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Abstract

Targeting cytotoxic 4β-phorbol esters toward cancer tissue was attempted by conjugating a 4β-

pborbol derivative with substrates for the proteases prostate-specific antigen (PSA) and prostate-

specific membrane antigen (PSMA) expressed in cancer tissue. The hydrophilic peptide moiety 

was hypothesized to prevent penetration of the prodrugs into cells and prevent interaction with 

PKC. Cleavage of the peptide in cancer tumors was envisioned to release lipophilic cytotoxins, 

which subsequently penetrate into cancer cells. The 4β-phorbol esters were prepared from 4β-

phorbol isolated from Croton tiglium seeds, while the peptides were prepared by solid-phase 

synthesis. Cellular assays revealed activation of PKC by the prodrugs and efficient killing of both 

peptidase positive as well as peptidase negative cells. Consequently no selectivity for enzyme 

expressing cells was found.

Keywords: 4β-Phorbol ester, Protease-assisted targeting, Targeted chemotherapy, Prodrug, 

Prostate-specific antigen. Prostate-specific membrane antigen, 

Memoriam: This article is written in memory of the valuable contributions professor Maurizio Botta 

has offered to medicinal chemistry
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Prostate cancer (PCa) is a major cause of death by cancer in men in high-income countries.1 In 

the initial stage, PCa mainly consists of cells that are androgen-dependent, and the growth can be 

retarded by hormone therapy.2 Unfortunately, in later stages hormone refractory cells dominate 

(castration-resistant prostate cancer, CRPC).2, 3 At this stage the use of common 

chemotherapeutics is complicated by the slow proliferation of the cancer tissue, since 

chemotherapeutics like taxanes, doxorubicine or vincristine target the proliferative stages of 

cancer. Thus, selectivity is obtained by the faster division rate for cancer cells.3-6 Therefore an 

urgent need for drugs against late-stage PCa exists.

Pre-clinical evidence supports the idea that drugs targeting protein kinase C (PKC) may be useful 

in treatment of CRPC.7 The PKC family comprises ten serine/threonine kinases, which can be 

divided into three groups: i) conventional PKC (cPKCs: -α, -βI, -βII and -γ, ii) novel PKCs (nPKCs: -

, -ε, -θ and -η) and iii) atypical PKCs (aPKCs: -ζ, -ι and λ) Expression and function of different 

PKC isoforms are context- and cell type-specific8-11. High expression of PKC𝛿 has been reported in 

prostate cancer, and activation of PKC𝛿 induces apoptosis in LNCaP PCa cells.9, 12-15 PKCε is 

generally overexpressed in PCa and downregulation of PKCε induces apoptosis.16-20 

PKC-activating diterpenoids related to PMA (1, Fig. 1) have been in clinical trials.21-23 Tiglianol 

tiglate (ECB-46) awaits approval by FDA and EMA for treatment of mast cell tumours in dogs24 and 

is entering phase IIA clinical trials for treatment of head and neck squamous cell carcinoma 

(HNSCC) in humans. Ingenol 3-angelate has under the trade name PicatoR been approved by FDA 

in 2012 as a topical gel for the treatment of actinic keratosis (preliminary stage of skin cancer).25, 26 

Since PKC is present in virtually all cells, administration of phorbol esters may affect normal 

physiology in a broad sense. Selectivity of cancer therapies may be obtained by taking advantage 

of proteases present in tumors.27 Prostate specific antigen (PSA), a peptidase expressed by the 

prostate and PCa is a diagnostic marker for prostate cancer and it has been suggested to be 

involved in cancer invasion and metastasis.28-32 The missing activity of PSA in the blood caused by 

complexation with proteins like blood albumin,3, 27 makes the enzyme a potential facilitator for 

selective drug delivery. Since both PSA and prostate specific membrane antigen (PSMA) are 

expressed by PCa even when they become more undifferentiated and anaplastic, they appear to 

be promising tools in the targeting of toxins for tumors even in CRPC 33, 34. In the case of 

thapsigargin (Tg1, Supporting Information Fig. S27) selectivity toward cancer tissue was obtained 

by conjugation of 8-O-12-aminododecanoyl-8-O-debutanoylthapsigargin with peptides that are 

substrates for human glandular kallikrein 2, hK2,35, 36 PSA or PSMA (mipsagargin, Tg6, Fig. S27).37 

Mipsagargin has successfully passed clinical trial 2 (For details see Supporting Information 

paragraph S3).38 Based on the above findings 4β-phorbol esters 4-6 (Fig. 1) were designed and 

expected to display a similar behaviour in the organism as the thapsigargin analogs. By 
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conjugating the toxin with a substrate for the proteases, penetration into cells is ideally only 

possible after enzymatic cleavage by either PSA or PSMA.30, 37 Encouraged by the above-

mentioned findings and hypotheses we have attempted to develop prodrugs of 4β-phorbol esters 

for selective targeting of PSA- and PSMA-expressing cancer cells.
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Fig. 1. Target compounds and starting material: 4β-Phorbol 12-O-myristate 13-O-acetate (1), toxin 2 obtained after 

cleavage of prodrugs 4 and 5 with hK2 or PSA, respectively, while toxin 3 is obtained after cleavage of prodrug 6 with 

PSMA. 4β-Phorbol (7). Compound 8 is the starting material for synthesis of compounds 2 – 3 and compound 9 for 4 – 6.

The starting material 4β-phorbol (7) was obtained from seeds of Croton tiglium L. (Euphorbiaceae) 

(for details see Supporting Information paragraph S2.5.1). By a few synthetic steps 4β-pborbol was 

converted into the cytotoxins 2 and 3 via 8 (Supporitn Information S2.5.2). The peptides needed for 

preparing the prodrugs 4 – 6 were prepared by solid phase syntheses For syntheses and 

characterization of the 4β-phorbol toxins and prodrugs see Supporting Information S2.5.3 – 

S2.5.10.

Binding to PKC as Measured by [3H]PDBu Displacement assay. Compounds 2 and 3 as well as 

prodrugs 4 - 6) were tested  for binding to the C1 domains of PKCα in a 96-well plate filtration 

assay as described earlier39 at a concentration range of 0.01-10 μM. All new compounds (i.e., 2 -6) 

displaced [3H]4β-phorbol 12,13-dibutyrate ([3H]PDBu) as efficiently as PMA (1) (Fig. 2) except for 

prodrug 5, for which an approximately ten times higher concentration was required to achieve a 

displacement comparable to that of the other compounds. Thus, the presence of a peptide moiety 

in the prodrugs did not nullify their affinities to the C1 domain of PKCα. 
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Fig. 2. Displacement binding curves of prodrugs 4 – 6. Toxins 2 and 3 and PMA. Binding of [3H]PDBu (10 nM) to PKCα  

was measured in the presence of increasing concentrations of the tested compounds. The PKCα was obtained from a 

lysate if cells overexpressing the enzyme. The data is presented as mean of residual [3H]PDBu binding (% of control) 

from three parallel samples in a single representative experiment. 

Cell Death as Measured by Cell viability assays. The effect of the compounds on viability of PCa 

cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

assay (Fig.4). The previously established PSMA prodrug mipsagargin (Tg6) and the PSMA 

cleavage product Asp-12-AD-thapsigargin (Tg3) were used as reference compounds 37. The PCa 

cell lines, used in the present study, represent different types of PCa: androgen-unresponsive 

DU145 and PC3 cells, which do not express PSA or PSMA, and androgen-responsive 22Rv1 and 

LNCaP cells, which both are PSA- and PSMA-positive.40, 41 The maximal effect of the PSA 

cleavage product 2 with the highest concentration gave rise to a reduction in viability of 

PSA/PSMA-positive LNCaP and 22Rv1 cells to ~60% and ~10%, respectively, and in PSA/PSMA-

negative DU145 and PC3 cells to ~40% and ~30%, respectively (Fig. 3). PSA prodrug 5 reduced 

the viability to below 50% only in LNCaP cells (~40%) at 20 µM and 40 µM concentrations, 

whereas PSA prodrug 4 reduced the viability to below 50% at the highest concentration not only in 

PSA-positive 22Rv1 (to ~25%) but also in PSA-negative PC3 cells (~15%) at the highest 

concentration. To our surprise, the PSMA cleavage product 3 had almost no effect on cell viability 

in any of the PCa cell lines. The PSMA prodrug 6, however, decreased the viability to ~10% at the 
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highest concentration only in the PSMA-negative PC3 cells (Fig. 3). The reference compound Tg3 

decreased the viability concentration-dependently in all PC cell lines, and its maximal effect 

(achieved with the highest concentration) was a reduction in viability to ~4% for LNCaP, 27% for 

22Rv1, 20% for DU145, and ~15% for PC3 cells. Surprisingly, the other reference compound (i.e., 

Tg6) demonstrated a similar reduction in the viability in PSMA-negative PC3 cells (to ~32%) as 

seen for the PSMA-positive LNCaP and 22Rv1 cells (to ~35% and ~40%, respectively; Fig. 3). 

PMA is known to promote PKC-induced apoptosis in the LNCaP cell line 42. In accordance with 

this, the pan-PKC inhibitor Gö6983 was able to dampen the effect of 20 µM of compound 5 in 

LNCaP cells (Fig. 3), indicating that the cytotoxic effect indeed is PKC-mediated. The compounds 

did not induce distinct damage to the cell membranes during the 72-h incubation with any of the 

concentrations as determined by the LDH test (Fig. S2). 

Fig. 3. Effects of phorbol prodrugs 4 - 6, and cleavage products 2 and 3 as well as Tg3 and Tg6 on viability of PCa cell 

lines. (A) PC3; (B) LNCaP; (C) DU145; (D) 22Rv1 and the effect of PKC inhibitor Gö6983 (1 µM) on the effect of 20 µM 

of 2 - 6, Tg3, Tg6 and 100 nM PMA on viability of LNCaP, 22Rv1, DU145 and PC3 cells (E). Cell viability was measured 
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after 72 h incubation with the compounds by utilizing the MTT assay. The data is presented as mean of cell viability (% of 

control) (n=3).

Effects on ERK1/2 phosphorylation and protein expression of PKC and PSMA 

Extracellular signal-regulated kinases 1 and 2 (ERK1/2) are members of the mitogen-activated 

protein kinase (MAPK) signalling cascade that controls several cellular processes 43. PKC-

mediated ERK1/2 phosphorylation is one of the initial rapid events in PMA-treated LNCaP cells 42 

Since the novel 4β-phorbol-derived compounds compete with PDBu in vitro, their ability to 

modulate ERK activity was investigated in living cells.44 PSA/PSMA-positive 22Rv1 and 

PSA/PSMA-negative DU145 PCa cell lines were exposed to 20 µM of compounds 2 - 6, Tg3 and 

Tg6 and to 10 nM of PMA for 30 min. Phorbol-derived compounds 2 - 5 induced substantial 

ERK1/2 phosphorylation in 22Rv1 cells (Fig. 4). The ERK1/2 phosphorylation was even more 

distinct than after PMA exposure, except in cells treated with compound 6. The phorbol derivatives 

also induced ERK1/2 phosphorylation in DU145 cells, but the magnitude of the effect was 

distinctively smaller than in 22Rv1 cells (Fig. 4).

Downregulation of PKC has been suggested to explain the tumor promotion caused by phorbol 

esters.10, 45 In addition PMA is able to induce androgen receptor downregulation in PCa cells, which 

is associated with PSMA downregulation. 46, 47 To understand the effects of our compounds on the 

expression of PKC and PSMA we decided to investigate the effects of the phorbol derivatives on 

the expression levels of PKCα and PKC𝜹 and PSMA in 22Rv1 cells. A 24 h exposure to 20 µM 3 

and 6 increased the expression of PKCα while the incubation with 2 and 4 had no effect. However, 

PKCα, PKC𝜹 and PSMA expression was reduced upon 24 h exposure to all compounds, including 

3 and 6 (Fig. S4 and Table S3).  Indeed, our results support the hypothesis that phorbol ester 

induced down regulation of PKC is associated with down regulation of PSMA. Probably the PKC 

activating effects of our toxins caused a down regulation of PKC and PSMA. 
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Fig. 4. Effects of phorbol derivatives 2 - 6 on ERK1/2 phosphorylation in PC cells. Quantifications from DU145 and 

22Rv1 cells. Data is presented as mean + SEM (N = 3; *P < 0.05 vs ctrl, Welch's t-test). The cells were treated with 20 

µM of different phorbol derivatives and PMA for 30 min. The cells were harvested, and then ERK1/2 phosphorylation was 

analysed by using Western blotting with detection as described in the Experimental Section.

Conclusion
In the present study, we synthesised, characterised and evaluated ability of the PSA/PSMA-

activable 4β-phorbol ester prodrugs 4 - 6 and the corresponding cytotoxins 2 and 3 to displace 3H 

PDBu from PKC and to decrease the viability of PSMA/PSA-positive as well as PSMA/PSA-

negative PCa cell lines. In addition, we performed studies on their abilities to increase ERK1/2 

phosphorylation. The synthesised PSA/PSMA-activable 4β-phorbol ester prodrugs were designed 

to contain peptide sequences that are specifically cleaved by either hK2 (i.e., 4), PSA (i.e., 5), or 

PSMA (i.e., 6). All phorbol-derived compounds showed low nanomolar binding affinity to the C1 

domain of recombinant human PKCα, as shown by their displacement of PBDu (Fig. 3). 

Compound 3 induced cytotoxicity only to a limited extent, which may be explained by the lack of 

ability to penetrate the cell membrane due to its zwitterionic nature at physiological pH. 

Analogously, compound 3 and prodrug 6 provoked phosphorylation of ERK1/2 only to a limited 

extent (Fig. 3 and 4). Disappointingly prodrugs 4 - 6 showed no selectivity for PSA/PSMA-positive 

cell lines (i.e., LNCaP/22Rv1) over PSA/PSMA-negative cell lines (i.e., DU145 and PC3). This 

observation strongly infers that despite conjugation to a hydrophilic peptide the prodrugs 

(compounds 4 - 6) retain an ability to penetrate cell membranes. The poor activity of 3 and 6 in the 

viability assay and in the phosphorylation assay indicates that these highly charged molecules can 

be taken up by the cells only to a limited extent. The results of the present study do not support the 

hypothesis that the designed PSA/PSMA-targeted prodrugs are capable of providing selective 

toxicity to PSA/PSMA-expressing PCa cells. Importantly the present results obtained for the known 
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prodrug mipsagargin (Tg6, Supplementary Information Fig. S26) does not support previous 

observations of selectivity for peptidase expressing cell lines30 since Tg6 exhibited clear toxicity 

both on the PSMA-negative cell line PC3 and on the PSMA-expressing cell lines LNCaP and 

22Rv1.37 A similar poor selectivity has recently been reported by Akinboy et al.3 fo PSA-targeted O-

8-(morpholine-4-carbonyl-His-Ser-Ser-Lys-Leu-Phe-Gln-Leu-N-12-aminododecanoyl)-O-8-

debutanoyl-thapsigargin (Tg5). The missing selectivity of the 4β-phorbol alanlogs are even more 

surprising than the missing selectivity of the thapsigargin analogs since the first mentioned are 

calculated to have lower logP values. In conclusion, the proposed targeted therapy involving 

conjugation to peptides that are selectively cleaved by proteases present in cancer tissue appears 

to lack the desired selectivity with 4β-phorbol and thapsigargin analogs.
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