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ABSTRACT: A single molecular rhodium catalyst system (PC2-Cp#RhIII) bearing two functional domains for both
photosensitization and C−H carbometalation was designed to enable an intramolecular redox process. The hypothesized charge-
transfer species (PC2•−-Cp#RhIV) was characterized by spectroscopic and electrochemical analyses. This photoinduced internal
oxidation allows a facile access to the triplet state of the key post-transmetalation intermediate that readily undergoes C−C bond-
forming reductive elimination with a lower activation barrier than in its singlet state, thus enabling catalytic C−H arylation and
methylation processes.

Cooperative ligand participation in transition metal catalysis
has significantly expanded the scope of accessible chemical

transformations either by modulating electron configuration of
the metal center or via ligand−substrate interactions.1 In the
former case, redox noninnocent ligands, serving as an electron
reservoir, are known to confer versatile catalytic reactivity by
tuning the metal oxidation state.2 This internal redox process
often enables key elementary steps to operate readily, such as
oxidative addition (OA),3 reductive elimination (RE),4 or
hydrogen atom transfer,5 which would be otherwise challenging
(Scheme 1A). Oxidative inducement of the reductive elimi-
nation process, in particular, has been of great interest as it
constitutes a product-releasing step, which is often rate-limiting
in a catalytic cycle.6,7 This mechanistic consideration has been
more pronounced for the first row metal complexes where the
frontier orbitals of certain ligands are in similar levels to those of
metals.8,9

In this context, light-induced metal-to-ligand charge transfer
(MLCT) has emerged as a powerful tool to access higher
oxidation states of the metal center in catalytic reactions
(Scheme 1B, up). Recent studies demonstrated that, in addition
to the more conventional outer-sphere electron transfer in
photoredox catalysis,10 oxidation of the metallic core via MLCT
enables a targeted elementary step such as reductive
elimination11 or ligand transfer.12 An alternative way for
intramolecular modulation of the metal oxidation state was
envisioned to covalently ligate a redox-active photosensitizer
domain to the catalyst core (Scheme 1B, down).13 In this
system, upon irradiation, the excited photosensitizer moiety
induces an internal redox process through the intramolecular
quenching.14 While these charge-transfer (CT) catalyst systems
have been elegantly utilized in proton/hydride transfer and CO2
reduction processes, their application toward organic synthesis
is still underdeveloped.15 To our best knowledge, for example,
catalytic C−H functionalization through CT-induced oxidative
coupling has not been reported.
In this study, we disclose for the first time a single molecular,

bimodular rhodium photocatalyst system for C−H arylation and
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Scheme 1. Facilitation of Transition Metal Catalysis with
Redox-Active Ligand System
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methylation via photoinduced oxidative coupling (Scheme 1C).
The working mode of the synthesized dual-functioning
conjugate catalysts was verified by spectroscopic and electro-
chemical analysis. The formation of high-valent charge-transfer
species was found to allow for the CT-induced C−C bond-
forming reductive elimination from the key post-transmetalation
intermediate by reducing the RE energy barrier.
On the basis of our previous result that C−C bond-forming

reductive elimination from a transmetalated intermediate can be
permitted by the external chemical oxidants,16a,7d,e,16b we first
questioned whether the same strategy would also be operative
under photoredox conditions (Figure 1A). In the presence of
N,N′-bis(2,6-diisopropylphenyl)perylene diimide as a photo-
catalyst (PC1), compact fluorescent lamp (CFL)-irradiation on
each solution of isolated rhodacycle species Cp*RhBQ-Ar and
Cp*RhBQ-Me7e afforded reductive elimination products 1 and
2 in 95% and 87% yield, respectively (Figure 1, eq 1). In stark
contrast, no product was formed under thermal (80 °C) or
irradiation conditions in the absence of PC1, suggesting that the
process is mediated by the excited photocatalyst species. We
were pleased to see that this PC1 photoredox system was also
operative in the Cp*Rh-catalyzed sp2 C−H arylation and
methylation (Figure 1, eq 2). For instance, benzo[h]quinoline 3
was readily coupled with aryl andmethyl boronic ester providing
C-10 arylation and methylation products 1 and 2, respectively,
using CuI transmetalation agent and (tBuO)2 as a mild terminal
oxidant.
It should be noted that the fluorescence emission of PC1 did

not overlap with the absorption bands of the rhodacycle
Cp*RhBQ-Ar and Cp*RhBQ-Me (Figure 1B), thereby ruling
out a dipole−dipole energy transfer mechanism for the above
RE. The triplet energy of PC1 (1.11 eV) was calculated to be
significantly lower than that of Cp*RhBQ-Ar and Cp*RhBQ-
Me (1.42 and 1.43 eV, respectively), suggesting that the RE
process is induced by a photocatalytic oxidation, rather than the
triplet sensitization of the intermediates (Figure 1C). Indeed,
the RE energy barrier from Cp*RhBQ-Ar and Cp*RhBQ-Me
was calculated to decrease substantially from 26.7 and 28.5 kcal/
mol to 6.8 and 8.6 kcal/mol, respectively, upon the single
electron oxidation of the rhodiummetal center, being consistent

Figure 1. (A) Photocatalytic C−C bond forming RE from rhodacycle
intermediates and its application to the catalytic C−H functionaliza-
tions. For reaction conditions, see the Supporting Information. (B)
Absorption spectrum of Cp*RhBQ-Ar and Cp*RhBQ-Me, depicted
with the emission spectrum of PC1. (C) Comparison of triplet energy
of PC1 and the rhodacycle species. S, singlet state; T, triplet state.

Figure 2. (A) Preparation of a series of Rh metallophotocatalyst bearing a mesityl acridinium (PC2) photosensitizer domain. (a) Mesityl lithium (2.0
equiv), TMEDA, Et2O,−30 to 25 °C, 26 h, then nBuLi (1.2 equiv),−30 to 25 °C, 3 h, then 2,3,4,5-tetramethyl-2-cyclopentenone (4.0 equiv), 25 °C,
22 h; (b) Na2CO3, H2O, EtOAc then H2O, HClO4, CH2Cl2, 25 °C, 1 h, 60% in two steps; (c) RhCl3·xH2O (1.0 equiv Rh), iPrOH, 90 °C, 14 h, 89%;
(d) AgOTf (6.0 equiv), CH2Cl2, 25 °C, 14 h, 71%; (e) CH3C6H5, CH3NO2, AgSbF6 (6.0 equiv), 25 °C, 14 h, 54%; (f) 3, AgO2CCF3, Li2CO3, CH2Cl2,
25 °C, 21 h then 40 °C, 4 h, 65%. (B) Single crystal X-ray diffraction structure of [PC2-Cp#RhCl2]2 and PC2-Cp

#RhTol. 10% thermal ellipsoids for
both structures. Hydrogen atoms were omitted for clarity.
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with the mild reaction conditions (see the Supporting
Information for details).7d,e

Encouraged by the above initial results that the product-
delivering oxidatively induced reductive elimination is enabled
by the external photoredox catalyst, we were challenged to
design a bimodular rhodium photocatalyst system bearing two
functional domains in a single molecule, thus capable of both
photosensitization and C−H functionalization. In this context,
we envisioned to covalently link a photosensitizer to a
synthetically tunable cyclopentadienyl ligand to induce an
internal oxidation of the metal center upon irradiation, thus
eventually permitting the oxidatively induced RE process. To
this end, we readily synthesized a ligand 8 bearing a 10-mesityl-
9-phenylacridinium (PC2) moiety linked to the cyclopenta-

dienyl ring, where the phenylene linker was expected to bridge
the two conjugate systems, starting from a commercially
available acridone derivative 6 (Figure 2A). Complexation of
this ligand to a Rh precursor afforded a dimeric rhodium species
[PC2-Cp#RhCl2]2 (Cp# = −C5Me4) in high yield, and its
structure was confirmed by a single crystal X-ray diffraction
analysis to show that the phenyl group is staggered (61°) with
respect to the cyclopentadienyl ring (Figure 2B). The dimeric
precursor [PC2-Cp#RhCl2]2was then treated with silver salts to
obtain monomeric rhodium complexes PC2-Cp#RhOTf and
PC2-Cp#RhTol, and the X-ray crystallographic structure of the
latter was determined, displaying η6-coordination mode of the
toluene ligand on the rhodium center.17

A rhodacycle complex PC2-Cp#RhBQ was also prepared by a
facile carbometalation of benzo[h]quinoline 3 to [PC2-
Cp#RhCl2]2, and the ipso carbon was characterized by observing
a doublet signal in 13C NMR spectrum (δ 175.0 ppm, 2JRh−C =
34.1 Hz in CD2Cl2). Additional spectroscopic and electro-
chemical analyses on PC2-Cp#RhBQ were performed in
comparison with the photosensitizer segment (PC2-H) as
well as the parent rhodacycle Cp*RhBQ (Figure 3A). An
absorbance at 362 nm, which corresponds to the phenyl (π) to
acridinium (π*) transition in PC2-H, was decreased in the PC2-
Cp#RhBQ conjugate, while that at 429 nm remained
unchanged, which was ascribed to the mesityl (π) to acridinium
(π*) transition. In addition, phosphorescence at 509 nm of
PC2-H was almost completely suppressed in PC2-Cp#RhBQ,
implying that an intramolecular quenching takes place
dominantly for the relaxation.14a

On the other hand, the cyclic voltammogram of PC2-
Cp#RhBQ showed one unexpected irreversible oxidation peak
at Epa = 0.010 V (50 mV/s, vs Fc/Fc+) in addition to the
anticipated signals assignable to photocatalyst redox pair
([PC2•−/PC2]) and RhIII/RhIV oxidation, even without

Figure 3. (A) UV−vis absorption (left) and fluorescence emission
(right) spectrum of PC2-Cp#RhBQ, represented with that of control
species. 440 nm wavelength was used for the excitation for the emission
spectra. (B) Cyclic voltammogram of PC2-Cp#RhBQ in THF-d8 at 50
mV/s. (C) Experimental (black) X-band EPR spectrum of PC2-
Cp#RhBQ and PC2-Cp#RhOTf in CH2Cl2 at 100 K and simulated
(blue) EPR spectrum for each case.

Scheme 2. Light-Induced RE Process from PC2-Cp#Rh
Catalyst System and Its Application to the Catalytic C−H
Functionalizations

aReaction conditions: 4 (2.0 equiv), tBuOK (10 mol %), PC2-
Cp#RhTol (5 mol %), (CuOTf)2(C6H6) (5 mol %), and (tBuO)2
(2.0 equiv) under CFL (20 W) irradiation. bReaction conditions: 5
(2.0 equiv), tBuOK (10 mol %), PC2-Cp#RhOTf (5 mol %), CuOAc
(10 mol %), and (tBuO)2 (2.0 equiv) under 440 nm (20 W)
irradiation.
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irradiation (Figure 3B). The signal at Epa = 0.010 V was assigned
to the oxidation arising from the metal-to-photosensitizer
charge-transfer state, PC2•−/RhIV, which is assumed to present
in equilibrium with the ground state, PC2/RhIII. Indeed, the X-
band EPR spectrum of PC2-Cp#RhBQ displayed signals
corresponding to organic radical (g = 2.002) and transition
metal ion (g = 2.053 and 2.30) as well as a high-spin unpaired
electron (g = 4.30, Figure 3C). The line broadening of the
organic radical signal can be ascribed to the hyperfine coupling
by the acridine nitrogen, where the α-HOMO of the triplet
rhodacycle species is distributed (vide infra). Furthermore, the
hyperfine coupling by the Rh metal center was detected in the
metal-centered rhombic resonance of PC2-Cp#RhOTf (gx =
2.047), indicating the transient formation of a high-valent RhIV

species by the photosensitizer moiety (PC2).
Having found that the photosensitizer domain can easily

access the rhodium valence electrons, we envisaged that the
PC2-Cp#Rh-mediated C−C bond-forming RE process could be
promoted by the action of light-excited chromophore domain
(PC2*) through an internal oxidation of the metal center.
Indeed, when a solution of PC2-Cp#RhBQ was irradiated in the
presence of aryl- or methyl borate (4 and 5) and Cu(I)
transmetalation agent, the desired reductive elimination
products (1 and 2, respectively) were obtained in good yields
(Scheme 2A). However, reactions in dark afforded products in
less than 10% yields, again suggesting that this process is
facilitated by the light-induced internal charge transfer. More-
over, catalytic C−H functionalization by using PC2-Cp#Rh
catalyst systemwas also successfully performed under irradiation
conditions (Scheme 2B).
Finally, DFT calculations on the postulated intermediate

PC2-Cp#RhBQ-Ar were carried out for better understanding of
the light-induced RE process. The frontier molecular orbital

diagram for the singlet ground state represents metal-centered
occupied frontier orbitals (HOMO and HOMO−1) and
acridine (π*)-centered LUMO (Figure 4A). On the other
hand, in the triplet ground state ([PC2-Cp#RhBQ-Ar]*), while
the α-HOMO is located on the acridine π*, the β-LUMO is
mainly composed of nonbonding metal d orbitals which
dominantly comprise metal-centered HOMO−1 of the singlet
state. Furthermore, the RE energy barrier of the postulatedPC2-
Cp#RhBQ-Ar intermediate decreases from 27.0 to 6.0 kcal/mol
upon the charge transfer, implying that the triplet excitation in
the photosensitizer domain will result in an internal oxidation to
form a transient RhIV species, from which the C−C forming RE
process readily takes place (Figure 4B). A similar tendency was
also observed for the methyl analogue PC2-Cp#RhBQ-Me,
where the activation energy of RE was also substantially reduced
from 30.0 to 11.1 kcal/mol upon the charge transfer (see the
Supporting Information for details).
In conclusion, a single molecular rhodium catalyst system

bearing two functional domains for photosensitization andC−H
carbometalation was successfully developed for the first time. It
was shown that the excited photosensitizer moiety generates a
transient high-valent RhIV intermediate through an internal
oxidation, thus facilitating the key C−C bond-forming reductive
elimination process in the oxidative C−H arylation and
methylation reactions.
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Figure 4.DFT calculation studies on the hypothetical PC2-Cp#RhBQ-Ar species. ε = 7.4257 for tetrahydrofuran. (A) Schematic diagram for the light-
induced internal charge transfer process and Kohn−Sham diagram of the frontier orbitals for PC2-Cp#RhBQ-Ar in singlet and triplet ground state.
Isovalue = 0.1. (B) The activation barriers for reductive elimination from singlet (blue) and triplet (red) states ofPC2-Cp#RhBQ-Ar, depicted with the
transition state geometry. For the methyl counterpart, see the Supporting Information.
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