Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions[†]

Wolfram W. Rudolph*

Received 4th May 2010, Accepted 14th July 2010 DOI: 10.1039/c0dt00417k

Phosphoric acid in water and heavy water has been studied by Raman and infrared spectroscopy over a broad concentration range (0.00873-1.560 mol kg⁻¹) at 23 °C. The vibrational modes of the PO₄ skeleton (C_{3v} symmetry) of H₃PO₄(aq) and D₃PO₄(D₂O) have been assigned. In addition to the P–O stretching modes a deformation mode has been detected, $\delta PO-H(D)$ at 1250 and 935 cm⁻¹, respectively. In addition to the modes of the phosphoric acid and heavy phosphoric acid a mode of the dissociation product $H_2PO_4^-$ and $D_2PO_4^-$ has been detected at 1077 cm⁻¹ and 1084 cm⁻¹ respectively. H_3PO_4 and D_3PO_4 is hydrated in aqueous solution which could be verified by Raman spectroscopy following the vP=0 and $v_sP(OH)_3$ mode as a function of temperature. These modes show a pronounced temperature dependence inasmuch as vP = O shifts to higher wavenumbers with temperature increase and $v_s P(OH)_3$ to lower wavenumbers. In the range between 300-600 cm⁻¹ the deformation modes have been observed. In very dilute H_3PO_4 solutions however, the dissociation product is the dominant species. The dissociation degree, α for H₃PO₄(aq) and D₃PO₄(D₂O) as a function of dilution has been measured at 23 °C. In these dilute $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ solutions no spectroscopic features for a dimeric species of the formula $H_6P_2O_8$ and $D_6P_2O_8$ could be detected. Quantitative Raman measurements have been carried out to follow the dissociation of H_3PO_4 and D_3PO_4 over a very broad concentration range and also as a function of temperature. From the dissociation data, the pK_1 value for H_3PO_4 has been determined to 2.14(1) and for D_3PO_4 to 2.42(1) at 23 °C. In the temperature interval from 24.5 to 99.7 °C the pK₁ values for H₃PO₄(aq) have been determined and thermodynamic data have been derived.

1. Introduction

Unquestionably, the industrial¹ and biological importance^{2,3} of phosphate systems brought about extensive investigations of physicochemical properties of aqueous solutions of phosphoric acid and phosphates. Among many techniques, Raman and infrared spectroscopy has been used quite extensively.⁴⁻¹³ The spectroscopic material published however, showed disagreement concerning the peak positions of the fundamental modes, depolarization degrees, and other band parameters. In some cases, the number of modes contradicted the predicted ones deduced from group theory for H₃PO₄. Although the phosphoric acid should have a simple spectrum, there is much confusion in the literature over the assignment of the modes. In a standard work¹⁴ and earlier publications⁴⁻⁷ the modes of the H₃PO₄(aq) were confused with the modes of its dissociation product H₂PO₄⁻(aq).

Simultaneous to these vibrational studies, a number of investigations on phosphoric acid solutions were done using methods such as potentiometry, conductivity, ultrasonic absorption and vapour pressure measurements. The main purpose concerned the determination of the dissociation of the phosphoric acid and therefore raised questions concerning the nature of the species present.^{15–33} The first dissociation equilibrium of the phosphoric acid:

$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$$
(1)

is well known from thermodynamic studies and from conductivity work at room temperature^{16,19,22} and have also been extended to higher temperatures and pressures.^{26,31} From a number of these studies, the structure of the species has been proposed and dimeric species such as $H_6P_2O_6$ and $H_5P_2O_6^-$ have been deduced^{20,21,28} while others denied the need to invoke such species.^{16,22,26,30}

The structure of phosphoric acid in aqueous solution has been obtained by an earlier X – ray diffraction study³⁴ on two concentrated aqueous H₃PO₄ solutions. A peak in the range ~3.75 Å in the correlation functions revealed the presence of H₃PO₄-H₂O interactions and each H₃PO₄ molecule interacts with about four water molecules. The existence of a hydration shell around H₃PO₄ in aqueous solution had been inferred from earlier diffusion measurements.¹⁵ A recent neutron diffraction and isotopic substitution study (NDIS)35 was applied on hydrogen phosphate solutions and showed the existence of strong hydrogen bonds formed between phosphate anions and water molecules and a hydration number of 11-15 was found. Density functional theory/molecular dynamics simulation³⁶ of aqueous solutions of orthophosphate species $H_n PO_4^{3-n}$ (n = 0-3) provided insights into hydrogen transfer and hydration properties of these aqueous species. A first hydration shell of PO₄³⁻, HPO₄²⁻, and H₂PO₄⁻ displayed a flexible first coordination shell between 13 and 7 water molecules decreasing from PO43- to H2PO4-. The H-bond

Institut für Virologie im MTZ, TU Dresden, Fetscherstr. 74, D-01307, Dresden, Germany. E-mail: wolfram.rudolph@tu-dresden.de

[†] Electronic supplementary information (ESI) available: Geometry of the H_3PO_4 molecules (C₃ symmetry) and the numbering of the atoms which is used for the definition of the parameters in Table 2. See DOI: 10.1039/c0dt00417k

interactions between the oxygen atoms of the phosphates and the surrounding water molecules explained the diminished effect on the structure of water with increasing hydrogenation of the orthophosphates. A computer simulation on aqueous K_3PO_4 , K_2HPO_4 , and KH_2PO_4 solutions³⁷ confirmed the strong hydration effect of these ions and a partially ordered second hydration shell.

Raman and infrared spectroscopic techniques are well suited for studying the structural aspect of the species present as well as allowing quantification of the first dissociation step. In recent publications from our laboratory⁹⁻¹² the structure, vibrational spectra and dissociation of aqueous phosphoric acid solutions at room temperature have been partially reported. From these studies it became clear that the phosphoric acid is guite strongly hydrated. Due to the strong hydration the characteristic modes of the P=O group and the P(OH)₃ group are influenced resulting in a shift of the characteristic modes compared to the ones in H_3PO_4 systems in non-polar solvents. It could be shown that the overlap with the modes of $H_2PO_4^{-}(aq)$, the dissociation product of phosphoric acid caused many erroneous interpretations of both the vibrational spectrum and the definition of the symmetry of the PO₄ unit (cf. e.g. ref.[11]). The present investigation builds not only on earlier results but also provides vibrational data on dilute aqueous solutions of phosphoric acid. In addition deuterated phosphoric acid was studied. In order to study the hydration on H_3PO_4 in aqueous solution concentrations were measured to very dilute solutions and also as function of temperature. Quantitative measurements have also been carried out to determine the first dissociation constant as a function of dilution, of added neutral salt and change in temperature.

2. Experimental section

Commercial phosphoric acid contains traces of fluorescing substances and therefore the phosphoric acid has been prepared with sublimated P_4O_{10} in order to achieve high quality Raman spectra. The P_4O_{10} has been sublimated in a home built sublimation apparatus and then the P_4O_{10} converted with ultrapure water (PureLab Plus, Ultra-pure Water Purification Systems) in a moisturizing apparatus according to reaction (2):

$$1/2P_4O_{10} + 3H_2O \rightleftharpoons 2H_3PO_4 \tag{2}$$

The stock solution was filtered through a G5 sintered-glass frit (Schott & Genossen, Jena) under CO₂ free atmosphere. A stock solution was prepared with a concentration of 1.450 mol L⁻¹ ($\rho = 1.0713$ g cm⁻³ at 23 °C) equal to 1.5604 mol kg⁻¹. The lower concentrated H₃PO₄ solutions were prepared with ultrapure water free of CO₂ by weight. A D₃PO₄ stock solution, 1.430 mol L⁻¹ (1.1712 g cm⁻³ at 23 °C) equal to 1.390 mol kg⁻¹ has been prepared according to the above described procedure but using D₂O (Merck Chemicals, 99.9% D) instead of water. The lower concentrated D₃PO₄ solutions were prepared with D₂O by weight. For further details on the preparation of H₃PO₄ and D₃PO₄ *cf.* ref. [11,12].

The phosphate content of the stock solution was determined by gravimetry.³⁸ The solution densities were determined with a pycnometer of 5.000 mL volume at (23 ± 0.1) °C.

 NaH_2PO_4 and KH_2PO_4 solutions have been prepared with ultrapure water free of CO_2 by weight. The solution densities were determined with a pycnometer of 5.000 mL volume at (23 \pm 0.1) °C.^{11,12}

Raman and IR spectroscopic measurements^{39,40}

Raman spectra were measured with equipment at the TU Dresden³⁹ at (23 ± 0.1) °C. The spectra were excited with the 487.98 nm of an Ar⁺ laser at power levels ~1200 mW. After passing the Zeiss double monochromator GDM 1000, with gratings of 1300 grooves/mm, the scattered light was detected with a cooled photo multiplier tube ITT 130 in the photon counting mode. A scrambler in front of the slit served to compensate for grating preference. I_{VV} and I_{VH} spectra were obtained with fixed polarisation of the laser beam by changing the polarisation filter (Bernotar foil) in the parallel and perpendicular arrangement between the sample and the entrance slit to give the scattering geometries:

$$I_{\rm VV} = I(Y[ZZ]X) = 45\alpha'^2 + 4\gamma'^2$$
 (3)

$$I_{\rm VH} = I(Y[ZY]X) = 3\gamma^{2}$$
⁽⁴⁾

The isotropic spectrum, I_{iso} or I_{α} was then constructed:

$$I_{\rm iso} = I_{\rm VV} - 4/3 \cdot I_{\rm VH} \tag{5}$$

The depolarization ratio, ρ , of the modes has been determined according to eqn (6):

$$\rho = I_{\rm VH} / I_{\rm VV} = 3\gamma^2 / (45\alpha^2 + 4\gamma^2) \tag{6}$$

The polarization analyser has been calibrated with CCl₄ before each measuring cycle and adjusted if necessary. The depolarisation ratio of the v_1 mode of CCl₄ at 459 cm⁻¹ has been measured 15 times and a depolarization ratio equal to 0.0036 ± 0.0005 determined. The depolarization ratio of the CCl₄ modes at 217 and 315 cm⁻¹ (these modes are depolarised according to the theory) have been determined to 0.75 ± 0.02.

A second set of Raman spectra were measured in the macro chamber of the T 64000 Raman spectrometer from Jobin Yvon in a 90° scattering geometry at (23 ± 0.1) °C. The spectra were excited with the 487.98 nm line of an Ar⁺ laser at a power level of ~ 1100 mW at the sample. After passing the spectrometer in subtractive mode, with gratings of 1800 grooves/mm, the scattered light was detected with a cooled CCD detector. A more detailed description of the Raman measurements is given in ref.40

Quantitative Raman measurements

Quantitative Raman measurements have been carried out to determine the first dissociation constant of phosphoric acid according to an external quantification method previously described¹¹ Raman spectra were measured with equipment at the TU Dresden³⁹ at (23 ± 0.1) °C and ~ 1.5 mL solutions have been measured in 3.5 mL quartz cuvette with a tightly fitted Teflon stopper from Hellma, Müllheim/Baden, Germany (path length 10 mm). The spectra were excited with the 487.98 nm of an Ar⁺ laser at power levels ~ 1200 mW at the sample and only the I_{VV} scattering has been recorded. The stability of the apparatus has been checked, including the laser power, by measuring the v_1 mode of SO₄²⁻ of a 0.740 mol L⁻¹ K₂SO₄ solution during the measuring cycle of ~1.5 h. The variation of the integrated band intensity of the external

reference mode $v_1 SO_4^{2-}$ at 981 cm⁻¹ was better than $\pm 1\%$ during a measuring cycle. The analytical band of $H_2PO_4^{-}(aq)$ the mode at 1077 cm⁻¹, $v_s PO_2$ has been chosen because it is the strongest Raman mode of $H_2PO_4^{-}(aq)$, and furthermore this mode does not overlap with modes of $H_3PO_4(aq)$ and were integrated after subtracting a synthetic baseline in the wavenumber limits from 1025–1128 cm⁻¹. Great care was taken to measure high quality spectra. The signal to noise ratio (S/N ratio) of the spectra of a 0.183 mol kg⁻¹ H₃PO₄ solution has been determined to ~940. The S/N ratio for the lower concentrated solutions dropped and for a solution 0.0124 mol kg⁻¹ a value of ~180 has been reached. Twelve NaH₂PO₄ solutions (0.00696–0.870 mol kg⁻¹) have been measured in the wavenumber range from 780-1280 cm⁻¹ and 12 solutions of $H_3PO_4(aq)$ (0.00873–0.2515 mol kg⁻¹). The measuring cycle was as follows: first, measurement of the H₃PO₄ solution, second, the SO₄²⁻(aq) and then the NaH₂PO₄ solution and so forth. Two independent measuring series have been carried out for the NaH_2PO_4 – and H_3PO_4 – solutions. The integrated band intensity, A_{1077} as a function of concentration has been determined and from this calibration curve the equilibrium concentration of $H_2PO_4^-$, $[H_2PO_4^-]$ determined in the phosphoric acid solutions $(A_{1077} = 63.0297 \cdot m_{H2PO4} -; R^2 = 0.9996)$. An identical procedure has been employed for NaD₂PO₄- and D₃PO₄ solutions (0.00644-0.5293 mol kg⁻¹). The integrated band intensity, A_{1084} as a function of NaD_2PO_4 concentration (0.00505–0.0505 mol kg⁻¹; 11 solutions) was plotted and from this linear calibration curve of $D_2PO_4^{-}$, $[D_2PO_4^{-}]$ has been determined ($A_{1084} = 77.6237 \cdot m_{D2PO4} -;$ $R^2 = 0.9990$). (The equilibrium species concentration *i* is denoted as [i].)

The Raman temperature measurements have been carried out in a home built Raman oven similar to the one described in ref. [41]. The H₃PO₄ solutions have been sealed in quartz tubes and only the I_{yy} -scattering has been measured. The quantification has been carried out according to a previously described external reference method.^{11,12} Briefly, for a 0.2515 mol kg⁻¹ (0.248 mol L⁻¹) H₃PO₄ solution, the equilibrium concentration of H_3PO_4 and H_2PO_4 were obtained from the ratios of the integrated band areas of the 1178 cm⁻¹ mode of H_3PO_4 ($\nu P=0$) and the 1077 cm⁻¹ mode of $H_2PO_4^-$ (v_sPO_2). The J - value of the band at 1077 cm⁻¹ of the species $H_2PO_4^-$ has been determined for three NaH_2PO_4 solutions with known amounts of perchlorate as internal standard $(NaClO_4)$. Similarly, the J - value of the band at 1178 cm⁻¹ of H₃PO₄ has been determined in three H₃PO₄ solutions with additional HCl (suppression of dissociation) and ClO₄⁻ as internal standard. NaClO₄ has been used as internal standard substance in both cases. The relative molar scattering factors for these modes, J_{1178} and J_{1077} are equal to 0.340 and 1.000 respectively. The sum of the equilibrium concentrations $[H_3PO_4]$ and $[H_2PO_4]$ is equal to m_T , the stoichiometric concentration of H_3PO_4 (in mol kg⁻¹):

$$m_{\rm T} = [{\rm H}_3 {\rm PO}_4] + [{\rm H}_2 {\rm PO}_4^{-}]$$
 (7)

Furthermore, the integrated band intensities for the H₃PO₄ mode at 1178 cm⁻¹ and the H₂PO₄⁻ mode at 1077 cm⁻¹ can be expressed as follows: $A_{1178} = J_{1178} [H_3PO_4]$ and $A_{1077} = J_{1077} [H_2PO_4^{-}]$. The ratio of the integrated intensities, A_{1077}/A_{1178} was calculated:

$$\frac{A_{1077}}{A_{1078}} = \frac{[H_2 PO_4] \cdot J_{1077}}{[H_2 PO_4] \cdot J_{1078}}$$
(8)

After rearranging eqn (8) for $[H_2PO_4^-]$ it follows:

$$\left[\mathrm{H}_{2}\mathrm{PO}_{4}^{\cdot}\right] = \frac{\mathrm{A}_{1077} \cdot \mathrm{J}_{1178}}{\mathrm{A}_{1178} \cdot \mathrm{J}_{1077}} \tag{9}$$

In the I_{VV} scattering the H₃PO₄ band at 1178 has a slight intensity contribution from the band at 1160 cm⁻¹ of the dissociation product H₂PO₄⁻, namely $v_{as}PO_2$ (*cf.* ref. [11]). The band $v_{as}PO_2$ is of much lower intensity than v_sPO_2 and the intensity ratio $J_{1077}/J_{1160} = 34/1$ and the corrected band intensity, A_{1178} may be expressed as follows: $A_{1178} = A^*_{1178} - 0.029 \cdot A_{1077}$ and substituting this expression into eqn (9) it follows:

$$\left[\mathrm{H}_{2}\mathrm{PO}_{4}^{-}\right] = \frac{\mathrm{A}_{1077} \cdot \mathrm{J}_{1178}}{\left(\mathrm{A}_{1178}^{*} - 0.029 \cdot \mathrm{A}_{1077}\right) \cdot \mathrm{J}_{1077}}$$
(10)

with A_{1178}^* as the uncorrected integrated band intensity of the mode at 1178 cm⁻¹. With the equilibrium concentration of $H_2PO_4^-$ on hand and m_T , the stoichiometric solute concentration known, the hydrolysis degree, α in $H_3PO_4(aq)$ is defined as:

$$\alpha = [\mathrm{H}_2 \mathrm{PO}_4^{-}]/m_\mathrm{T} \tag{11}$$

and it follows therefore $[H_2PO_4^{-}] = \alpha \cdot m_T$.

FT-IR- measurements

Infrared (IR) solution spectra were measured between 400– 4000 cm⁻¹ with a FTIR spectrometer described in refs. [11,40] between KBr disks protected with a thin (20 μ m) polyethylene (PE) film. The thin PE-film protects the KBr windows and is easily subtracted from the measured spectrum.

Density Fuctional Theory calculations

The optimization of the molecular geometry and the calculation of the vibrational spectra was performed with the Density Functional Theory (DFT) method B3LYP using the basis set B3LYP 6-311+G(3d,f) using Gaussian 03.⁵² The optimization procedure led to a stable configuration with C₃ symmetry and no imaginary frequencies appeared. Calculations have been carried out on the single H₃PO₄ molecule *in vacuo* and in the presence of the solvent (water) by placing H₃PO₄ within the solvent reaction field. The Polarized Continuum Model (PCM) creates the solute cavity *via* a set of interlocking spheres centred on the atoms, and uses a numerical representation of the polarization of the solvent (ref. 53).

3. Results and discussions

3.1. Raman and infrared spectra of dilute H₃PO₄ and D₃PO₄

In the gas phase the H_3PO_4 molecule possesses C_3 symmetry according to DFT calculations and a detailed account of the data will be presented in a forthcoming paper.⁴² The wavenumber positions for the H_3PO_4 molecule *in vacuo* are presented in Table 1 and for H_3PO_4 with an explicit solvation shell (hydration shell) in Table 2. The geometry parameters of the H_3PO_4 *in vacuo* and H_3PO_4 with solvation, $H_3PO_4(aq)$, are presented in Table 3 and in Figure S1[†] the structure and the numbering of the atoms is given. These DFT results will be discussed after the discussion of the measured vibrational data.

Table 1 DFT Raman and infrared data for H₃PO₄ in the gas phase

	Raman				
$\tilde{v}_{\rm max}/{ m cm}^{-1}$	Intensity	Depol. degree	Character	Intensity IR	Normal modes
157.9	1.3	0.75	e	69.0	ρOH
310.4	0.2	0.02	а	87.7	ρOH
376.1	0.8	0.75	e	42.0	$\rho OH + \delta OPO$
454.2	0.8	0.60	а	14.5	$\delta_{\rm s}$ OPO
458.4	1.8	0.75	e	64.5	δ_{as} OPO
839.4	21.1	0	а	19.7	$v_{s} P(OH)_{3}$
919.8	1.4	0.75	e	335.1	$v_{as}P(OH)_3$
1053.9	1.6	0.75	а	93.7	δΡΟΗ
1064.1	1.3	0.75	e	54.6	δ POH
1318.4	9.7	0.11	а	316.4	vP=O
3821.7	34.6	0.75	e	173.2	v _{as} OH
3824.0	126.3	0.05	a	21.3	v _s OH

Table 2 DFT Raman and infrared data for H₃PO₄ with solvation shell

	Raman				
$\tilde{v}_{\rm max}/{ m cm}^{-1}$	Intensity	Depol. degree	Character	IR Intensity	Normal modes
175.1	1.9	0.75	e	166.5	ρOH
322.3	0.1	0.02	а	237.0	ρOH
363.9	1.6	0.75	e	71.5	$\rho OH + \delta OPO$
452.1	3.6	0.75	e	107.2	$\delta_{\rm as}$ OPO
459.2	1.8	0.65	а	20.6	$\delta_{s}OPO$
849.8	40.9	0	а	32.9	$v_{s}P(OH)_{3}$
898.0	2.1	0.75	e	506.9	$v_{\rm as} P(OH)_3$
993.4	2.1	0.71	а	234.2	δ POH
1026.3	2.6	0.75	e	92.0	δ POH
1245.8	21.9	0.11	а	526.8	vP=O
3274.3	60.7	0.75	e	726.0	<i>v</i> _{as} OH
3293.5	338.9	0.04	а	77.3	<i>v</i> _s OH

Table 3 Geometrical parameters for H_3PO_4 in gas phase and with solvation sphere (symmetry C_3)

Parameter	Molecule in gas phase	Molecule with solvation shell
a ₁₂ ; P=O b. length	1.463	1.474
a ₁₃ ; P–O b. length	1.590	1.582
a ₅₆ ; O–H b. length	0.964	0.989
α_{156} ; angle P–O–H	112.5°	113.7°
α_{315} ; angle O–P–O	102.0°	102.6°
α_{215} ; angle O=P-O	116.2°	115.7°
d ₂₁₃₈ : dihedral angle	33.5°	39.3°
W (a.u.)	-644.33557540	-644.37647586

The PO₄ unit of the molecule of the isolated H₃PO₄ molecule possesses C_{3v} symmetry considering the OH groups as point masses. In solution, such an assumption seems reasonable because the normal modes of PO–H such as vOH, δ PO–H, and γ PO–H are mostly decoupled from the O=PO₃ skeleton modes. The O=PO₃ skeleton has 5 atoms which corresponds to 9 normal modes (n.m.). The irreducible representation of the vibrational modes is as follows: $\Gamma_{vib}(C_{3v}) = 3a_1(Ra, i.r.) + 3e(Ra, i.r.)$. All the modes with the character a_1 , and e are Raman active and infrared allowed. The modes with the character a are: $v_1(a_1) = v_s P(OH)_3$, $v_2(a_1) =$ vP=O and $v_3(a_1) = \delta_s P(OH)_3$. These modes are polarized in the Raman effect. The modes $v_4(e) = v_{as} P(OH)_3$, $v_5(e) = \delta_{as} P(OH)_3$, and $v_6(e) = \rho OP(OH)_3$ have the character e and are expected to be depolarized in the Raman effect. The deformation modes of

600 500

Fig. 1 Opper panel. Raman spectrum (r_{VV} and r_{VH} scattering) of a 0.183 mol kg⁻¹ (0.181 mol L⁻¹) H₃PO₄(aq). The modes of H₃PO₄(aq) in the P–O stretching region are: $v_sP(OH)_3$ at 890 cm⁻¹, $v_{as}P(OH)_3$ at 1008 cm⁻¹ (very weak), and vP=O at 1178 cm⁻¹. The very weak, broad mode δ PO–H at 1250 cm⁻¹ is almost not visible in the Raman effect. Lower panel: Raman spectrum of a 0.112 mol kg⁻¹ (0.111 mol L⁻¹) NaH₂PO₄ solution at 23 °C. The modes of H₂PO₄-(aq) in the P–O stretching region are : $v_sP(OH)_2$ at 877 cm⁻¹, $v_{as}P(OH)_2$ at 942 cm⁻¹ (very weak), v_sPO_2 at 1077 cm⁻¹, and $v_{as}PO_2$ at 1160 cm⁻¹ (very weak).

the O==PO₃ unit occur below 550 cm⁻¹ and the P–O stretching modes above 750 cm⁻¹. In the older literature the PO₄ group of phosphoric acid has been assigned to contradicting point groups such as T_d^4 , C_{2v}^6 and also C_{3v}^8

Before a more detailed analysis of individual H_3PO_4 bands are discussed, it is instructive to compare the $H_3PO_4(aq)$ spectrum of a 0.183 mol kg⁻¹ (0.181 mol L⁻¹) solution with a spectrum of 0.112 mol kg⁻¹ (0.111 mol L⁻¹) NaH₂PO₄ solution (Fig. 1). From this comparison it is obvious that with the exception of the very weak mode at 1008 cm⁻¹, all other modes in the P–O stretching region of the spectrum (800–1400 cm⁻¹) are more or less overlapped with the modes of $H_2PO_4^-(aq)$. The spectral data for a 0.112 mol kg⁻¹ $H_2PO_4^-(aq)$ are given in Table 4 and in Fig. 1, lower panel, where only the P–O stretching modes are presented.

From this comparison it becomes clear that the band at 1077 cm⁻¹ in the H₃PO₄(aq) spectrum has to be assigned to v_sPO_2 of H₂PO₄⁻(aq) the dissociation product according to reaction (1).

Table 4 Raman data of the PO_4 modes of $H_2PO_4^-(aq)$ in dilute NaH_2PO_4 solutions at 23 $^\circ C$

$v_{\rm max}/{\rm cm}^{-1}$	Intensity	fwhh cm ⁻¹	Depolarization degree	Assignment
371*	2	45	0.75	$\rho, \tau, \omega O_2 P(OH)_2$
393*	3	60	0.75	
515*	3.5	54	0.60	$\delta P(OH)_2 + \delta PO_2$
877	100	19.5	0.007	$v_{\rm s} P(OH)_2$
942	2.94	26	0.75	$v_{as}P(OH)_2$
1077	89.1	20	0.038	$v_{\rm s} \rm PO_2$
1160	2.63	26	0.75	$v_{\rm as} PO_2$
1240+	0.5	40	0.10	δ PO-H

*For the $C_{2\nu}$ symmetry of the $*O_2PO_2$ skeleton modes 5 deformation modes are expected; broad double band, depolarized and the broad polarized deformation mode constitute accidental overlapped bands. ⁺This very weak broad mode is not observable in dilute solutions

(This mode is also used for analytical purposes; see experimental section.) The other strong band in H₂PO₄-(aq) spectrum at 877 cm⁻¹ assigned to $v_s P(OH)_2$ overlaps strongly with the mode of the phosphoric acid at 890 cm⁻¹. The influence of $H_2PO_4^{-1}(aq)$ on the spectrum of H₃PO₄(aq) has already been established.¹¹ It had been found that the successive addition of HCl suppresses the band at 1077 cm⁻¹. In a spectrum of a 0.310 mol L⁻¹ H₃PO₄(aq) solution with 1.44 mol L⁻¹ HCl added the mode at 1077 cm⁻¹ had almost completely disappeared and furthermore, the mode at 890 cm⁻¹ becomes symmetrical (see Fig. 1 ref. [11]). The intensity contribution of the H₂PO₄^{-(aq)} mode at 877 cm⁻¹ and $v_{e}P(OH)_{3}$ of H₃PO₄(aq) at 890 cm⁻¹ overlap almost completely and cannot be separated in a meaningful way. The term "890 cm-1" band has been coined⁸ and may express this situation. The peak position (\tilde{v}_{max}) and the full width at half height (fwhh) of the "890 cm⁻¹" (sum) band are presented in Fig. 2. The distinct concentration dependence of \tilde{v}_{max} and of the fwhh are clearly due to the dissociation of $H_3PO_4(aq)$ which is a function of dilution. For a meaningful band separation of these severely overlapped bands (877 and 890 cm⁻¹) additional information would be necessary. The intensity of the H₂PO₄ (aq) mode, $v_{s}PO_{2}$ at 1077 cm⁻¹ however, does not overlap with any of the bands of phosphoric acid. From its known intensity and under consideration of the Jvalues for the $H_2PO_4^{-}(aq)$ bands, the band intensity of the mode at 877 cm⁻¹ may be calculated: $A_{877} = \frac{J_{1077}}{J_{877}} \cdot A_{1077} = 1.122 \cdot A_{1077}$. Representative spectra of dilute phosphoric acid solutions together

Representative spectra of dilute phosphoric acid solutions together with the result of the band fit and the component bands at 877and 890 cm^{-1} are presented in Fig. 3.

Fig. 2 Position of the band maximum, v_{max} (upper panel) and fwhh (lower panel) of the "890 cm⁻¹- band" versus the stoichiometric H₃PO₄ concentration at 23 °C.

Furthermore, the integrated band intensities, A_i of the mode vP=0 for [H₃PO₄] at 1178 cm⁻¹ and for [H₂PO₄^{-]} at 1077 cm⁻¹ versus the stoichiometric phosphoric acid concentration is presented in Fig. 4. The A_i -value of the mode at 1178 cm⁻¹ of the equilibrium concentration of H₃PO₄, [H₃PO₄], rises steadily while A_i for [H₂PO₄^{-]} levels off. This behaviour is an expression of the decreasing dissociation degree α of the phosphoric acid with increasing concentration. The band intensity of the vP=0 is completely overlapped with a mode of H₂PO₄⁻(aq), $v_{as}PO_2$ at

Fig. 3 Isotropic Raman spectra of 3 dilute phosphoric acid solutions. From the isotropic spectrum $I_{iso}(H_3PO_4)$ the background spectrum $I_{iso}(H_2O)$ has been subtracted. Given are the measured, background corrected spectra, the two band components at 877 and 890 cm⁻¹ and the sum curve (from bottom to top: 0.00873, 0.0613, and 0.183 mol kg⁻¹) at 23 °C.

Fig. 4 The relative integrated band intensity, A_i of the H₃PO₄ mode vP=O at 1178 cm⁻¹ (filled squares) and the mode of H₂PO₄-, v_sPO_2 at 1077 cm⁻¹ (open squares) *versus* the stoichiometric H₃PO₄ concentration at 23 °C.

1160 cm⁻¹ which is of very weak band intensity. Nevertheless, band intensity correction for νP =O at 1178 cm⁻¹ (H₃PO₄) has to be taken into account (see experimental section).

In D₃PO₄(aq) solutions, the dissociation product D₂PO₄⁻(D₂O) is detectable by the mode $v_{s}PO_{2}(D_{2}O)$ which occurs at 1084 cm⁻¹. As mentioned, the spectral features of the dissociation product H₂PO₄⁻/D₂PO₄⁻ have led to confusion in the older literature (*cf.* ref. 6,14). The vibrational spectra of H₃PO₄ and its deuterated analog in fairly dilute phosphoric acid solution are discussed ($m_{T} < 1.10 \text{ mol kg}^{-1}$) because in concentrated solutions,⁹⁻¹² the bands shift and broaden considerably and coalesce. The phosphoric acid molecules occur in these concentrated solutions as associated species.⁸⁻¹² On the other hand, in very dilute solutions ($m_{T} < 0.01 \text{ mol kg}^{-1}$) the bands of the dissociation product H₂PO₄⁻(aq) dominate the spectrum of H₃PO₄(aq).

Table 5Raman data of the PO_4 modes of $H_3PO_4(aq)$ at 23 °C

$v_{\rm max}/{\rm cm}^{-1}$	Intensity	fwhh cm ⁻¹	Depolarization degree	Assignment
357	1.3	45	0.75	$\rho O = P(OH)_3$
394.5	3.4	60	0.75	$\delta_{u} P(OH)_{3}$
499	9.3	54	0.65	$\delta_{\rm e} P(OH)_3$
890.1	100	19.5	0.005	$v_{s}P(OH)_{3}$
1008	0.9	18	0.75	$v_{as} P(OH)_{3}$
1178	22.5	53	0.095	vP=O
1255	2	40	0.12	δ PO-H

Table 6 Raman data of the modes in dilute D_3PO_4 solutions at 23 °C

$v_{\rm max}/{\rm cm}^{-1}$	Intensity	fwhh cm ⁻¹	Depolarization degree	Assignment
364	1	44	0.75	$\rho O = P(OD)_3$
374	3	58	0.75	$\delta_{as} P(OD)_3$
494	9.2	52	0.62	$\delta_{s} P(OD)_{3}$
870	100	17.5	0.006	$v_{\rm s} P(OD)_3$
935	2.5	~34	0.14	$\delta PO-D$
1018	0.9	18	0.75	$v_{\rm as} P(OD)_3$
1194	20	50	0.095	vP=O

With the knowledge of the $H_2PO_4^{-}(aq)$ influence on the spectrum of $H_3PO_4(aq)$ a detailed discussion of the spectrum of phosphoric acid is given. An overview Raman spectrum (100–1400 cm⁻¹) of a 0.756 mol kg⁻¹ (0.728 mol L⁻¹) H_3PO_4 solution is shown in Fig. 5 and the spectroscopic results for $H_3PO_4(aq)$ are summarized in Table 5 and for $D_3PO_4(D_2O)$ in Table 6. The Raman and infrared spectra in the P–O stretching region (700–1400 cm⁻¹) of a 1.560 mol kg⁻¹ (1.450 mol L⁻¹) $H_3PO_4(aq)$ are given in Fig. 6 and for a 1.393 mol kg⁻¹ (1.430 mol L⁻¹) $D_3PO_4(D_2O)$ in Fig. 7.

Fig. 5 Raman spectrum of a 0.756 mol kg⁻¹ (0.728 mol L⁻¹) H₃PO₄ at 23 °C. The arrow indicates the mode at 1077 cm⁻¹ of H₂PO₄⁻. Upper panel: I_{VV} and I_{VH} scattering; the inset shows the deformation modes at an expanded scale. Lower panel: isotropic spectrum.

In the overview Raman spectrum of $H_3PO_4(aq)$ (Fig. 5) two band regions become visible, the deformation region and the P–O stretching region. The deformation modes in $H_3PO_4(aq)$ show an accidental overlap so that only two instead of three modes are to be observed: a depolarized double mode, very poorly resolved with maxima at 357 and 395 and a polarized mode at 499 cm⁻¹. The deformation modes are of low intensities (see Table 5 and Fig. 5).

Fig. 6 Infrared (top) and Raman spectrum (I_{VV} and I_{VH} scattering) of a 1.560 mol kg⁻¹ (1.450 mol L⁻¹) H₃PO₄ solution at 23 °C.

Fig. 7 Infrared (top) and Raman spectrum (I_{VV} and I_{VH} scattering) of a 1.393 mol kg⁻¹ D₃PO₄ solution at 23 °C.

In $D_3PO_4(D_2O)$ these modes occur at 364, 374 and 494 cm⁻¹ (see Table 6).

The P–O stretching mode at 890 cm⁻¹ is the band with the highest intensity in the Raman spectrum and is also strongly polarized. This mode is assigned to the symmetrical stretching mode of the P(OH)₃ group, $v_sP(OH)_3$. The mode at 1008 cm⁻¹ is of much lower intensity than $v_sP(OH)_3$. The mode is depolarized and assigned to the antisymmetic stretch of the the P(OH)₃ group, $v_{as}P(OH)_3$. The intensity ratio A_{890}/A_{1008} for the modes $v_sP(OH)_3$ and $v_{as}P(OH)_3$ is ~ 110 : 1. In the infrared absorption spectrum the intensity ratio A_{890}/A_{1008} reverses to that in the Raman effect because $v_sP(OH)_3$ is very weak and $v_{as}P(OH)_3$ is of strong intensity (see Fig. 6).

The vP=O mode in H₃PO₄(aq) should be observed analogous to comparable phosphoryl compounds OPX₃ (X = Cl, Br, OR

$\frac{H_3PO_4 (vP=0)}{v_{max}/cm^{-1}}$	H ₃ PO ₄ (<i>v</i> P=O)	H ₃ PO ₄ (<i>v</i> P==O)		$H_3PO_4 (v_sP(OH)_3)$		$H_2PO_4^-(\nu_sPO_2)$	
	fwhh cm ⁻¹	$v_{\rm max}/{\rm cm}^{-1}$	fwhh cm ⁻¹	$v_{\rm max}/{\rm cm}^{-1}$	fwhh cm ⁻¹		
24.5	1178	53.5	891.2	19.5	1077.6	21.5	
32.0	1178	54.0	890.5	19.5	1077.8	22.0	
43.0	1182	55.0	888.5	19.3	1078	22.5	
57.0	1185.5	58.0	888.0	19.3	1078.5	23.2	
69.5	1186	59.5	887.0	19.3	1079	23.5	
82.5	1191	62.0	886.5	19.5	1080	24.0	
99.7	1193	64.0	885.5	19.8	1081	24.5	

Table 7 Raman band parameters (I_{VV} scattering) of a 0.252 mol kg⁻¹ (0.248 mol L⁻¹) H₃PO₄ as a function of temperature: vP=O, $v_sP(OH)_3$ and the band of the dissociation product H₂PO₄⁻

with R alkyl and aryl) between 1200–1400 cm⁻¹ (e.g. ref. 43). The precise peak position depends on the group X inasmuch as X with increasing electronegativity shifts vP=O to higher wavenumbers. In liquid trimethyl ester of the phosphoric acid, $OP(OCH_3)_3$, vP=O occurs at ~1270 cm⁻¹. This value should certainly be expected for phosphoric acid as well. However, in dilute solutions of $H_3PO_4(aq) \nu P = O$ occurs at 1178 cm⁻¹ as a relatively broad band of medium intensity but as a strong band in the infrared. The vP=O mode at ~1194 cm⁻¹ in $D_3PO_4(D_2O)$ is overlapped with the broad deformation mode δ DOD of the solvent D₂O at 1208 cm⁻¹. From the PO-H bands[‡], mentioned above, the in-plane-deformation mode of the PO-H group, δ PO-H is of very weak intensity and broad in the Raman effect and appears at 1250 cm⁻¹. Although broad it is of medium intensity in the infrared spectrum (see Fig. 6). In the spectrum of $D_3PO_4(D_2O)$ the deformation mode shifts to considerably lower wavenumbers due to the isotope shift:

 $\sqrt{\frac{v(D)}{v(H)}} = \sqrt{\frac{2.014}{1.008}} = \sqrt{1.998} = 1.414$ and appears as a weak broad

mode at 935 cm⁻¹ (Fig. 7). The factor of the isotope effect 1.344 is smaller than the theoretically expected value but in the usual range for such an isotope effect (anharmonicity of the modes). The above mentioned $v_s P(OH)_3$ mode also shows an isotope effect but much

more moderately: $\sqrt{\frac{V_{P(OD)}}{V_{P(OH)}}} = \sqrt{\frac{18.0135}{17.007}} = \sqrt{1.0592} = 1.029$. In

 $D_3PO_4(D_2O) v_sP(OD)_3$ occurs at 870 cm⁻¹ and the observed isotope shift is 1.023, again a little smaller than the theoretical one.

The considerable wavenumber shift of the P=O stretching mode in H₃PO₄(aq) compared with ν P=O for neat OP(OCH₃)₃ at ~1270 cm⁻¹ is caused by strong H-bonds of the type P=O···HOH formed in aqueous solutions of phosphoric acid. The P–OH groups are also H-bonded with water molecules of the type P– OH···OH₂ although the H-bond strength is somewhat weaker compared to the ones between P=O and water.⁴⁴ As a result of the H-bond formation the protons are somewhat weakened and the stretching mode ν_{s} P–(OH)₃ shows noticeably π -bonding contributions. Therefore, higher stretching peak positions are observed as normally considered with the normal P–O single bonds. Due to the H-bonds formed the PO–H stretching mode (vO-H) should be down shifted. However, in the dilute solutions studied the broad and weak vOH mode is completely overlapped with the OH stretching mode of water and shall therefore not be discussed in this context (see footnote 1).

In aprotic, polar organic solvents such as acetronitrile, acetone, tetrahydrofurane and dioxane) in which crystalline H_3PO_4 is at least sparingly soluble the mode νP =O occurs at 1240 cm⁻¹ in the infrared absorption spectrum.⁴⁵ In aprotic solvents the acceptor group P=O cannot form H-bonds unless the solution is fairly concentrated and therefore the wavenumber position for P=O is similar to the one for the trimethylester. (In concentrated H₃PO₄ solutions auto-association may occur; a formation of H-bonded phosphoric acid molecules).

The DFT data (see Tables 1 and 2) reinforce the interpretation of the presented vibrational data in going from the H₃PO₄ molecule *in vacuo* to $H_3PO_4(aq)$. The mode vP=O shifts from 1384.4 cm⁻¹ down to 1245.8 cm⁻¹. Furthermore, the mode $v_s P(OH)_3$ shifts from 839.4 cm⁻¹ up to 849.8 cm⁻¹. This tendency found by the DFT calculations has been observed by vibrational spectroscopy. Even if the static model applied by the calculations does not reproduce the measured band positions precisely, the trend of the modes depicts the situation of the measured spectral data correctly. The geometric parameters of $H_3PO_4(vacuo)$ and $H_3PO_4(aq)$ is presented in Table 3. The phosphoryl bond P=O is much shorter than the three single P-O bonds. Furthermore, the P=O bond lengthens slightly in going from $H_3PO_4(vacuo)$ to $H_3PO_4(aq)$ whilest the P-O bond shortens slightly. At least in dilute solutions the PO₄ unit cannot be considered as a tetrahedral unit as has been done in ref.34

In order to study the hydration in phosphoric acid solution in the Raman effect it would be helpful to study the phosphoric acid in apolar organic solvents such as CCl_4 or to study the temperature effect on the modes of $H_3PO_4(aq)$. Unfortunately, phosphoric acid is almost insoluble in this apolar solvent (*cf.* ref.45) and therefore a temperature dependent Raman study has been applied.

In Table 7 the results of the temperature dependent Raman spectra of a 0.251 mol kg⁻¹ (0.248 mol L⁻¹) phosphoric acid are presented (mol-ratio H₃PO₄ : H₂O = 1 : 224). At 25 °C *v*P=O at 1178 cm⁻¹ (fwhh = 53 cm⁻¹) shifts with temperature to higher wavenumbers and broadens. At 99.7 °C *v*P=O is located at 1193 cm⁻¹ (fwhh = 64 cm⁻¹). The symmetric stretching mode $v_s P(OH)_3$, located at 25 °C at 891 cm⁻¹ shifts slightly to lower wavenumbers and at 99.7 °C this mode is positioned at 886 cm⁻¹. The antisymetric stretching mode of the P(OH)₃ group, $v_{as}P(OH)_3$ is much weaker compared with $v_sP(OH)_3$ (intensity ratio $v_sP(OH)_3 : v_{as}P(OH)_3 = 100 : 0.9$) and is located at 1008 cm⁻¹.

[‡] The γ PO-H mode, the out of plane deformation, is only observable in the hydrate melt and the most concentrated solution at ~815 cm⁻¹, the *v*PO-H mode is detectable in concentrated solutions as a broad mode at ~2880 cm⁻¹ the so called A band. A broad mode at 2350 cm⁻¹ is assigned to 2 x δ PO-H, the B band and a much weaker one at 1700 cm⁻¹, to 2 x γ PO-H as C band.

These results show that the P=O group (H-bond acceptor) forms strong H-Bonds with water and the temperature increase weakens the H-bonds between the P=O group and water and as a result a weakening of the H-bond, P=O...HOH follows. Therefore, the temperature increase resulting in a shift of vP=O to higher wavelength and a shift of $v_sP(OH)_3$ to lower wavenumbers may be explained and demonstrates the hydration of the phosphoric acid in aqueous solution.

In this context it may be mentioned that it is necessary to study dilute solutions of phosphoric acid because with higher phosphoric acid concentrations auto- association between H₃PO₄ molecules has been observed and a dimeric phosphoric acid, $H_6P_2O_8$ (cf. ref. 20,21,28) has been proposed. However, as a result of a carefully conducted study in 3 M NaC1O4 at 25 °C23 it was shown that at concentrations up to 0.02 m H₃PO₄ it was unnecessary to invoke the existence of any species other than the mononuclear phosphate species. In the dilute phosphoric acids no spectroscopic evidence could be detected for the so called dimer, H₆P₂O₈. At higher H₃PO₄ concentrations however, interactions between H₃PO₄ molecules are observable but no specific dimeric structure could be detected rather a three dimensional network of H-bonded phosphoric acid molecules.9-11 The concentration range of the existence of phosphoric acid molecules associated with each other, so called auto-association depends on the water activity and in phosphoric acid solutions with concentrations higher than $\sim 1 \mod L^{-1}$ the association effect begins. In the hydrate melt, H₃PO₄(l), phosphoric acid molecules are strongly hydrogen bonded with each other forming a 3-dimensinal network of small clusters⁹⁻¹¹ which may be compared to the situation in crystalline phosphoric acid where the structure reveals strong H-bonds between the phosphoric acid molecules in the monoclinic crystal.⁴⁶

3.2. Quantitative Raman measurements of dilute $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$

Data at 23 °C. It has been demonstrated that the phosphoric acid spectra are overlapped with the modes of its corresponding base, namely $H_2PO_4^{-}(aq)$. The only undisturbed mode at 1077 cm⁻¹ of $H_2PO_4^{-}(aq)$ has been used for quantitative Raman measurements of the dissociation of H_3PO_4 in water and the dissociation degree as a function of concentration has been given in Fig. 8.

Fig. 8 The dissociation degree, α versus the stoichimetric concentration of H₃PO₄ at 23 °C.

Quantifications in D_3PO_4 solutions have been carried out using the mode at 1084 cm⁻¹ of $D_2PO_4^-(D_2O)$. To that purpose the equilibrium concentrations of $H_2PO_4^-$ and $D_2PO_4^-$ in $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ respectively have been determined using the calibration curves expressed in the experimental section.

Quantitative Raman spectroscopy allows one to calculate the first dissociation step of $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ according to eqn (1). The equilibrium constant K_1 for this reaction may be defined as:

$$K_{1} = \frac{[H_{3}O^{+}] \cdot [H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} \cdot \frac{\gamma_{H_{3}O^{+}} \cdot \gamma_{H_{2}PO_{4}^{-}}}{\gamma_{H_{3}PO_{4}}} = Q_{1} \cdot Q_{\gamma}$$
(12)

with the equilibrium concentrations for the species i denoted as [i] and γ_i the activity coefficients of the species. The activity of H₃PO₄(aq) in the dilute solutions is taken as 1 and for K_1 it follows:

$$\mathbf{K}_{1} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}] \cdot [\mathbf{H}_{2}\mathbf{P}\mathbf{O}_{4}^{-}]}{[\mathbf{H}_{3}\mathbf{P}\mathbf{O}_{4}]} \cdot \gamma_{\pm}^{2}$$
(13)

or taking the dissociation degree into account:

$$\mathbf{K}_{1} = \frac{\alpha^{2} \cdot m_{\mathrm{T}}}{1 - \alpha} \cdot \gamma_{\pm}^{2} \tag{14}$$

The quantitative results for dilute H_3PO_4 and D_3PO_4 solutions are given in Tables 8 and 9 and pQ_1 defined as $-\log_{10}Q_1$ plotted in Fig. 9 as a function of the square root of the ionic strength. This procedure is only meaningful for dilute solutions and therefore only the most dilute solution data have been applied. Extrapolation to zero concentration results in pK₁ values for $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ at 2.14(1) and 2.42(1) respectively at 23 °C. A compilation of selected experimental constants for the

Table 8 Raman data on the dissociation of $\rm H_3PO_4$ as a function of concentration at 23 $^{\circ}\rm C$

$m_{\rm T}$ kg mol ⁻¹	$[\mathrm{H_2PO_4}^-]$	$\sqrt{I_{ m m}}$	α	$\mathbf{p}\mathbf{Q}_1$
0.00873	0.00534	0.0733	0.6151	2.0664
0.00994	0.00590	0.0767	0.5926	2.0672
0.0124	0.00695	0.0832	0.5567	2.0609
0.0204	0.00985	0.0987	0.4789	2.0477
0.0249	0.01126	0.1058	0.4502	2.0377
0.0498	0.01785	0.1334	0.3573	2.0046
0.0613	0.0204	0.1425	0.3312	1.9978
0.0748	0.0231	0.1520	0.3088	1.9864
0.0999	0.0278	0.1667	0.2784	1.9697
0.125	0.0322	0.1794	0.2576	1.9517
0.183	0.0408	0.2020	0.2230	1.9314
0.252	0.0498	0.2229	0.1977	1.9121

Table 9 Raman data on the dissociation of D_3PO_4 as a function of concentration at 23 $^\circ \mathrm{C}$

<i>m</i> _T kg mol ⁻¹	$[D_2PO_4^-]$	$\sqrt{I_{ m m}}$	α	pQ_1
0.00644	0.003532	0.0594	0.5485	2.3674
0.0129	0.005719	0.0756	0.4434	2.3415
0.0258	0.00899	0.0948	0.3484	2.3184
0.0516	0.01407	0.1186	0.2727	2.2777
0.0775	0.01809	0.1345	0.2334	2.2590
0.1035	0.02166	0.1472	0.2093	2.2414
0.1295	0.02461	0.1569	0.1900	2.2387
0.2609	0.03810	0.1952	0.1460	2.1861
0.5293	0.05699	0.2387	0.1077	2.1626

Fig. 9 The pQ_1 as a function of the square root of ionic strength for $H_3PO_4(aq)$ (solid black squares) and $D_3PO_4(D_2O)$ (unfilled squares) at 23 °C.

first dissociation step of phosphoric acid at 25 °C is given in ref. [47] and for heavy phosphoric acid in ref. [48]. The isotope effect on the dissociation of phosphoric acid leads to a higher pK₁ value in heavy phosphoric acid. (The primary and secondary isotope effect is not discernable for phosphoric acid; ultrafast proton exchange.) The ΔpK_1 value, $pK_1(H_3PO_4) - pK_1(D_3PO_4)$, is 0.28(2) in good agreement with a ΔpK_1 value equal to 0.272⁴⁸ determined by potentiometric measurements.

Phosphoric acid solutions with increasing amounts of NaCl become more acid and this fact has been presented for a 0.310 mol L^{-1} H₃PO₄(aq) in Fig. 10. The quantification has been carried out by the second method, namely determining the band ratios of A_{1178}/A_{1077} (see experimental section). The intensity ratios, the degree of dissociation, the pQ₁ values, the concentration on NaCl and the ionic strength of the phosphoric acid solutions have been given in Table 10. The pK₁ value in a 3 mol L^{-1} NaClO₄ solution at 25 °C had been reported by Baldwin and Sillén²³ and the pK₁ value is 1.89 which is much lower than the pK₁ value for zero ionic strength equal to 2.142.⁴⁷ The neutral salt effect (NaCl, KCl and tetraethylammonium iodide) on the protonation of phosphate ions in solution as a function of temperature has been studied recently.³² The neutral salt which competes for water reduces

Fig. 10 The pQ₁ values of a 0.310 mol L⁻¹ H₃PO₄ solution with increasing amounts of NaCl added (0.0; 0.29; 0.89; 1.80; and 2.87 mol L⁻¹ NaCl) as a function of the ionic strength, I_c at 23 °C. Note, the concentration scale is in mol L⁻¹.

Table 10 The influence of NaCl on the degree of dissociation of a 0.310 mol L^{-1} H₃PO₄ at 23 °C. Given are the intensity ratios of the bands at 1178 cm⁻¹ (H₃PO₄) and 1077 cm⁻¹ (H₂PO₄⁻), alpha, the pQ1 values and the ionic strength

NaCl/mol L ⁻¹	A_{1178}/A_{1077}	α	pQ_1	$\sqrt{I_{\rm c}}$
0.00	1.545	0.1804	1.9096	0.2365
0.29	1.390	0.1966	1.8264	0.5924
0.89	1.230	0.2166	1.7312	0.9783
1.80	1.122	0.2326	1.6603	1.3683
2.87	1.058	0.2432	1.61576	1.7162

the hydration of the acid.⁴⁹ On a microscopic level, the Na⁺(aq) ion will polarize the phosphoric acid causing the acid strength to increase. Ion pairs with interposed water molecule(s) such as Na⁺(OH₂)O=P(OH)₃ may be formed. It is interesting to note, that in AlCl₃–H₃PO₄ solutions, direct coordination between Al³⁺ and phosphoric acid takes places and species such as Al³⁺ \cdots OP(OH)₃ are formed.¹² In the H₃PO₄–KCl system, on the other hand, no association could be verified.²⁸ It has been demonstrated that there is essentially no association between orthophosphates and K⁺ at 25 °C and Lambert and Watters⁵¹ have reported the value of 10^{0.80} for the association quotient for the pyrophosphate complex KP₂O₇³⁻ in 1 M tetramethylammonium bromide at 25 °C but they were unable to detect association of orthophosphate with potassium ions.

Temperature dependent quantitative Raman measurements on $H_3PO_4(aq)$. Quantitative Raman spectroscopy has been carried out to observe the first dissociation step of a 0.2515 mol kg⁻¹ $H_3PO_4(aq)$ in the temperature range from 24.5 °C to 99.7 °C (Fig. 11). The equilibrium constant has been defined according to eqn (14).

Fig. 11 Raman spectra of a 0.251 mol kg⁻¹ (0.248 mol L⁻¹) H₃PO₄ solution as a function of temperature (in °C). The most intense band, $v_s P(OH)_3$ at ~890 cm⁻¹ was omitted for clarity.

In eqn (14) in which the activity coefficient of the undissociated H₃PO₄ has taken unity, and γ_{\pm} is estimated from $\log \gamma_{\pm} = \frac{A_{\gamma} \cdot \sqrt{I}}{1 + a \cdot B_{\gamma} \cdot \sqrt{I}}$ where $I_{\rm m}$ is the ionic strength in molality (m), and the ion size parameter, a has been taken as 4 Å

Table 11 Raman data on the dissociation of a 0.251 mol kg^{-1} (0.248 mol $L^{-1})$ H_3PO_4 as a function of temperature

T/K	A^{*}_{1178}	A_{1077}	$[\mathrm{H_2PO_4^-}]$	α	pQ_1	$\mathbf{p}\mathbf{K}_1$
297.65	63.05	41.654	0.0468	0.1864	1.9693	2.1407
305.15	62.974	40.073	0.0454	0.1807	1.9995	2.1713
316.15	56.604	33.374	0.0426	0.1695	2.061	2.2316
330.15	55.402	29.6541	0.0392	0.1561	2.1395	2.3091
342.65	52.71	25.242	0.0356	0.1418	2.2303	2.3979
355.65	64.43	27.375	0.0321	0.1276	2.3285	2.4941
372.85	65.4	23.965	0.0281	0.1119	2.4508	2.6141

 A^*_{1178} means the uncorrected band intensity of vP=O; see text.

Fig. 12 The temperature dependence of pK_1 of the H_3PO_4 (temperature range: 297.65–372.85 K); measured data (filled squares) and the fitted curve.

and A and B are define	ed by: A = $\frac{1.82482924 \cdot 10^6 \cdot \rho^{1/2}}{2}$ and
$p = \frac{50.2915865 \cdot 10^8 \cdot \rho^{1/2}}{10^8 \cdot \rho^{1/2}}$	$(\epsilon T)^{3/2}$
$\mathbf{D}_{\gamma} = \frac{1}{(\epsilon T)^{1/2}}$	with ε the static dielectric constant of

water, ρ the density and T in K. The phosphoric acid becomes more molecular as the temperature increases§. The measured Raman data at several temperatures for [H₂PO₄⁻], alpha, the degree of dissociation, log γ_{\pm} , and pK₁ are given in Table 11 and in Fig. 12 the pK₁ values are plotted as a function of temperature. The thermodynamic functions have been obtained by fitting the dissociation constants to an equation of the type:

$$-pK_1 = A/T + B + C \cdot T \tag{15}$$

and the parameters of eqn (15) have been obtained: $-\log K_1 = 815.36/T - 4.6871 + 0.01373 \cdot T$. The thermodynamic parameters are defined as follows:

$$\Delta H^0 = 2.3026 \cdot R(A - CT^2)$$
(16)

$$\Delta S^{0} = 2.3026 \cdot R(B - 2CT^{2})$$
(17)

$$\Delta G^{0} = -\mathbf{R} \mathbf{T} \cdot \mathbf{ln} \mathbf{K}_{1} = \Delta H^{0} - \mathbf{T} \cdot \Delta S^{0} \tag{18}$$

with R the gas constant and the parameters A, B, and C given above allow calculation of ΔH^0 according to eqn (16) and with -7.76 kJ mol⁻¹, ΔS° equal to -67 J K⁻¹ mol⁻¹ according to eqn (17) and the free enthalpy ΔG° -12.20 kJ mol⁻¹ according to eqn (18) at 25 °C. These data derived from Raman measurements are comparable to the recommended CODATA given in ref. [47]. Raman spectroscopy is now able to produce high quality data on equilibria HSO₄⁻⁷/SO₄²⁻ such as published in⁴¹ and the present data on phosphoric acid. Under normal conditions potentiometric measurements are certainly more suitable than quantitative Raman spectroscopic measurements but under extreme conditions on small sample volumes such as in fluid inclusions or in complex systems the Raman technique certainly has its merits.

4. Conclusions

Raman and infrared spectra of dilute solution of H₃PO₄(aq) and $D_3PO_4(D_2O)$ have been measured and the bands of the PO₄ skeleton have been assigned to C_{3V} symmetry. In addition to the OPO₃ skeleton modes the deformation mode PO-H and PO-D at 1250 and 935 cm⁻¹ respectively have been obtained. In the Raman and infrared spectra of dilute solutions of $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ no dimeric species of the form $H_6P_2O_8$ and $D_6P_2O_8$ respectively could be detected. Quantitative Raman measurements have been carried out and the first dissociation constant of $H_3PO_4(aq)$ and $D_3PO_4(D_2O)$ have been determined at 23 °C. The calculated value of the ΔpK_1 , $pK_1(H_3PO_4) - pK_1(D_3PO_4)$ with 0.28(2) is comparable to the value determined by emf measurements and demonstrates that the heavy phosphoric acid is a weaker acid than its lighter counterpart. The influence of NaCl on the dissociation of H₃PO₄ has been determined and with increasing amounts of NaCl the phosphoric acid becomes more acidic. Temperature dependent Raman measurements of $H_3PO_4(aq)$ have been carried between 24.5 and 99.7 °C. Including the activity coefficients and calculating pK_1 values as a function of temperatures allowed the calculation of the thermodynamic parameters. The acid becomes more molecular with increasing temperature and the stretching band of the P=O group shifts to higher wavenumbers while the symmetric stretch of the P-OH group shifts slightly to lower wavenumbers.

Acknowledgements

The author thanks Dr G. Irmer for the use of his Raman spectrometer and for performing the DFT calculations. Mrs. B. Ostermay is thanked for helping to measure the Raman spectra.

References

- 1 N. N. Greenwood and A. Earnshaw, *Chemistry of the elements*, 2nd edn, Butterworth and Heinemann, Oxford, 1997, pp. 516–527.
- 2 D. Voet and J. Voet, *Biochemistry*, 2nd edn, J. Wiley &Sons Inc., New York, 1995, pp. 428–434.
- 3 D. L. Nelson and M. M. Cox, *Lehninger, Principles of Biochemistry*, Worth Publishers, New York, 2000, pp. 325–362.
- 4 A. Simon and G. Schulze, Beiträge zur Kenntnis der Konstitution der Orthophosphorsäure und ihrer Salze., Z. anorg. allg. Chem., 1939, 242, 318–426.
- 5 C. Duval and J. Lecomte, Spectres d'absorption infrarouge et modes de vibration de phosphates acides metalliques., *Bull. Soc. Chim. (France)*, 1947, 14, 276–279.

[§] A Raman temperature measurement from 5–301 °C has been carried out and at ~150 °C the phosphoric acid becomes the dominant species. These data will be presented for publication at a later date⁵⁰ In the literature a few high quality data of pK₁ as a function of temperature up to 300 °C have been published^{26,31} although the data differ quite considerably at higher temperatures.³¹

- 6 A. C Chapman and L. E. Thirlwell, Spectra of phosphorous compounds- I. The infrared spectra of orthophosphoric acid., *Spectrochim. Acta*, 1964, **20**, 937–947.
- 7 E. Steger and K. Herzog, Zum Schwingungsspektrum der Phosphorsäure. I. Infrarot- und Raman-Spektren von Phospatlösungen., Z. Anorg. Allg. Chem., 1964, **331**, 169–182.
- 8 C. M. Preston and W. A. Adams, A Laser Raman spectroscopic study of aqueous phosphoric acid., *Can. J. Spectrosc.*, 1977, 22, 125–136.
- 9 W. Rudolph, Vibrational and 31–P NMR Studies of Molten Phosphoric Acid and Highly Concentrated Aqueous Solutions, in *Proceedings of the Ninth International Symposium on Molten Salts*, ed.: Ch. L. Hussey, D. S Newman, G. Mamantov and Y. Ito, *Physical Electrochemistry Proceedings Vol. 94–13*, The Electrochemical Society, Pennington, NJ, (1994), pp. 313–317.
- 10 W. Rudolph, E. Steger, K. Herzog Untersuchungen an wäßrigen Phosphorsäure- und Orthophosphatlösungen., 4. Arbeitsberatung -Experimentelle Probleme der Ramanspektroskopie, Erfurt, 04–06. Oktober 1983, Tagungsband, S. 77–82.
- 11 W. Rudolph and W. E. Steger, Dissoziation, Struktur und schneller Protonenaustausch der Phosphorsäure in verdünnter wäßriger Lösung, Z. Phys. Chem., 1991, 172, 49–59.
- 12 W. Rudolph and W. E. Steger, Schwingungsspektroskopische und Kernresonanz- Untersuchungen der Aluminium-Phosphatokomplexbildung im System AlCl₃-H₃PO₄-H₂O, *Z. Phys. Chem.*, 1992, **176**, 185–198.
- 13 M. Cherif, A. Mgaidi, N. Ammar, G. Vallee and W. Fürst, A New Investigation of aqueous orthophosphoric acid speciation using Raman Spectroscopy, J. Solution Chem., 2000, 29, 255–269.
- 14 J. Weidlein, U. Müller, K. Dehnicke, I. Schwingungsfrequenzen, *Hauptgruppenelemente*, Georg Thieme Verlag, Stuttgart, New York (1981), p. 108.
- 15 O. W. Edwards and E. O. Huffman, Diffusion of aqueous solutions of phosphoric acid at 25 °C, J. Phys. Chem., 1959, 63, 1830–1833.
- 16 N. Bjerrum and U. Unmack, Electrometric measurements with hydrogen electrodes in mixtures of acids and bases with salts; The dissociation constants of water, phosphoric acid, citric acid, and glycine. Kgl. Danske Videnskab. Selskab, *Math.-fys. Medd.*, 1929, 9(1), 221– 227.
- 17 K. L. Elmore, C. M. Mason and J. H. Christensen, Activity of orthophosphoric acid in aqueous solution at 25 °C from vapour pressure measurements., J. Am. Chem. Soc., 1946, 68, 2528–2532.
- 18 C. M. Mason and J. B. Culvern, Electrical Conductivity of Orthophosphoric Acid and of Sodium and Potassium Dihydrogen Phosphates at 25 °C, J. Am. Chem. Soc., 1949, 71, 2387–2393.
- 19 R. G. Bates, First dissociation constant of phosphoric acid from 0° to 60 °C; Limitations of the electromotive force method for moderately strong acids, J. Res. Nat. Bur. Stand., 1951, 47, 127–134.
- 20 K. L. Elmore, J. D. Hatfield, R. L. Dunn and A. D. Jones, Dissociation of Phosphoric Acid Solutions at 25 °C., J. Phys. Chem., 1965, 69, 3520– 3525.
- 21 M. Selvaratnam and M. Spiro, Transference Numbers of Orthophosphoric Acid and the Limiting Equivalent Conductance of the H₂PO₄-Ion in Water at 25 °C, *Trans. Faraday Soc.*, 1965, **61**, 360–373.
- 22 R. R. Irani and T. A. Taulli, Metal complexing by phosphorus compounds—IX. thermodynamics of ionization of ortho-, pyro- and tripolyphosphoric acids., J. Inorg. Nucl. Chem., 1966, 28, 1011– 1020.
- 23 W. G. Baldwin and L. G. Sillén, Some phosphate equilibria, I. The dissociation of phosphoric acid in 3 M NaClO₄, *Arkiv Kemi*, 1968, **31**, 391–399.
- 24 C. W. Childs, Equilibria in Dilute Aqueous Solutions of Orthophosphates., J. Phys. Chem., 1969, 73, 2956–2960.
- 25 D. A. Lown and H. R. Thirsk, Proton Transfer Conductance in aqueous solution Part 2. Effetc of pressure on the Electrical conductivity of concentrated ortho-phosphoric acid in water at 25 °C. Trans., *Trans. Faraday Soc.*, 1971, 67, 149–152.
- 26 R. E. Mesmer and C. F. Baes, Jr., Phosphoric acid dissociation equilibria in aqueous solutions to 300 °C, J. Solution Chem., 1974, 3, 307–322.
- 27 R. H. Wood and R. F. Platford, Free energies of aqueous mixtures of NaH₂PO₄ and NaClO₄.: Evidence for the species (H₂PO₄²⁻, *J. Solution Chem.*, 1975, 4, 977–982.
- 28 G. Ferroni, Potentiometric studies on association and dissociation equilibria of orthophosphoric acid, in water- KCl 3M medium at 25 °C, *Electrochim. Acta*, 1976, 21, 283–286.

- 29 L. W. Green, P. Kruus and M. J. McGuire, Acid dissociation constants and rates as studied ultrasonic absorption, *Can. J. Chem.*, 1976, 54, 3152.
- 30 K. S. Pitzer and L. F. Silvester, Thermodynamics of Electrolytes. VI. Weak Electrolytes Including H₃PO₄, J. Solution Chem., 1976, 5, 269–278.
- 31 A. J. Read, The First Ionization Constant From 25 to 200 °C and 2000 Bar for Orthophosphoric Acid, J. Solution Chem., 1988, 17, 213– 224.
- 32 P. G. Daniele, A. De Robertis, C. De Stefano, A. Gianguzza and S. Sammartano, Salt Effects on the Protonation of Ortho-Phosphate Between 10 and 50 °C in Aqueous Solution. A Complex Formation Model., J. Solution Chem., 1991, 20, 495–515.
- 33 R. M. Izatt, S. E. Gillespie, J. L. Oscarson, P. Wang, J. A. R. Renuncio and C. Pando, The Effect of Temperature and Pressure on the Protonation of o-Phosphate Ions at 348.15 and 398.15 K, and at 1.52 and 12.50 MPa., *J. Solution Chem.*, 1994, 23, 449–468.
- 34 R. Caminiti, P. Cucca and D. Atzei, Phosphate-H₂O Interactions in Concentrated Aqueous H₃PO₄ Solutions, *J. Phys. Chem.*, 1985, 89, 1457–1460.
- 35 P. E. Mason, J. M. Cruickshank, G. W. Neilson and P. Buchanan, Neutron scattering studies on the hydration of phosphate ions in aqueous solutions of K₃PO₄, K₂HPO₄ and KHPO₄, *Phys. Chem. Chem. Phys.*, 2003, 5, 4686–4690.
- 36 E. Tang, D. Di Tommaso and N. H. de Leeuw., Hydrogen transfer and hydration properties of H_nPO₄³⁻ⁿ (n = 0-3) in water studied by first principles molecular dynamics simulations., J. Chem. Phys., 2009, 130, 234502–234514.
- 37 C. Ebner, U. Onthong and M. Probst, Computational study of hydrated phosphate anions, J. Mol. Liq., 2005, 118, 15–25.
- 38 A. I. Vogel, A Text-Book of Quantitative Inorganic Analysis, Longman, London, 3rd edn 1961.
- 39 W. Rudolph and S. Schönherr, I. Zur schwingungsspektroskopischen Charakterisierung des Hexaquoaluminium(III)-komplexions., Z. Phys. Chem. (Leipzig), 1989, 270, 1121–1134.
- 40 W. W. Rudolph and G. Irmer, Raman- and infrared -spectroscopic investigations on aqueous alkali metal phosphate solutions and DFTcalculations of PO₄³⁻ - water clusters., *Appl. Spectrosc.*, 2007, **61**, 1312– 1324.
- 41 W. Rudolph, Structure and Dissociation of Hydrogen Sulfate Ion in Aqueous Solution over a Broad Temperature Range: A Raman Study, *Z. Phys. Chem.*, 1996, **194**, 73–9.
- 42 G. Irmer, TU Bergakademie Freiberg, personal communication, 2009.
- 43 J. Weidlein, U. Müller, K. Dehnicke, I. Schwingungsfrequenzen, *Haupt-gruppenelemente*, Georg Thieme Verlag, Stuttgart, New York(1981), 106-108.
- 44 E. R. Nightingale, 7. On the Specificity of Electrolyte Solvation. Viscosity and Infrared Characterization of Ionic Hydration, 87-100, In: B. E. Conway, R. G. Barrados (ed.) *Chemical Physics of Ionic Solutions*, Wiley-Intersicence, New York, 1966.
- 45 R. J. Levene, D. B. Powell and D. Steele, The vibrational spectrum of ortho-phosphoric acid in some non-aqueous solvents, *Spectrochim. Acta*, 1966, **22**, 2033–2038.
- 46 S. Furberg, The crystal structure of phosphoric acid, *Acta Chem. Scand.*, 1955, **9**, 1557–1566.
- 47 K. J. Powell, P. L. Brown, R. H. Byrne, T. Gajda, G. Hefter, S. Sjöberg and H. Wanner, Chemical speciation of environmentally significant heavy metals with inorganic ligands.(JUPAC Technical Report), *Pure Appl. Chem.*, 2005, **77**, 739–800.
- 48 M. Paabo and R. G. Bates, Deuterium isotope effects and the dissociation of deuteriophosphoric acid from 5 to 50 °C., J. Phys. Chem., 1970, 74, 706–710.
- 49 E. J. King, Acid-Base Equilibria, Pergamon Press, London, 1965.
- 50 W. W. Rudolph, unpublished data, TU Dresden, 2008.
- 51 S. M. Lambert and J. I. Watters, J. I., The Complexes of Pyrophosphate Ion with Alkali Metal Ions., J. Am. Chem. Soc., 1957, 79, 4262– 4265.
- 52 Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,

Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

53 J. M. Martinez, R. R. Pappalardo, E. Sanchez Marcos, B. Mennucci and J. Tomasi, Analysis of the Opposite Solvent Effects Caused by Different Solute Cavities on the Metal-Water Distance of Monoatomic Cation Hydrates, J. Phys. Chem. B, 2002, **106**, 1118–1123.