Synthesis of the Diterpenoid Grayanol B from Grayanotoxin II

By Toyo Kaiya, Naohiro Shirai, and Jinsaku Sakakibara*

(Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467, Japan)

Summary Treatment of grayanotoxin II (1) with thallium(III) acetate in acetic acid at room temperature, followed by alkaline hydrolysis, yields grayanol B (3b).

Leucothoe grayana, a well known poisonous shrub of Japan, contains three structural groups of diterpenoids: grayanotoxins (1), leucothols (2), and grayanols (3).¹ In the course of our study to correlate them chemically, we reported a one-step synthesis of leucothol D (2) from grayanotoxin II (1) by using palladium acetate.¹ We now describe a facile conversion of (1) into grayanol B (3b) by means of thallium(III) acetate.

¹H n.m.r. spectrum showed the presence of one secondary acetoxy-group. Its ¹³C n.m.r. spectrum was very similar

> **T** 13C M data in CDN (S/m . . .

HO 3 1 10 0 0 14 0 H				
(1)	(2) toucothol D			
grayanotoxin II	leu cothol D			
HO HO 3^{2} OH OH (3)a; 6(S) grayanol A b; 6(R) grayanol B				
(5)				

Treatment of (1) with thallium(III) acetate in acetic acid at room temperature for two days gave a product (4), whose to those reported for grayanol A (3a) and grayanol B (3b) (Table).² Mild alkaline hydrolysis of (4) yielded a crystalline product, $C_{20}H_{32}O_6$, m.p. 203—204 °C, which was identical (by m.m.p., i.r. spectroscopy, and t.l.c.) with an authentic specimen of grayanol B isolated from the plant. Thus, we have been able to achieve simply the chemical conversions of gravanotoxin II (1) into leucothol D (2) and grayanol B (3b).

IABLE.	¹⁶ C N.m.r.	data	ın	C_5D_5N	{ø/p.p.m.}.

	(3a)	(3b)	(4)ª		
-CH ₃	16.4	16.2	15.9		
5	24.0	$23 \cdot 5$	$23 \cdot 6$		
	$25 \cdot 9$	$25 \cdot 6$	$25 \cdot 6$		
-CH2-	26.6	25.6	$25 \cdot 9$		
0112	27.2	27.9	27.2		
	35.4	38.4	35.8		
	45.3	45.5	45.1		
	57.8	53.5	57.7		
>CH	51.7	50.7	51.0		
/011	53.9	53.5	53.4		
>C <	53.3	53.9	$53 \cdot 2$		
20 <	54.3	58.0	54.5		
>CHOH	67.9	67.4	67.5		
and	70.7	69.8	69.5		
>CHOA		73.1	74.2		
2011 011	85.7	78.9	78.9		
∋COH	80.4	79.9	$79 \cdot 9$		
>C=CH ₂	115.2	111.6	113.8		
-	150.9	$157 \cdot 1$	151.9		
>C=O	215.6	207.7	$215 \cdot 2$		
^a -COCH ₃ 21·1 and 170·1 p.p.m.					

A likely intermediate of this reaction is regarded as the thallium compound (5).

We thank Dr. S. Fushiya at Tohoku University for a specimen of grayanol B.

(Received, 9th October 1980; Com. 1101.)

¹ T. Kaiya, N. Shirai, and J. Sakakibara, J. Chem. Soc., Chem. Commun., 1979, 431.

² S. Fushiya, H. Hikino, and T. Takemoto, Tetrahedron Lett., 1974, 183.