

Communication

Toward Direct Protein S-Persulfidation: A Prodrug Approach that Directly Delivers Hydrogen Persulfide

Bingchen Yu, Yueqin Zheng, Zhengnan Yuan, Shanshan Li, He Zhu, Ladie Kimberly De La Cruz, Jun Zhang, Kaili Ji, Siming L. Wang, and Binghe Wang

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.7b09795 • Publication Date (Web): 06 Dec 2017 Downloaded from http://pubs.acs.org on December 6, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

7

8 9 10

11

12 13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Toward Direct Protein S-Persulfidation: A Prodrug Approach that Directly Delivers Hydrogen Persulfide

Bingchen Yu, # Yueqin Zheng, ^{#,*} Zhengnan Yuan, Shanshan Li, He Zhu, Ladie Kimberly De La Cruz, Jun Zhang, Kaili Ji, Siming Wang and Binghe Wang^{*}

Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303 United States

Supporting Information Placeholder

ABSTRACT: A general strategy of delivering hydrogen persulfide (H_2S_2) is described herein. Esterase- and phosphatase-sensitive H_2S_2 prodrugs with tunable release rates have been synthesized. Their utility is validated in examining protein S-persulfidation. With this unique approach of directly delivering H_2S_2 , our findings reaffirmed that Spersulfidation leads to decreased activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). This new approach complements available prodrugs/donors that directly deliver a single species including hydrogen sulfide, perthiol, and COS, and will be very useful as part of the toolbox in delineating the mechanisms of sulfur signaling.

Hydrogen sulfide (H₂S) plays roles in physiological and pathological processes and has promising therapeutic potential.¹⁻¹⁰ Recent studies suggest that endogenous hydrogen polysulfides (H_2S_n , $n\geq 2$) and perthiol (RS_nH , $n\geq 2$) have similar physiological effects as H₂S, but with greater potency in some cases.¹¹⁻¹⁵ For example, hydrogen polysulfides were found to be able to induce Ca²⁺ influx by activating transient receptor potential (TRP)A1 channels in rat astrocytes and are 320 times more potent than H2S.16 Protein Spersulfidation (sometimes referred to as S-sulfhydration), in which the thiol group of cysteine (-SH) in protein is converted to a perthiol group (-SSH), has proven to be a major signaling pathway involving sulfur.¹⁷⁻²⁰ Many enzymes can go through this process, leading to significant changes in activity.^{19,21,15,22,17,23} Chemically, H₂S cannot simply "persulfidate" a thiol group. Therefore, either some other oxidation reaction(s) needs to happen or the H₂S source contains sulfur species at higher oxidation states.^{15,24} Thus, it is likely that hydrogen polysulfide and/or perthiol derived from H₂S are the actual dominant species in S-persulfidation.²⁵⁻²⁸ H₂S and perthiol can be produced enzymatically.^{11,12,29} The facts that hydrogen polysulfide and perthiol can lead to protein Spersulfidation and there are enzymatic pathways to produce such species lend further support to the possibility that hydrogen polysulfide and perthiol are the actual signaling molecules in certain processes.29

Given the significant role of hydrogen polysulfide and perthiol in protein S-persulfidation signaling, there is a need to prepare prodrugs for generating hydrogen polysulfide as single species without perturbing cellular redox chemistry. Several labs have reported beautiful work in preparing prodrugs for H_2S ,³⁰⁻³⁴ perthiol,³⁵ and COS.^{31,36-39} What are missing in the toolbox are prodrugs for H_2S_2 as a single or at least as a dominant species. Herein, we described our work in this regard.

Scheme 1. The design concept of H₂S₂ prodrugs.

$$\begin{tabular}{|c|c|c|c|} \hline Caging group & S & Caging group \\ \hline & & & \\ \hline Caging group & & & \\ \hline & & & \\ \hline & & & \\ \hline Caging group & & & \\ \hline \hline & & & \\ \hline & & & \\ \hline \hline \\ \hline \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \\$$

The need of developing H_2S_2 prodrugs derives from its unstable nature.⁴⁰ We used the "trimethyl lock"-facilitated lactonization system as the caging group for prodrug preparation (Scheme 1).⁴¹ Specifically, H_2S_2 is caged as two thiolacid groups linked by a disulfide bond (Scheme 1). A masked phenol hydroxyl group serves as a latent nucleophile for initiation of H_2S_2 release through lactonization.

Scheme 2. Mechanism of esterase-triggered H_2S_2 release.

An esterase-sensitive H₂S₂ prodrug, **BW-HP-301** (301), was prepared (Scheme 2). 301 is a colorless oil and stable for days at room temperature and months at -20 °C. We studied whether esterase would promote H₂S₂ release from **301** using a H₂S₂ fluorescence probe DSP-3.⁴² Thus, **301** was incubated with porcine liver esterase (PLE) at 37 °C in phosphate-buffered saline (PBS, pH = 7.4) for 30 min to fully consume 301; then 20 µM of DSP-3 was added. Strong fluorescence was observed in experiments with PLE (Figure 1A), indicating the release of H_2S_2 . In contrast, negligible fluorescence was detected without PLE. Incubation with 200 µM Na₂S led to negligible fluorescence intensity increase, showing the stability of DSP-3 toward H₂S. To provide further direct evidence of H₂S₂ release, we used monobromobimane (mBB) to trap H₂S₂ in a stable form, mBB-SS-mBB (Scheme 3 and Figure 1B).⁴³ $68 \pm 8 \mu$ M of mBB-SS-mBB was detected from 100 µM prodrug 301 in the presence of 10 unit/mL of PLE. The less than 100% conversion could be due to many reasons, including slow reaction kinetics and stability issues for H₂S₂. As a reference point, we also used the same method to trap H₂S₂ from commercially available Na₂S₂. About $71 \pm 9 \mu$ M of mBB-SS-mBB was detected in 100 μ M of Na₂S₂ solution (Figure S2). The fact that the prodrug and Na₂S₂ gave the same results in both the DSP-3 and mBB assays strongly suggest that the release from the prodrug was nearly 100%. The efficiency of the H_2S_2 trapping reaction was most likely the reason causing the less than 100% conversion to the trapped product, mBB-SS-mBB. It is important to noted that H_2S_2 concentration from the addition of 100 μ M Na₂S₂ started decreasing from the moment of dissolution (Figure S2). However, with 100 μ M **301**, the H_2S_2 concentration gradually increased with the addition of 2 units/mL PLE and reached a peak concentration at 25 min.

1

2

3

4

5

6

7

8

9

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 59

60

Scheme 3. Direct detection of H_2S_2 by trapping agent mBB.

Figure 1. A) Qualitative detection of H_2S_2 release from **301** by DSP-3. **301** was incubated with 2 units/mL PLE in PBS (2% DMSO) for 30 min and then DSP-3 (20 μ M) was added. Data were acquired at 515 nm with excitation at 490 nm. n = 3. 1) 100 μ M **301** + PLE; 2) 100 μ M Na_2S_2 + PLE; 3) PLE; 4) 100 μ M **301**; 5) 200 μ M Na_2S + PLE. B) Direct detection of H_2S_2 by trapping agent mBB from **301** in PBS (2% DMSO). n = 3.

One would expect the sustained concentration of H₂S₂ to be dependent on the release rate from a prodrug since the generation and consumption of thiol species in the biological system is a dynamic process. Thus, we wanted to prepare prodrugs with varying release rates. Specifically, BW-HP-302 (302) was synthesized (Scheme 4) and its H₂S₂ release ability was assessed (Figure S1). The H_2S_2 release profiles from **301** and **302** are shown in Figure 2B. From 40 µM of the prodrugs, 301 had a peak concentration of 15 µM at around 15 min, while 302 maintained a sustained concentration of about 3 µM. The release profile of 302 was also studied by using mBB. A plateau of $35 \pm 7 \mu$ M of mBB-SSmBB was detected from 100 µM of 302 in the presence of 10 units/mL PLE (Figure S2). For 100 µM of the prodrug, the half-life was determined to be 24 min for 301 and 172 min for 302 by HPLC (Table S4). The slower release rate of 302 was presumably due to the bulkier nature of the cyclopropanecarbonyl ester, which hinders esterase-mediated hvdrolvsis.44

In an effort to broaden the tunability of H_2S_2 release, a phosphatase-sensitive H_2S_2 prodrug, **BW-HP-303 (303)**, was synthesized (Scheme 4). Alkaline phosphatase (ALP) is widely used for prodrug activation.⁴⁵⁻⁴⁷ Phosphatasedependent H_2S_2 release was examined by DSP-3 (Figure 2A). Incubation of **303** with 10 units/mL ALP led to strong fluorescence, demonstrating H_2S_2 release. In the absence of phosphatase, almost no H_2S_2 was detected, indicating the chemical stability of the prodrug. A peak concentration of $65 \pm 8 \ \mu\text{M}$ of mBB-SS-mBB was achieved from 100 $\ \mu\text{M}$ **303** in the presence of 10 units/mL ALP. Such result is similar to that of 100 $\ \mu\text{M}$ **301** and Na₂S₂, demonstrating the efficient H_2S_2 release from **303** (Figure S2). From 40 $\ \mu\text{M}$ **303**, a peak concentration of 10 μ M of H₂S₂ was detected (Figure 2B) with a half-life of 28 min in the presence of 2 units/mL ALP (Table S4).

To assess the utility of the prodrug in delivering H_2S_2 in biological systems, cells were co-treated with 100 μ M **301** and PLE or 100 μ M **303** and ALP (Figure S9), respectively. Strong fluorescence was observed, indicating H_2S_2 release. No obvious cytotoxicity was found at up to 100 μ M of the prodrugs or lactone on H9c2 cells after 24 and 48 h incubation (Figure S5,6).

Scheme 4. Structures of 302 and 303

Figure 2. A) Qualitative assessment of H_2S_2 release from **303** by DSP-3. The concentration of DSP-3 is 20 μ M and ALP is 10 units/mL in PBS (1% MeOH). n = 3. 1) 100 μ M **303** + ALP; 2) 100 μ M **303**; 3) ALP; 4) ALP + 100 μ M Na2S₂. B) H_2S_2 releasing profile form 40 μ M **301** and **302** with 1 unit/mL PLE in PBS (2% DMSO) and **303** with 2 units/mL ALP at 37 °C in PBS (2% MeOH). 20 μ M DSP-3 was used. n = 3.

S-persulfidation is a major sulfur signaling pathway.^{17,19} We then examined the S-persulfidation efficiency of the prodrugs on GAPDH using a tag-switch assay.⁴⁸ Incubation with 100 µM 301 and 10 units/mL PLE at 37°C led to a significant increase in GAPDH S-persulfidation level (Figure 3B and C, line 1) compared to the untreated group (line 5). In contrast, incubation with 200 μ M H₂S (line 4) failed to elevate GAPDH S-persulfidation level. Protein samples were also treated with 100 μ M Na₂S₂ or 100 μ M H₂O₂ followed by 100 μ M H₂S (line 2, 3) to mimic the two endogenous Spersulfidation process (Figure S10).15,48,49 These two methods each led to a significant increase of GAPDH Spersulfidation level. Such results further affirm that H₂S itself is incapable of protein S-persulfidation. Previously H₂S has been shown to abolish S-persulfidation by itself.⁵⁰ The roles that H₂S plays in S-persulfidation and signaling are dependent on ROS and cellular redox environment. However, 301 was able to induce S-persulfidation independent of ROS. These H₂S₂ donors are important research tools to conduct S-persulfidation without perturbing the redox balance. Even with data suggesting H₂S₂ being the dominant species released from **301**, we can't exclude the possibility that other polysulfide derived from H₂S₂ degradation may also play a role in S-persulfidation because of the unstable nature of H₂S₂.

It has been a subject of debate as to whether Spersulfidation leads to increased or decreased activity of GAPDH.^{17,23} To address this point, GAPDH was treated with the exact conditions that was used in the S-persulfidation assay above. Then enzyme activity was determined. As shown in Figured 3B and D, GAPDH treated with **301**, Na₂S₂, or H₂S and H₂O₂ together each showed elevated pro1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 56

57 58 tein S-persulfidation levels and decreased enzyme activity compared with untreated groups. Meanwhile, H₂S alone failed to affect enzyme activity. GAPDH activity also showed a concentration dependent decrease in response to **301** with a half inhibition concentration of approximately 1 μ M (Figure 3E). Maximal inhibition was achieved with 5 μ M of the **301** with 17 ± 1% catalytic activity remaining. Further

Sulfhydration Induction

1. BW-HP-301

Figure 3, A: Work flow of GAPDH S-persulfidation process; B and C: GAPDH S-persulfidation level assay. GAPDH (2 mg/mL) was subjected to different treatments and analyzed by the protein S-persulfidation switch tag assay; D: GADPH activity assay; All groups have 10 units/mL PLE and 2% DMSO. (1) 100 μ M **301**; (2) 100 μ M Na₂S₂; (3) 100 μ M H₂O₂+ 100 μ M Na₂S; (4) 200 μ M Na₂S; (5) PLE alone; GADPH was subjected to various treatment at 37 °C for 0.5 h, then its S-persulfidation level and activity was determined. E: Concentration dependent inhibition of GAPDH activity **301**. 2 μ g/mL GAPDH was incubated with various concentration of **301** at 37 °C for 0.5 h with 10 units/ mL PLE, after which the enzyme activity was determined. Then each group was incubated with 2 mM DTT at r.t. for 2 h, after which the GAPDH activity was measured. Values are means ± SEM. n = 3, **P < 0.01.

increase in prodrug concentration to 10 μ M did not decrease the enzyme activity further. After treatment with **301**, GAPDH was treated with 2 mM DTT at r.t. for 2 h, which would reduce the S-persulfidation product to free the thiol group again. Indeed, enzyme activity was restored to 75-95% of its original activity by DTT treatment. Considering the important roles of GAPDH,^{51,52} the above results suggest an important role for H₂S₂ in energy metabolism, proliferation and redox balance.

In conclusion, we provide a general strategy to H_2S_2 prodrugs with well-defined release mechanism. Secondly, controllable release patterns and tunable release rates have been achieved. Such a H_2S_2 donor can directly induce protein S-persulfidation, leading to significant enzyme activity changes. This novel series of H_2S_2 prodrugs should be important research tools for future studies.

ASSOCIATED CONTENT

Supporting Information

Experiment details and supplementary figures and table

AUTHOR INFORMATION

Author Contributions

[#]These authors contributed equally and the names are listed alphabetically.

Corresponding Author

Binghe Wang: <u>Wang@gsu.edu;</u> Yueqin Zheng: <u>yzheng6@gsu.edu</u>

ACKNOWLEDGMENT

Partial financial support from the GSU Brains and Behaviors Fellowship Program to BY is gratefully acknowledged.

REFERENCES

(1)Blackstone, E.; Morrison, M.; Roth, M. B. *Science* **2005**, *308*, 518.

(2)Szabo, C. Nat. Rev. Drug. Discov. 2007, 6, 917.

(3)Wallace, J. L.; Wang, R. Nat. Rev. Drug. Discov. 2015, 14, 329.

(4)Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.; Isbell, T. S.; Patel, R. P.; Darley-Usmar, V. M.; Doeller, J. E.; Kraus,

D. W. *Proc. Natl. Acad. Sci. U.S.A.* **2007**, *104*, 17977. (5)Kondo, K.; Bhushan, S.; King, A. L.; Prabhu, S. D.; Hamid, T.; Koenig, S.; Murohara, T.; Predmore, B. L.; Gojon, G., Sr.; Gojon, G.,

Jr.; Wang, R.; Karusula, N.; Nicholson, C. K.; Calvert, J. W.; Lefer, D. J. *Circulation* **2013**, *127*, 1116.

(6)Wallace, J. L. Trends Pharmacol. Sci. 2007, 28, 501.

(7)Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng, Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R. *Science* **2008**, *322*, 587.

(8)Zheng, Y.; Yu, B.; De La Cruz, L. K.; Roy Choudhury, M.; Anifowose, A.; Wang, B. *Med. Res. Rev.* **2018**, DOI: 10.1002/med.21433.

(9)Zheng, Y.; Ji, X.; Ji, K.; Wang, B. Acta. Pharm. Sin. B 2015, 5, 367.

(10)Szabo, C. Nat. Rev. Drug. Discov. 2016, 15, 185.

(11)Yadav, P. K.; Martinov, M.; Vitvitsky, V.; Seravalli, J.; Wedmann, R.; Filipovic, M. R.; Banerjee, R. J. Am. Chem. Soc. **2016**, *138*, 289.

(12)Mishanina, T. V.; Libiad, M.; Banerjee, R. Nat. Chem. Biol. **2015**, *11*, 457.

(13)Kimura, H. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2015, 91, 131.

(14)Koike, S.; Ogasawara, Y.; Shibuya, N.; Kimura, H.; Ishii, K. *FEBS Lett.* **2013**, *587*, 3548.

(15)Greiner, R.; Palinkas, Z.; Basell, K.; Becher, D.; Antelmann, H.; Nagy, P.; Dick, T. P. Antioxid. Redox Signal. **2013**, *19*, 1749.

(16)Kimura, Y.; Mikami, Y.; Osumi, K.; Tsugane, M.; Oka, J.; Kimura, H. *FASEB J.* **2013**, *27*, 2451.

(17)Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.; Gazi, S. K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H. *Sci. Signal.* **2009**, *2*, ra72.

(18)Paul, B. D.; Snyder, S. H. Nat. Rev. Mol. Cell Biol. 2012, 13, 499.

(19)Sen, N.; Paul, B. D.; Gadalla, M. M.; Mustafa, A. K.; Sen, T.; Xu, R.; Kim, S.; Snyder, S. H. *Mol. Cell* **2012**, *45*, 13.

(20)Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. Sci. Signal. 2011, 4, ra86.

(21)Vandiver, M. S.; Paul, B. D.; Xu, R.; Karuppagounder, S.; Rao, F.; Snowman, A. M.; Ko, H. S.; Lee, Y. I.; Dawson, V. L.;

Dawson, T. M.; Sen, N.; Snyder, S. H. Nat. Commun. 2013, 4, 1626.
(22)Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.;
Khaper, N.; Wu, L.; Wang, R. Antioxid. Redox Signal. 2012, 18,

1906. (23)Jarosz, A. P.; Wei, W.; Gauld, J. W.; Auld, J.; Ozcan, F.; Aslan, M.; Mutus, B. *Free Radic. Biol. Med.* **2015**, *89*, 512.

(24)Nagy, P.; Winterbourn, C. C. Chem. Res. Toxicol. 2010, 23, 1541.

59 60 (25)Ono, K.; Akaike, T.; Sawa, T.; Kumagai, Y.; Wink, D. A.; Tantillo, D. J.; Hobbs, A. J.; Nagy, P.; Xian, M.; Lin, J.; Fukuto, J.

(28)Cortese-Krott, M. M.; Kuhnle, G. G.; Dyson, A.; Fernandez, B. O.; Grman, M.; DuMond, J. F.; Barrow, M. P.; McLeod, G.; Nakagawa, H.; Ondrias, K.; Nagy, P.; King, S. B.; Saavedra, J. E.; Keefer, L. K.; Singer, M.; Kelm, M.; Butler, A. R.; Feelisch, M. *Proc.*

(29)Ida, T.; Sawa, T.; Ihara, H.; Tsuchiya, Y.; Watanabe, Y.;
Kumagai, Y.; Suematsu, M.; Motohashi, H.; Fujii, S.; Matsunaga, T.; Yamamoto, M.; Ono, K.; Devarie-Baez, N. O.; Xian, M.; Fukuto, J. M.; Akaike, T. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 7606.
(30)Kang, J.; Li, Z.; Organ, C. L.; Park, C. M.; Yang, C. T.;
Pacheco, A.; Wang, D.; Lefer, D. J.; Xian, M. J. Am. Chem. Soc.

(31)Li, L.; Whiteman, M.; Guan, Y. Y.; Neo, K. L.; Cheng, Y.; Lee, S. W.; Zhao, Y.; Baskar, R.; Tan, C. H.; Moore, P. K. *Circulation*

(32)Martelli, A.; Testai, L.; Citi, V.; Marino, A.; Pugliesi, I.;
Barresi, E.; Nesi, G.; Rapposelli, S.; Taliani, S.; Da Settimo, F.;
Breschi, M. C.; Calderone, V. ACS Med. Chem. Lett. 2013, 4, 904.
(33)Zheng, Y.; Yu, B.; Ji, K.; Pan, Z.; Chittavong, V.; Wang, B.

(34)Cerda, M. M.; Hammers, M. D.; Earp, M. S.; Zakharov, L. N.;

(35)Zheng, Y.; Yu, B.; Li, Z.; Yuan, Z.; Organ, C. L.; Trivedi, R. K.; Wang, S.; Lefer, D. J.; Wang, B. Angew. Chem. Int. Ed. 2017, 56,

(36)Steiger, A. K.; Pardue, S.; Kevil, C. G.; Pluth, M. D. J. Am.

(37)Chauhan, P.; Bora, P.; Ravikumar, G.; Jos, S.; Chakrapani,

(38)Zhao, Y.; Pluth, M. D. Angew. Chem. Int. Ed. 2016, 55,

(39)Powell, C. R.; Foster, J. C.; Okyere, B.; Theus, M. H.;

(41)Amsberry, K. L.; Borchardt, R. T. J. Org. Chem. 1990, 55,

(42)Liu, C.; Chen, W.; Shi, W.; Peng, B.; Zhao, Y.; Ma, H.; Xian,

(43)Kimura, Y.; Koike, S.; Shibuya, N.; Lefer, D.; Ogasawara, Y.;

(44)Elleby, B.; Sjöblom, B.; Lindskog, S. Eur. J. Biochem. 1999,

(45)Shamban, L.; Patel, B.; Williams, M. Gastroenterology.Res.

(46)Zhao, R. Y.; Erickson, H. K.; Leece, B. A.; Reid, E. E.; Goldmacher, V. S.; Lambert, J. M.; Chari, R. V. J. J. Med. Chem.

(47)Huttunen, K. M.; Raunio, H.; Rautio, J. Pharmacol. Rev.

(48)Zhang, D.; Macinkovic, I.; Devarie-Baez, N. O.; Pan, J.; Park, C. M.; Carroll, K. S.; Filipovic, M. R.; Xian, M. Angew. Chem. Int.

(49)Carballal, S.; Radi, R.; Kirk, M. C.; Barnes, S.; Freeman, B.

(50)Dóka, É.; Pader, I.; Bíró, A.; Johansson, K.; Cheng, Q.; Ballagó, K.; Prigge, J. R.; Pastor-Flores, D.; Dick, T. P.; Schmidt, E.

(51)Chuang, D.-M.; Hough, C.; Senatorov, V. V. Annu. Rev.

(52)Ralser, M.; Wamelink, M. M.; Kowald, A.; Gerisch, B.; Heeren, G.; Struys, E. A.; Klipp, E.; Jakobs, C.; Breitenbach, M.;

Matson, J. B. J. Am. Chem. Soc. 2016, 138, 13477.
 (40)Becke, M. Angew. Chem. 1963, 75, 739.

(26)Paulsen, C. E.; Carroll, K. S. Chem. Rev. **2013**, *113*, 4633. (27)Kimura, H. Antioxid. Redox Signal. **2015**, *22*, 362.

M. Free Radic. Biol. Med. 2014, 77, 82.

Natl. Acad. Sci. U.S.A. 2015, 112, E4651.

Angew. Chem. Int. Ed. 2016, 55, 4514.

Pluth, M. D. Org. Lett. 2017, 19, 2314.

M. J. Am. Chem. Soc. 2014, 136, 7257.

Kimura, H. Sci. Rep. 2017, 7, 10459.

A.; Alvarez, B. Biochemistry 2003, 42, 9906.

Lehrach, H.; Krobitsch, S. J. Biol. 2007, 6, 10.

Pharmacol. Toxicol. 2005, 45, 269.

E.; Arnér, E. S. J.; Nagy, P. Sci. Adv. 2016, 2, e150096.

Chem. Soc. 2016, 138, 7256.

H. Org. Lett. 2017, 19, 62.

2016, 138, 6336.

2008, 117, 2351.

11749.

14638.

5867.

262, 516.

2014, 7, 64.

2012, 55, 766.

2011, *63*, 750.

Ed. 2014, 53, 575

1	
2	
-	
3	
4	
5	
6	
-	
/	
8	
~	
9	
1	0
	1
1	T
1	2
	-
1	3
1	4
	÷
1	5
1	6
2	1
1	1
1	8
	2
1	9
2	ი
~	ž
2	1
2	2
~	-
2	3
2	4
2	÷
2	5
2	6
~	2
2	/
2	8
~	2
2	9
З	ი
5	2
3	1
З	2
5	~
3	3
З	Δ
-	_
3	5
R	6
2	n
-	- -
3	0 7
3 २	0 7 8
3	0 7 8
3 3 3	0 7 8 9
3 3 3 ⊿	0 7 8 9 0
3 3 3 4	0 7 8 9 0
3 3 4 4	0 7 8 9 0
3 3 4 4 4	0 7 8 9 0 1
3 3 4 4 4	0 7 8 9 0 1 2
3 3 4 4 4 4	0 7 8 9 0 1 2 3
3 3 4 4 4 4 4	0 7 8 9 0 1 2 3 4
3 3 4 4 4 4 4 4	0 7 8 9 0 1 2 3 4
3 3 4 4 4 4 4 4 4	0789012345
3 3 4 4 4 4 4 4 4 4 4	07890123456
3 3 4 4 4 4 4 4 4 4 4	07890123456
3 3 4 4 4 4 4 4 4 4 4 4	078901234567
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	0789012345678
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	0789012345678
3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	07890123456789
33344444444444	078901234567890
3 3 4 4 4 4 4 4 4 4 4 4 4 5	078901234567890
334444444455	0789012345678901
3 3 4 4 4 4 4 4 4 4 5 5 5	07890123456789012
3 3 4 4 4 4 4 4 4 4 4 5 5 5	07890123456789012
3 3 4 4 4 4 4 4 4 4 5 5 5 5	078901234567890123
3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	0789012345678901234
3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5	0789012345678901234
3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	07890123456789012345

58 59 60

57

ACS Paragon Plus Environment

4

