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Photocatalytic benzylic C–H bond oxidation with
a flavin scandium complex†

Bernd Mühldorf and Robert Wolf*

The enhanced reduction potential of riboflavin tetraacetate co-

ordinating to scandium triflate enables the challenging photocata-

lytic C–H oxidation of electron-deficient alkylbenzenes and benzyl

alcohols.

The important role of flavins as photoreceptors and redox
cofactors in nature has inspired the use of synthetic flavin
analogues as bioinspired photocatalysts.1 The most prominent
example, riboflavin tetraacetate (RFT), catalyses the aerobic
photooxidation of benzyl alcohols,2 benzyl amines,3 and sulf-
oxides (Scheme 1).4,5 A particularly intriguing application of RFT
is the photocatalytic C–H bond oxidation of alkyl benzenes to the
corresponding aldehydes.6,7 Spectroscopic studies revealed an
initial electron transfer from the aromatic substrate to the
singlet excited state 1RFT* as the basis of this process.8 However,
the limited reduction potential E0(1RFT*/2RFT�) = 1.67 V vs. SCE
exclusively allows the oxidation of very few selected substrates

which feature strongly electron-donating arene substituents.
Most other substrates are unsuccessful, because their oxidation
potential is too positive.

Fukuzumi et al. found that the redox potential of RFT can be
modified by metal ion coordination.9 As shown in Fig. 1,
complexes of RFT with Mg2+, Zn2+, Yb3+ and Sc3+ ions have a
significantly more positive reduction potential E0(1RFT*/2RFT�)
in the excited singlet state. In particular, the Sc3+ system‡
appears promising as it features high fluorescence quenching
rate constants of (1RFT–2Sc3+)* in the presence of alkyl- and
methoxy-substituted benzenes.8 This indicates an efficient
single electron transfer from the substrate to (1RFT–2Sc3+)*,
which is a prerequisite for photocatalytic activity.

Motivated by these insights, we sought to explore the catalytic
properties of RFT/metal salt combinations for challenging benzylic
C–H bond oxidations. The reaction of ethylbenzene (1) to aceto-
phenone (2) was chosen as a benchmark (Scheme 2), because 1
shows a high oxidation peak potential (E0

p(1+�/1) = 2.14 vs. SCE) and

Scheme 1 Photocatalytic cycle for the aerobic oxidation of various
organic substrates with riboflavin tetraacetate (RFT) and blue light.5

Fig. 1 Enhanced reduction potentials E0(1RFT*/2RFT�) of RFT–metal ion
complexes (RFT�xMn+).8,9

University of Regensburg, Institute of Inorganic Chemistry, D-93040 Regensburg,

Germany. E-mail: robert.wolf@ur.de

† Electronic supplementary information (ESI) available: Full experimental
details, additional catalytic results, and GC-FID and UV-vis monitoring studies.
See DOI: 10.1039/c5cc00178a

Received 8th January 2015,
Accepted 26th January 2015

DOI: 10.1039/c5cc00178a

www.rsc.org/chemcomm

ChemComm

COMMUNICATION

Pu
bl

is
he

d 
on

 0
3 

Fe
br

ua
ry

 2
01

5.
 D

ow
nl

oa
de

d 
by

 C
ol

um
bi

a 
U

ni
ve

rs
ity

 o
n 

03
/0

2/
20

15
 1

5:
35

:3
5.

 

View Article Online
View Journal

http://crossmark.crossref.org/dialog/?doi=10.1039/c5cc00178a&domain=pdf&date_stamp=2015-02-02
http://dx.doi.org/10.1039/c5cc00178a
http://pubs.rsc.org/en/journals/journal/CC


Chem. Commun. This journal is©The Royal Society of Chemistry 2015

therefore cannot be oxidised by 1RFT* alone.8 A screening of
various Lewis acids (Table S1, ESI†) and solvents (Table S2†)
indicated Sc(OTf)3 in acetonitrile to be the best choice. Irradiation
of 1 (0.02 mmol) in CH3CN for 2.5 h with blue light (440 nm) in the
presence of RFT (10 mol%) and Sc(OTf)3 (20 mol%) afforded
acetophenone 2 in 58% yield. Substrate 1 was completely con-
sumed, and the formation of H2O2 was confirmed by UV-vis
spectroscopy (Fig. S1†). Note that 2 is formed in o10% yield in
the absence of Sc3+-ions, while Mg(OTf)2 and Zn(OTf)2 gave only
very low yields of 2. The reaction is significantly accelerated by
higher Sc3+ concentrations (Fig. S2†). In order to reduce the
amount of Sc(OTf)3 required, the effect of acids and other additives
was investigated (Table S3†). Importantly, 1 is converted nearly
four times as fast in the presence of HCl (30 mol%) with the same
Sc(OTf)3 concentration (Fig. S3†).

Using this optimized system, we subsequently assessed the
substrate scope (Table 1). Toluene is converted to benzaldehyde

in 71% yield, while p-tert-butylbenzaldehyde and p-chlorobenz-
aldehyde are obtained in 68% and 84% yield, respectively (entry 1).
Benzylethers do not give the corresponding esters, but benz-
aldehydes (entry 3). Diarylmethylene derivatives (entry 4) and
benzyl alcohols (entries 5 and 6) are oxidised with good to excellent
yields as well. Triphenylmethane and diphenylacetic acid both
yield benzophenone via oxidative C–C cleavage.10 Note that the
oxidations of p-trifluorobenzyl alcohol and p-nitrobenzyl alcohol
proceed selectively, but the reaction speed is slow, resulting in an
incomplete conversion.

Control experiments confirmed that the reaction does not
proceed in the dark, in the absence of RFT or under anaerobic
conditions (Table S4,† entries 1–5). When the reaction was
carried out in an atmosphere of pure dioxygen, slower bleach-
ing of RFT was observed (Fig. S4†), but the yield of 2 did not
improve (Table S4, entry 6). Moreover, a very similar yield (44%)
was obtained in deuterated acetonitrile, therefore, a singlet
oxygen pathway seems unlikely (Table S4,† entries 7 and 8).11,12

The reaction mechanism was probed by UV-vis spectroscopy.
Before starting to irradiate a mixture of 1, RFT, Sc(OTf)3 and
HCl in acetonitrile with blue light (440 nm), an absorption
band can be identified at lmax = 390 nm both under aerobic
conditions (Fig. S5†) and under argon (Fig. 2). This band may
be assigned to RFTH+–2Sc3+ by comparison with the character-
istic spectrum of uncoordinated RFTH+.13 The IR spectrum of
the mixture shows that the CQO stretching bands are shifted to
lower frequency compared to those of RFTH+ in the absence of
metal ions (Table S5†). This indicates that the scandium(III)
ions coordinate to the carbonyl groups in RFTH+–2Sc3+.‡8

A possible catalytic cycle is displayed in Scheme 3. In line with
previous fluorescence quenching experiments by Fukuzumi
et al., we propose that the electron transfer occurs between the

Scheme 2 Photocatalytic oxidation of ethylbenzene.

Table 1 Photocatalytic oxidation: scope and limitationsa

Entry Substrate Product

No Sc3+

yieldb

[%] R
Conv.b

[%]
Yieldb

[%]

1

0 H 96 71
5 tBu 100 68
8 Med 100 62
0 Cld 100 84
0 CN 56 29
0 CO2Me 44 15

2
3 Me 100 60
0 CO2Me 92 49

3c 0 H 93 90
5 OMe 100 63

4
4 H 100 93
6 Ph 89 52

23 COOH n.d. 80

5
17 H 100 95

0 Me 100 81

6c

7 F 100 88
12 Cl 100 73
14 Br 100 84

0 CF3 63 53
0 NO2

d 66 44

a All reactions were performed with substrate (0.02 mmol), RFT
(10 mol%), HCl (37%, 0.8 mL) and Sc(OTf)3 (4.6 mM) in 1 mL MeCN
and irradiated with blue light (440 nm, 3 W) for 2.5 h when not
indicated otherwise (see footnote d). b Conversion and yield deter-
mined by GC-FID integration. c No HCl added; n.d. = not determined.
d Irradiation time: 0.5 h (R = Me), 1 h (R = Cl) and 7 h (R = NO2).

Fig. 2 UV-vis absorption spectra of ethylbenzene (5.8 mM) and RFT
(0.14 mM) in the presence of Sc(OTf)3 (0.68 mM) and HCl (2.7 mM) during
irradiation with blue light in deaerated MeCN at 298 K under nitrogen
(straight: 0 s, 60 s, 120 s, 180 s, 360 s; dashed: 2 h). Inset: ESR-spectrum of
2RFTH2

�+–2Sc3+ generated in the photocatalytic reaction RFT (3.0 mM)
with ethylbenzene (20 mM), Sc(OTf)3 (10 mM) and 10 mM HClO4 in
deaerated MeCN at 298 K. Parameters obtained by computer simulation:
g = 2.0033, a(N5) = 6.7 G, a(N10) = 4.6 G, a(H5) = 10.6 G, a(3H8) = 2.9 G,
a(N10–CH2) = 4.3 G; see the ESI† for the labelling scheme.
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substrate and the photoexcited flavin metal complex (1RFTH+–2Sc3+)*
in its singlet state (step i).8 This electron transfer produces the
ethylbenzene radical cation 4 and the protonated flavin radical
complex 2RFTH�–2Sc3+. It seems likely that the 2RFTH�–2Sc3+

complex is then protonated to yield 2RFTH2
�+–2Sc3+, while the

strongly acidic ethylbenzene radical cation 4 is deprotonated to
the benzyl radical 5 (step ii).§14 2RFTH2

�+–2Sc3+ should give rise
to broad absorptions at lmax = 400–550 nm similar to those of
the uncoordinated dihydroflavin radical cation 2RFTH2

�+.15 Such
a broad band is indeed observed in the UV-vis spectrum of
the reaction mixture under argon (Fig. 2). In addition, the ESR
spectrum of the reaction mixture of 1, RFT, Sc(OTf)3 and HClO4

obtained while irradiating at 440 nm exhibits a signal at g = 2.0033
(Fig. 2, inset), which is in line with the expected spectrum for
RFTH2

�+–2Sc3+.8 The presence of the scandium(III) ions appears
to have only a slight effect on the shape of the ESR spectrum. The
hyperfine coupling constants obtained by computer simulation
are similar to the values reported for free RFTH2

�+.15 The hyper-
fine coupling constants obtained by computer simulation are
similar to those reported for free 2RFTH2

�+.16 The ESR spectrum
of a mixture of 1, RFT, Sc(OTf)3 and HCl (instead of HClO4,
Fig. S6†) is more complicated and thus defied a satisfactory
simulation so far. This is presumably due to the formation of
an equilibrium between RFTH2

�+–2Sc3+ and RFTH�–2Sc3+ with
the weaker acid HCl.

There are at least two conceivable pathways that connect the
benzyl radical 5 with the final product 2 (Scheme 3). One
possibility is that 2RFTH2

�+–2Sc3+ recombines with 5 to form
a covalent RFT-benzyl radical adduct (not shown in Scheme 3),
which rapidly collapses under irradiation in air to product 2
and RFTH+–2Sc3+ (3).19 However, this pathway seems less likely
based on the UV-vis spectra of the reaction mixture, where
characteristic broad absorptions are expected for such an
adduct at lmax = 600–630 nm. An alternative pathway is the
conversion of 5 into the benzylperoxyl radical 6, which subse-
quently transforms into 2 via the benzyl hydroperoxide.18 As
observed for 2RFTH2

�+, 2RFTH2
�+–2Sc3+ may disproportionate

into oxidized RFTH+–2Sc3+ and the reduced dihydroflavin
RFTH3

+–2Sc3+ (step iii).15 The formation of the latter species

is supported by the observation of an absorption band at 295 nm
that increases over time (see Fig. 2).15 RFTH3

+–2Sc3+ can react
with dioxygen, regenerating 3 while producing H2O2 (Fig. S8†).16

In addition, RFTH+–2Sc3+ (3) may also be regenerated by the
direct reaction of 2RFTH2

�+–2Sc3+ with O2 (step iv, Fig. S7†).
This process may conceivably be facilitated by Lewis acid
coordination.20

We presume that the mechanism of the catalytic oxidation
of benzyl alcohols (Table S1 (ESI†), entries 5 and 6) is analogous
to the one previously suggested by Fukuzumi et al. for the
oxidation p-chlorobenzyl alcohol.8 The proposed catalytic
cycle involves an initial electron transfer from the substrate
to (1RFT–2Sc3+)*, followed by proton transfer forming the
hydroxybenzyl radical (p-R-C6H4CHOH�) and the protonated
RFT radical anion (2RFTH�–2Sc3+)*. Subsequent H atom transfer
between these species yields the aldehyde and RFTH2–2Sc3+.

In summary, RFT/scandium triflate is an efficient photoca-
talytic system for the aerobic oxidation of alkylbenzenes and
electron deficient benzyl alcohols. The results show that the
well-known effect of Lewis acid coordination on the redox
potential of flavins8,9 can be exploited to improve their photo-
catalytic properties. An extension of this principle, and an
exploration of the effects of other metal ions including redox-
active ones, is hand.

We thank Dr Michael Spörner and Helmut Schüller for
assistance with ESR measurements and Prof. Burkhard König
for stimulating discussions. Support by the DFG Graduate
Program ‘‘Chemical Photocatalysis’’ (GRK 1626) is gratefully
acknowledged.
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m+ (X = OTf or Cl). We choose to designate the species
involved in the catalytic mechanism as RFTHn
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§ The pKa of the closely-related RFTH2

+� radical is approximately 2, while
the pKa of a toluene radical cation in MeCN is estimated to�12 to�13.17
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