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Ruthenium Catalyzed β-C(sp3)−H Functionalization on the 
'Privileged' Piperazine Nucleus 
V. Murugesh,ab Christian Bruneau,c Mathieu Achard,c Apurba Ranjan Sahoo,c Gangavaram V. M. 
Sharma,a and Surisetti Suresh*ab

β-C(sp3)−H functionalization on the 'privileged' piperazine nucleus 
has been disclosed using ruthenium catalysis. The ruthenium 
catalyzed synthesis of a variety of piperazine fused indoles from 
ortho-piperazinyl (hetero)aryl aldehydes is presented. This 
transformation takes place via dehydrogenation of piperazine 
followed by intramolecular nucleophilic addition of the transient 
enamine moiety onto the carbonyl group then aromatization 
cascade. 

C(sp3)−H activation-functionalization has emerged as an 
important area of research in modern organic synthesis.1 
C(sp3)−H activation-functionalization of aliphatic (cyclic) 
amines provides a tool for the synthesis of various nitrogen 
containing derivatives including N-heterocycles. Generally, 
C(sp3)−H functionalization on the α-carbon to nitrogen atom 
are well reported1,2 while that on the β-carbon to nitrogen has 
received considerably less attention.3 Bruneau group has 
reported ruthenium catalyzed β-C(sp3)−H functionalization of 
saturated cyclic amines.4 Gaunt and co-workers have reported 
the transformation of aliphatic amines to β-lactams enabled by 
palladium catalyzed β-C−H carbonylation.5 Yu and co-workers 
have described directing group assisted, Pd/NHC catalyzed β- 
C(sp3)−H arylation of saturated cyclic amines (Scheme 1).6 
However, C−H functionalization of piperazines has received 
significantly less attention despite the prominence of this 
'privileged' moiety in several life-saving marketed drugs and 

continuing to be important in drug discovery programs.7 This is 
probably due to the presence of two 1,4-nitrogen atoms in the 
ring system, interfering in selectivity and reactivity issues, 
making them challenging substrates for investigations in the 
area of C−H functionalization. In spite of these reasons there 
have been few reports on the α-C(sp3)−H functionalization of 
piperazines―facilitated by strong bases,8 transition metal-9 
and photoredox-catalysis.10 However, β-C(sp3)−H 
functionalization of piperazine remains a challenging problem. 
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Scheme 1   Recent selected examples on β-C(sp3)−H 
functionalization of (cyclic) amines and present work. 
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Fig 1   Biologically active N-fused piperazine-indole 

derivatives. 
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Herein we report β-C(sp3)−H functionalization on the 
'privileged' piperazine nucleus using ruthenium catalysis 
(Scheme 1). We envisaged that ruthenium-catalyzed 
dehydrogenation on N-alkyl piperazine would furnish iminium 
intermediates en route to enamine formation, which would 
add onto an electrophile to accomplish net β-C(sp3)−H 
functionalization. Accordingly, we chose 2-(4-methylpiperazin-
1-yl)benzaldehyde 1a containing N-methyl group that assist in 
the enamine formation and an internal carbonyl group 
tethered to the N(4) of the piperazine to serve as an 
electrophile. This transformation would eventually furnish 
piperazine fused indole systems, which represent potential 
compounds in the area of medicinal chemistry due to their 
wide range of biological activities including 5-HT2C receptor 
agonists,11 anti-diabetic, cytotoxic12 and LXR modulator 
activity13 (Figure 1). 

The initial reaction of compound 1a in the presence of 
RuCl3.xH2O and camphorsulfonic acid (CSA) as an additive did 
not give any β-C(sp3)−H functionalization product (Table 1, 
entry 1). Much to our delight, using [Ru(p-cymene)Cl2]2 B as a 
catalyst in the presence of CSA additive resulted in the 
corresponding piperazine fused indole 2a in 38% yield (Table 1, 
entry 2). Encouraged by this result, we have screened different 
ruthenium/iridium catalysts and additives in this reaction (for a 
detailed optimization study, see supporting information). The 
well-defined ruthenium and iridium catalysts (C, D and E)14 
bearing a phosphine-benzenesulfonate ligand in the presence 
of CSA resulted in lower yields of the desired product (Table 1, 
entries 4-6). The ruthenium catalyst tris(2,2'-
bipyridyl)Ru(II)Cl.6H2O F also gave a low yield of 2a (Table 1, 
entry 7). Increasing the loading of B to 5 mol% proved to give 
better results (Table 1, entry 8). Use of other acidic additives 
such as p-TSA and 3,5-DNB did not give better results (Table 1, 
entries 9 and 10). When molecular sieves 4 Å (0.5 g) were 
added to the reaction along with the additive CSA in the 
presence of B, the corresponding product was isolated in 66% 
yield (Table 1, entry 11). The absence of CSA as additive 
resulted in lower yield of 2a (Table 1, entry 12), which confirms 
the presence of acid benefits the reaction. This transformation 
was not successful in the absence of ruthenium catalyst (Table 
1, entry 13). 

We selected the optimized conditions reported in entry 11 
to study the scope of this transformation (Scheme 2). Initially, 
the nature of the substituents on the N(1) of piperazine has 
been checked and it was found that ethyl and n-propyl 
substituents resulted in moderate yields of the corresponding 
piperazine fused indoles 2b-c. It is interesting to note that 
when ortho-piperazinylbenzaldehyde bearing a benzyl group at 
the N(1) position of the piperazine ring was subjected to the 
optimized conditions, most of the starting material remained 
unreacted and N-benzyl,N’-phenylpiperazine resulting from 
decarbonylation of the aldehyde was formed in low amount 
(see supporting information). This result reveals that the 
present catalytic system exhibits a different tolerance to the 
protecting group of the directing nitrogen atom since catalysts 
C and D were efficient for the intermolecular β-C(sp3)-H 
alkylation by aldehydes starting from cyclic  N-benzyl amines.4a 

Different N-methyl-N'-aryl-piperazine compounds 1d-q have 
been prepared and subjected to the ruthenium catalyzed β-
C−H functionalization reaction. ortho-Piperazinyl 
benzaldehydes 1d-l bearing halogen substituents like chloro, 
bromo or fluoro groups at different positions have undergone 
the β-C(sp3)−H functionalization to afford moderate yields of 
the corresponding piperazine fused indoles 2d-l under the 
ruthenium catalysis conditions. Piperazine fused indoles 2m-o 
bearing electron-withdrawing groups like trifluoromethyl or 

Table 1   Optimization studya 

Catalyst/Additive

Toluene, 140 oC
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N

2Cl
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.
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Entry Catalyst (x mol%) Additive (y mol%) yield% of 2ab 

1 A (2) CSA (5) ― 

2 B (2) CSA (5) 38 

3 B (2) CSA (10) 38 

4 C (2) CSA (5) 19 

5 D (2) CSA (5) 17 

6 E (2) CSA (5) 21 

7 F (2) CSA (5) 10 

8 B (5) CSA (10) 56 

9 B (5) p-TSA (10) 13 

10 B (5) 3,5-DNB (10) – 

11 B (5) CSA (10) + MS 4 Å 66 

12 B (5) ― 32 

13 ― CSA (10) – 
aReaction conditions: 1a (0.6 mmol), catalyst (x mol%), 
additive (y mol%), toluene (2 mL); bYields are for isolated 
products; Reactions were performed at 140 oC for 18 h; 
CSA = camphorsulfonic acid; p-TSA = para-toluenesulfonic 
acid; 3,5-DNB = 3,5-dinitrobenzoic acid; MS = molecular 
sieves. 
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nitro groups on the benzene ring were obtained in moderate 
yields. ortho-Piperazinyl benzaldehyde 1p bearing the 
electron-donating methyl group is a good substrate for this 
transformation, comparable to 1a. Further, this transformation 
is not limited to only ortho-piperazinyl aromatic aldehydes as 
N-heteroaryl piperazine like 8-methyl-2-(4-methylpiperazin-1-
yl)quinoline-3-carbaldehyde 1q also served as a good substrate 
in this transformation to afford the corresponding piperazine 
fused aza-indole system 2q in good yield. On the other hand, 
an acyl group in place of the carbaldehyde led to an inactive 
substrate. 

Note that the present transformation has enabled us to 
scale up the reaction to a gram scale for the synthesis 2-
methyl-1,2,3,4-tetrahydropyrazino[1,2-a]indole 2a in good 
yield (Scheme 3). 

We have performed control experiments to know whether 
the reaction goes through α- or β-C(sp3)−H activation and to 
get insights of the mechanism. The reactions of ortho-N-
piperidinyl or ortho-N-morpholinyl benzaldehyde derivatives 
3a-b under the present ruthenium catalysis conditions did not 
give the products 4a-b arising from α-C(sp3)−H 
functionalization while most of the substrates remained 
unreacted (Scheme 4, top). These experiments suggest that in 
the presence of ruthenium catalyst β-C(sp3)−H activation-
functionalization taking place on the piperazine nucleus where 
N-alkyl part of the piperazine is playing an essential role. The 
radical pathway en route to piperazine fused indoles may be 
ruled out since addition of TEMPO did not affect the reaction 
of the ruthenium catalyzed of ortho-N-piperazinyl 
benzaldehyde 1a (Scheme 4, bottom). 

Based on the control experiments and literature reports,4 a 
plausible mechanism for the present ruthenium catalyzed β-
C−H functionalization is depicted in the Scheme 5. Piperazine 1 
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Scheme 4   Control experiments. 
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Scheme 5   Plausible mechanism. 
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Scheme 2   Synthesis of piperazine fused indole derivatives. 
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may be converted to the corresponding iminium intermediate 
I in the presence of ruthenium catalyst via hydrogen transfer. 
The intermediate I would then give azomethine ylide II along 
with ruthenium hydride species, after hydrogen abstraction. 
The presence of acid might promote the formation of enamine 
intermediate III, which would attack the carbonyl group to give 
intermediate IV. This would then undergo aromatization via 
dehydration to afford intermediate V, and the iminium part of 
it could be reduced by the ruthenium hydride species to 
furnish the piperazine fused indole 2. 

In conclusion, we have developed an unprecedented  
ruthenium catalyzed β-C(sp3)−H functionalization on the 
'privileged' piperazine nucleus. Ruthenium-catalyzed 
dehydrogenation and hydrogen auto-transfer process appears 
to be the key for this successful transformation. This protocol 
complements the few available catalytic methods for α-
C(sp3)−H functionalization of piperazines. Various piperazine 
fused indole derivatives have been synthesized using the 
presented method. The optimized method enabled the gram 
scale synthesis of a representative piperazine fused indole 
derivative. Explorations are underway on the intermolecular β-
C(sp3)−H functionalization using different coupling partners on 
piperazine and related systems using well-defined ruthenium 
catalysts. 

We thank the Indo-French Centre for the Promotion of 
Advanced Research (CEFIPRA/IFCPAR No. 5105-4) for financial 
support. VM thanks UGC, New Delhi for financial support. ARS 
thanks CEFIPRA for financial support. 
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Abstract: 

 
β-C(sp

3
)−H func�onaliza�on on the 'privileged' piperazine nucleus has been disclosed using 

ruthenium catalysis. The ruthenium catalyzed synthesis of a variety of piperazine fused indoles from 

ortho-piperazinyl (hetero)aryl aldehydes is presented. This transformation takes place via 

dehydrogenation of piperazine followed by intramolecular nucleophilic addition of the transient 

enamine moiety onto the carbonyl group then aromatization cascade. 
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Ruthenium catalysed β-C(sp
3
)−H Functionalization of piperazines has been revealed. 
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