A Novel Stereoselective Synthesis of Substituted y-Butyrolactones

Juan C. Carretero* and Javier Rojo

Departamento de Química. Universidad Autónoma de Madrid. Cantoblanco. 28049-Madrid. Spain

Key Words: substituted γ -lactones; α , β -unsaturated sulfones; subforybutenolides; stereoselective conjugate additions; trimethylaluminum

Abstract: A new stereoselective synthetic route for the preparation of cis and trans disubstituted (and trisubstituted) γ -lactones starting from the readily available α -phenylsulfonyl- α , β -unsaturated esters 3 or α -phenylsulfonylbutenolides 4 is described. This method is based on the conjugate addition of Me3Al to compounds 3 and 4, which occurs with high, though opposite, facial selectivity.

Substituted butenolides and γ -lactones are versatile synthetic intermediates currently used in organic synthesis¹. Additionally, these units are frequently found in a large variety of natural products². Recently we reported a practical method for the synthesis of racemic (E)- γ -hydroxy- α , β -unsaturated phenyl sulfones³ (1) and their efficient resolution by enzymatic methods⁴. Herein, we describe that vinyl sulfones 1 can be used as useful starting products for the stereoselective syntheses of *cis* and *trans* di- and trisubstituted γ -butyrolactones.

As a first step, the hydroxyl group of vinyl sulfones 1 was protected as MOM derivative. The C- α deprotonation of these α,β -unsaturated sulfones with n-BuLi or LDA⁵ (1,1 equiv., THF, -78°C, 30 min.), followed by reaction with dry CO₂ afforded the expected (E)- α,β -unsaturated carboxylic acids 2 in 60-80% overall yield⁶ (scheme 1). The carboxylic acids 2 were readily converted into methyl esters 3, by methylation with MeI/NaHCO₃ in DMF (88% yield after chromatography), or into butenolides 4, by lactonization under acid conditions (Amberlite IR, CF₃SO₃H, MeOH, 70-73% yield)⁷.

i) CH₂(OCH₃)₂, P₂O₅, CHCl₃, r.t., 1.5 h; ii) n-BuLi or LDA, THF, -78°C, 30 min.; then CO₂; iii) MeI, NaHCO₃, DMF, r.t., 4 h.; iv) Amberlite IR, CF₃SO₃H, MeOH, r.t., 48 h.

With Michael acceptors 3 and 4 in hand, we focused our attention in the addition of organometallics. We observed competence between 1,4 and 1,2-addition in the reaction of RMgBr and RLi with substrates 3. On the other hand, although the reaction of 3 with Bu2CuLi provided regioselectively the 1,4-adducts, this Michael addition occured with very low facial stereoselectivity. Remarkably, reaction of substrates 3 with Me3Al took place through complete regioselective 1,4-addition and with very high facial stereoselectivity (scheme 2). The reactions were performed at low temperature (-20°C) adding the substrate 3 to a solution of a large excess of Me3Al (4 equiv.) in CH₂Cl₂, to give stereoselectively in excellent yield (93-95%) a mixture of both syn-adducts 5 (1:1.6 mixture of epimers at C-2), which in turn were converted into the corresponding mixtures of cis-lactones 6+7 by acid treatment⁸ (H₂SO₄, ether-H₂O, 80-88% yield after chromatography). These mixtures of lactones 6+7 can be thermodynamically equilibrated to the most stable trans, cis-lactones 7 under basic conditions (Na₂CO₃, THF-H₂O). The stereochemistry of lactones 6 and 7 has been established by study of their ¹H-NMR data^{9,10}. In agreement with this assignment, the reductive elimination of the sulfonyl group¹¹ (Na-Hg, Na₂HPO4, MeOH) on the mixtures of lactones 6+7 afforded exclusively the disubstituted cis-lactones 8 (72-95%, 8a: $J_{3,4}$ = 6.5 Hz¹²; 8b: $J_{3,4}$ = 4.8 Hz). The very high syndiastereoselection, observed in the conjugate addition of Me3Al to Michael acceptors 3, is consistent with a model based on a prior chelation between the oxygen atoms of the MOM group and the electrophilic aluminum atom (figure 1) in the most stable conformation 1^3 of substrates 3, which would force the addition of Me by the same side of the MOM group. A similar stereochemical behaviour has been previously reported in the addition of organolithiums to α -trimethylsilyl- γ -MOM- α , β -unsaturated sulfones^{5,14}.

i) Me₃Al (4 eq.), CH₂Cl₂, -20°C, 30 min.; ii) H₂SO₄, Et₂O/H₂O, 60°C, 24 h.; iii) Na₂CO₃, H₂O/THF, r.t., 24 h.
iv) Na(Hg), Na₂HPO₄, MeOH, r.t., 1.5 h.
Scheme 2

On the other hand, the addition of Me3Al to the butenolides 4, under the same experimental conditions (scheme 3), afforded a mixture of *trans,trans*-lactones 9 and *cis,cis*-lactones 6 in excellent yield (92-97 %). As it was expected on steric grounds the *trans,trans*-lactone 9 (*anti*-diastereoselection) was obtained as the major isomer, the stereoselectivity being dependent on the size of R group (R=Me 9a/6a= 75/25; R=ⁱPr 9b/6b=

93/7). The major isomers 9 have been easily purified by crystallization. The further elimination of the sulfonyl group on lactones 9 gave the disubstituted *trans*-lactones 10 (72-87% yield, 10a $J_{3,4}$ = 7.6 Hz¹²; 10b $J_{3,4}$ = 6.0 Hz).

The α -phenylsulfonyl γ -lactones¹⁵ (compounds 9 and mixtures 6+7) constitute useful intermediates for the introduction of carbon substituents at α -position and hence, for the stereoselective synthesis of trisubstituted γ -lactones (scheme 4). The methylation of 9b and 6b+7b with NaH/MeI (80-93% yield)¹⁶ followed by reductive elimination of the phenylsulfonyl group (Na-Hg) led to the stereoselective preparation of the *trans*, *trans*- γ -lactone 11 and the *cis*, *cis*- γ -lactone 12 respectively, in good overall yields (79-88%). Additionally, alkylation of enolate of lactone 9b with methyl bromoacetate¹⁶ and further basic elimination of the sulfonyl group (DBU, CH₂Cl₂) afforded the 2,3,4-trisubstituted butenolide 13 in 52% overall yield after chromatography.

i) MeI, NaH, DMF, r.t., 5 h.; ii) Na(Hg), Na₂HPO₄, MeOH, r.t., 3 h.; iii) BrCH₂CO₂Me, NaH, DMF, r.t., 5 h.; iv) DBU (1.5 eq.), CH₂Cl₂, r.t., 17 h.

The application of these methodologies to the enantioselective synthesis of natural products from homochiral compounds 3 and 4, and the use of other aluminum reagents in the conjugate addition are now in progress in our laboratory.

Acknowledgements: We thank DGICYT (Grant PB90-0178) for financial support. One of us (J.R.) also thanks Comunidad de Madrid for a FPI fellowship.

References and Notes

1.- For a review, see: Rao, Y.S. Chem. Rev. 1976, 76, 625.

2.- Nagao, Y.; Dai, W.; Ochiai, M.; Shiro, M. J. Org. Chem. 1989, 54, 5211 and references cited therein.

3.- a) Domínguez, E.; Carretero J.C. Tetrahedron Lett. 1990, 31, 2487. b) Domínguez, E.; Carretero J.C. Tetrahedron 1990, 46, 7197. c) Trost, B.M.; Grese, T.A. J. Org. Chem. 1991, 56, 3189.

4.- a) Domínguez, E.; Carretero J.C.; Fernandez-Mayoralas, A.; Conde, S. Tetrahedron Lett. 1991, 32, 5159. b) Carretero J.C., Domínguez, E. J. Org. Chem. 1992, 57, 3867.

5.- The best results for the preparation of acids 2 were obtained by using LDA in the case of R=Me and n-

BuLi for R= i-Pr. For the introduction of other functionalities at α -position in vinyl sulfones 1 see: Alcaraz, C.; Carretero, J.C.; Domínguez, E. Tetrahedron Lett. 1991, 32, 1385.

6.- For the carboxylation of γ-hydroxy-α,β-unsaturated sulfides see: Takayori, I.; Yamakawa, I.; Okamoto,

S.; Kobayashi, Y.; Sato, F. Tetrahedron Lett. 1991, 32, 371.

7.- Whereas esters 3 have been readily purified by flash chromatography, when butenolides 4 were submitted to silica gel chromatography a great amount of the dimeric compound 14 was formed (e.g. 40% of the stereoisomer 14b was obtained from 4b). Therefore, butenolides 4 have been purified by crystallization or used without further purification.

8.- In the lactonization of the mixture of syn-adducts 5a (1.8:1 ratio) we obtained exclusively the trans, cis-lactone 7a (82% after chromatography).

PhSO₂

SO₂Ph

9.- For an extensive study about stereochemistry and coupling constants on substituted γ -butyrolactones see: a) Jaime, C.; Ortuño, R.M.; Font. J. J. Org. Chem. 1986, 51, 3946. See also: b) Petrzilka, M.; Felix, D.; Eschenmoser, A. Helv. Chim. Acta 1973, 56, 2950. c) Bystrom, S.; Högberg, H. E.; Norin, T. Tetrahedron 1981, 37, 2249. d) Najera, C.; Yus, M.; Seebach, D. Helv. Chim. Acta 1984, 67, 289. e) Welch, J.T.; Plummer, J.S.; Chou, T. J. Org. Chem. 1991, 56, 353. f) Hoye, T.R.; Hanson, P.R. J. Org. Chem. 1991, 56, 5092.

10.- The values of the vicinal coupling constants $J_{2,3}$ and $J_{3,4}$ and the strong deshielding effect induced by the phenylsulfonyl group on the substituent in y position (H or R groups) in syn-relationship are especially significant for the stereochemical assignment of trisubstituted y-lactones 6, 7, 9, 11 and 12

Comp.	Chemical shifts (ppm) ^a				Coupling constants (Hz) ^a		
	δH2	δH3	δH4	δH _R	J2,3	J3,4	J4,r
6b	4.25	3.22	3.76	1.92	6.5	4.0	10.6
7a	3.71	3.35	4.98	1.33	4.3	6.6	6.6
7b	3.65	3.42	4.49	1.88	1.5	5.3	10.3
9a	3.84	2.77	4.10	1.45	10.1	8.3	6.2
9b	3.80	2.94	3.80	1.91	8.9	7.0	6.6
11	2.70	2.42	3.75	1.78	7.1	4.1	10.6
12	2.21	1.88	3.78	1.88	11.1	9.3	4.7
a Voluce in	CDCL						

values in CDCh

11.- Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R. Tetrahedron Lett. 1976, 3477.

12.- Cis and trans-3,4-dimethyl-γ-butyrolactones (8a and 10a) have been previously reported. Their ¹H-NMR data are described in references 8a-d.

13.- For a review about 1,3-strain in stereoselective transformations see: Hoffmann, R.W. Chem. Rev. 1989, 89, 1841.

14.- Isobe, M. Perspectives in the Organic Chemistry of Sulfur, Zwanemburg, B.; Klander, A.J. Eds.; Studies in Organic Chemistry 1987, 28, 209.

15.- For other synthesis of substituted α -phenylsulfonyl- γ -butyrolactones see: a) Rodríguez, C.M.; Ramírez M.A.; Martín V.S. Tetrahedron Lett. 1992, 33, 3039. b) Rodríguez, C.M.; Martín, V.S. Tetrahedron Lett., 1991, 32, 2165.

16.- These alkylations were completely stereoselective. Only the stereoisomer with sulfone and i-Pr groups in cis arrangement was detected.

(Received in UK 21 July 1992)