBS

AcHN

13, 58%, E,E only, r.r. > 20:1

OBn

Me Me

Me
OTBSAcHN

OBn

Me

AcHN

Me

14, 48%, E,E only, r.r. > 20:1 15, no coupled product

AcHN
OBn

Me Me

Me

16, 62% E,E only, r.r. > 20:1

AcHN
OMe

Me Me

Me

17, 54%, E,E only, r.r. > 20:1

AcHN
OBn

Me
Br

Me

OTBS

18, 20%, E,E only, r.r. > 20:1

AcHN
OBn

Me
Me

Me

OH

19, 40%, E,E only, r.r. > 20:1

OMe

Me

OBn

Me Me

OTBS
Me

AcHN

AcHN
OMe

Me

OBn

Me Me

OTBS
MeOMe

Me

OBn

Me Me

OTBS
MeAcHN

20, 49%, E,E only, r.r. > 20:1 21, 59%, E,E only, r.r. > 20:1 22, 49%, E,E only, r.r. > 20:1

5

A1, R3 = Me
A2, R3 = OTBS
A3, R3 = OTBS

Me

Page 2 of 9

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



reactivity and excellent selectivity, the ortho-substitution failed to 
give a coupled product, but gave only alkyne reduction (15).
Table 2. Arylcarbamate Directing Effect in Alkyne-Alkyne Reductive Coupling 

aIsolated yield after chromatographic purification over silica gel. bRegioselectivity was based on the analysis of the 1H NMR spectra of the 
crude products; r.r. = regioselectivity ratio.
Scheme 3. Control Experiments
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aCombined yields of all regioisomers after chromatographic purification over silica gel. bRegioselectivity was based on the analysis of the 
1H NMR spectra of the crude products; r.r. = regioselectivity ratio. c6 equivalents of cC5H9MgCl was used.
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Figure 1. Proposed Reaction Mechanism
Contrary to Micalizio’s study, substrate stereochemistry had little 
or no impact on reaction selectivity (16 and 17).1h Additionally, 
placement of an electron-withdrawing group or electron-donating 
group ortho to the acetamide did not alter the selectivity, 
furnishing 18 and 19 as the only isomers. The yield of 18 was 
diminished presumably due to the metal/halogen exchange of 
Grignard reagent with arylbromide. Importantly, substrates with 
extended tether length also proved to be viable for the coupling to 
obtain products (20-22) with excellent regioselectivity. Given that 
excellent regiocontrol was achieved in complex molecular 
settings, we expect this methodology will find wide application in 
natural product and complex molecule synthesis. Accordingly, 
these results suggest that arylacetamides have a strong directing 
group effect on titanium alkoxide-mediated reductive couplings.

Encouraged by the success with acetamide bearing substrates, 
we investigated carbamates (Boc and Cbz) to determine if they 
would display a similar directing effect as the amides (Table 2). 
Gratifyingly, with a lower reaction temperature, (E,E)-dienes (20 
examples) were obtained as the exclusive regioisomers in 

moderate yields. In an analogous fashion, factors such as 
substitution pattern (23-25), electronic contributions on the aryl 
ring (26-28), stereochemistry and hydroxyl protecting groups (25 
and 29), and tether length (31-33) were evaluated. All products 
were obtained with useful levels of regioselectivity. A decreased 
selectivity (29) was observed, when the arene substrate was para-
substituted and an anti-stereochemical relationship between 
benzylic methyl ether and homobenzylic methyl group was 
present. Accordingly, carbamates (Boc and Cbz) also displayed an 
apparent directing effect to render (E,E)-dienes with excellent 
levels of selectivity. 

Control experiments were conducted to demonstrate the 
importance of the directing effect of acetamide14 or carbamate15 
through in situ formation of arylamidate.16 As depicted in Scheme 
3A and 3B, when the N-H proton was replaced with a methyl 
group on acetamide or carbamate, the reaction selectivity was 
significantly decreased along with the production of the other two 
regioisomers (35-37).12n Additionally, removal of the carbonyl 
functionality from the arylamine (Scheme 3C and 3D) led to a 

(A) Micalizio's alkoxide-directed Ti-mediated alkyne-alkyne reductive coupling
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complex product mixture. Two additional equivalents of Grignard 
reagent were added for deprotonation of the acidic amine 
hydrogen, which excluded the possibility that the transformation 
was mediated by a deprotonated arylamine.

Based on the above-described experiments, we proposed a 
likely mechanism (Figure 1C) for reductive coupling mediated by 
in situ generated arylamidate that builds on Micalizio’s1g, 
Shafer’s13 and our earlier work12n (Figure 1A and 1B). The 
Micalizio group has laid a solid foundation in the mechanistic 
interpretation of operational intermediates and transition states 
leading to selective reductive coupling in the field of directed-
metalation mediated by titanium alkoxide. Specifically, in the 
case where the intramolecular coordination of homoallylic 
alkoxide with titanium is hampered by significant ring strain, a Ti 
(II) dimer is proposed to be the intermediate during the formation 
of titanacyclopropene complex. The selectivity of the subsequent 
carbometalation and formation of E,E-dienes can be rationalized 
by simple steric consideration, where the int-4 has the least 
unfavorable steric interactions between Ti(II) dimer and the 
incoming terminal alkyne (Figure 1A). On the other hand, the 
Shafer group has established the coordination modes of amidates 
with Ti(IV) (Figure 1B). The amidates bind in either a bidentate 
or monodentate mode through either nitrogen or oxygen atom, 
where κ1-(O) binding will be favored in a sterically congested 
environment. Given the considerations described above, we 
propose a κ1-(O)-amidate-chelated Ti(II) dimer (int-5) that is 
responsible for the unprecedented selectivity and reactivity 
(Figure 1C).  In comparison to Micalizio’s strategic placement of 
an alkoxide as a directing group, the use of arylamidate in our 
case creates a more sterically crowed environment resulting in 
better selectivities and lower reactivities (transition states I and II, 
highlighted in yellow). Based on this proposal, as the anti-
stereoisomers (int-8) have the ether group (OR1) positioned closer 
to the titanium reacting center compared with the syn-
stereoisomers (int-7), int-8 is sterically more congested than int-
7. The proposition is consistent with the observation that the anti-
substrates were less reactive than their syn-counterparts (Table 1, 
14 vs. 16; Table 2, 23 vs. 29, where both the anti-substrates did 
not couple with the most sterically hindered terminal alkyne (A3). 
Furthermore, different positions of the acetamide and carbamate 
functionality on the aryl ring might produce geometrically 
different arylamidate-associated intermediates that have distinct 
stabilities and steric environment. In particular for para-
substituted carbamates (Table 2, 29), the combination of the 
destabilization effect of a bulky carbamate and more sp2 character 
of the dimer might lead to a weaker coordination of the amidate 
with Ti. This may allow for the terminal alkyne to approach from 
the inner sphere of the dimer (resembling to pathway X in Figure 
1A), explaining the formation of the other regioisomer. In 
contrast, a substrate with an ortho-substituted acetamide (15) 
would likely to form a dimer featuring less steric interactions and 
sp2 character, permitting the possibility of a bidentate N,O-
chelation. The ensuing higher coordinated dimer might have the 
titanium center shielded by the steric bulk, decreasing its 
reactivity for the coupling reaction (Table 1, 15).13b

In summary, a highly regioselective alkyne-alkyne reductive 
coupling mediated by in situ generated arylamidate is described to 
provide access to a synthetically useful class of (E,E)-dienes. 
Excellent regioselectivity is achieved in 37 examples. Factors 
such as acetamide and carbamate substitution pattern, electronics 
of the aryl ring, stereochemistry, hydroxyl protecting groups, and 
tether length were investigated. Transition state models are 
proposed to rationalize the experimental observations. The utility 
of this methodology was first demonstrated in our convergent 
synthesis of NFAT-68.12n The extension of this methodology and 
application in the total synthesis of natural products and 

pharmaceutical agents are underway in our laboratory and will be 
reported in due course.
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1. ClTi(OiPr)3
cC5H9MgCl
PhMe, -40 oC, 3h

2. conditions

Arylamidate-mediated Excellent regioselectivity
New amide and carbamate directing effects

37 examples
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OR1 Me

MeR2
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R= CH3, OBn, OtBu

n
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O
R
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Ti

O
R

OiPr

OiPr

Proposed 1(O)-amidate-
chelated Ti(II) dimer
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