View Article Online View Journal

Organic & Biomolecular Chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Z. You, Y. Chen and Y. Liu, *Org. Biomol. Chem.*, 2016, DOI: 10.1039/C6OB00953K.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

ARTICLE

COYAL SOCIETY REW CHEMISTRY DOI: 10.1039/C60B00953K

From Racemic Precursors to Fully Stereocontrolled Products: One-Pot Synthesis of Chiral α -Amino Lactones and Lactams

Zhi-Hao You, Ying-Han Chen, and Yan-Kai Liu*

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Substituted racemic lactols or cyclic hemiaminals were directly used as nucleophiles in enamine-based asymmetric amination reaction to access enantioenriched α -amino lactones or lactams via one-pot sequence. The desired products, which are very important building blocks in organic synthesis but difficult to be prepared optically enriched, could be afforded with two stereogenic centers in high yields with excellent enantioselectivities. Moreover, starting from the racemic precursors and catalyzed by the enantiomeric pair of the catalyst, all possible stereoisomeric products were discretely provided only after simple column chromatography. Additionally, this protocol provides facile access to several novel bicyclic carbamates, and such drug-like heterocyclic compounds should be potentially useful in medicinal chemistry.

Introduction

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23

Currently, the design and synthesis of polyfunctionalized heterocyclic synthons which contain multiple stereogenic centers have become an active topic of research. Along this line, there was a challenging issue in the field of asymmetric synthesis, establishing practical and efficient access to useful chiral heterocyclic building blocks. Particularly, it is highly desirable from a synthetic point of view that, when starting from racemic materials, diastereo- and enantiomerically pure compounds are finally obtained only after simple work up, such as column chromatography, which makes the overall process more atom-efficient and attractive.¹

Chiral *a*-amino lactones or lactams, especially containing a stereogenic center adjacent to the O or N atom in the ring, are the structural feature of numerous biologically active natural products and pharmaceuticals (Scheme 1, upper structures).^{2,3} Moreover, functionalized chiral α -amino γ -lactones are also the crucial precursors for the preparation of α -amino acids with a hydroxyl group in y position which are an important class of naturally occurring products.⁴ In spite of their promising biological activities, the stereocontrolled synthesis of chiral α-amino lactones or lactams with multiple stereogenic centers has remained a challenging issue. Indeed, among the documented examples, stepwise process is generally involved in the formation of all chiral centers on the ring system of lactones or lactams, and relies mainly on the application of enzymatic resolution,⁵ chiral auxiliaries,⁶ or chiral starting materials.⁷ In addition, most cases still suffered from several

Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.

⁺ Electronic Supplementary Information (ESI) available: all spectroscopic data and procedures for novel compounds.. See DOI: 10.1039/x0xx00000x

related drawbacks, including low efficiency,⁸ costly transition metal catalysis,⁹ or scope restrictions.¹⁰ Accordingly, the development of new, flexible, and expedient protocols for the preparation of these valuable heterocycles is of significant importance.

As part of our continuous research efforts toward the chemistry of lactols and cyclic hemiaminals,^{11,12} we have been interested in exploring a rapid access, which could meet the

Scheme 1. Selected biologically active compounds and our projected novel synthetic strategy.

Email: liuyankai@ouc.edu.cn

requirements of atom economy and provide chiral α -amino lactones and lactams with excellent enantio- and diastereoselectivities. In the stereodivergent reaction process (Scheme 1, lower equation),^{1c} substituted racemic lactols or cyclic hemiaminals were directly used as nucleophiles in the asymmetric catalytic amination reaction under enamine-based activation,^{13,14} and the subsequent oxidation step afforded the desired chiral α -amino lactones or lactams with multiple stereogenic centers as a single diastereoisomer only after simple column chromatography workup.

Results and discussion

To prove the viability of the direct enantioselective amination of lactol, we conducted the reaction of racemic lactol **1a** and di-*tert*-butyl azodicarboxylate **2a** in CH_3CN at room temperature in the presence of organocatalyst **3**, and after the amination step, a subsequent pyridine

Table 1. Selected Optimization Studies^a

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23

Entry	3	Time (h)	Yield (%)	ee (%)
			4a/5a	4a/5a
1^{b}	3a	3	37/43	65/49
2 ^b	3b	2.5	38/44	81/66
3 ^b	3c	>13	27/23	39/43
4	3d	12	37/46	95/93
5	3e	>96	28/30	96/92
6	3f	-	-	-
7	3g	-	-	-
8	3h	5	39/45	94/91
9	3 i	5	37/44	98/95
10 ^b	3j	12	25/32	88/84
11 ^c	3d	16	40/46	95/93
12 ^{<i>d</i>}	3d	30	38/40	95/93

^aSee the Supporting Information for more details. Yields are of the isolated diastereomerically pure compounds **4a** and **5a**. The ee values are determined by HPLC analysis of isolated compounds **4a** and **5a** on chiral stationary phases. ^b20 mol % *p*-NO₂PhCOOH was used as the co-catalyst. ^c10 mol % **3d** was used. ^d5 mol % **3d** was used. PCC = pyridine chlorochromate, Boc = *tert*-butoxycarbonyl, TMS = trimethylsilyl, TBS = *tert*-butyldimethylsilyl, TES = triethylsilyl.

chlorochromate (PCC)-mediated oxidation reaction reaction finished the desired products 4a and 5a ිාර්ද්රාලි සිරිමේ සිරිමේ සිරිම් සිරිම සිරිම් සිරිම සිරිම් සිර diastereoisomers in one-pot sequence (Table 1). According to the results in Table 1, we could rationalize the structure features of catalysts applied in these reactions, which exhibited significantly different catalytic activity and enantioselectivity toward the amination process, as the following: (1) diarylprolinol derivatives normally resulted with moderate to good enantiomeric excess (ee) for both of the diastereomeric products **4a** and **5a**.¹⁵ It should be noted that the increased steric hindrance of silvl substituents of the catalyst would benefit to improve the stereoselectivity (Table 1, entries 1-3). (2) Proline type catalysts, which contained a carboxylic acid group, are much more efficient and showed very good catalytic activity and enantioselectivity.¹⁶ However, it is unclear for us why no reaction occurs when **3f** is applied in the reaction. Moreover, it is worth mentioning that the unprotected hydroxyl group in cis-4-hydroxy-L-proline played a crucial role in the catalytic activity, since the reaction completely shut down when **3g** was used as the catalyst (Table 1, entries 4-8). (3) Catalysts with dual-activation via stronger Hbonding interaction proved to be promising catalysts.¹⁷ Indeed, prolinetetrazole **3i** showed the best result in this asymmetric transformation (Table 1, entries 9-10).¹⁸ Since catalysts **3d** and 3i gave similar results, however, compared with the preparation of **3i**,¹⁹ and also from the atom-economy standpoint, L-proline 3d was finally chosen as the optimal catalyst. Moreover, to our delight, the amount of the catalyst 3d had almost no effect on the process, decreasing the amount of catalyst to 10 mol % and 5 mol%, respectively, caused only a slightly longer reaction time while both the yield and enantioselectivity remained unchanged (Table 1, entries 11-12).

Given the established ability of 3d promoting the stereoselective conjugate addition of 1a and 2a, various substituted racemic lactols 1 and azodicarboxylates 2 were studied under the optimized conditions, and the results are summarized in Table 2. Aromatic (Table 2, entries 1-9), heteroaromatic (Table 2, entry 10), and aliphatic (Table 2, entries 11-12) substituted racemic lactols were all converted to 4a-I and 5a-I with high to excellent level of enantiomeric excess in moderate to high yields. The reactivity of azodicarboxylate compounds 2 were also investigated for the direct α -amination of **1**, and the corresponding products were obtained with slightly lower enantioselectivities while in good isolated yields (Table 2, entries 13 and 14). Moreover, the lactol containing a six-membered ring was also well tolerated, and gave the aminated product 40 and 50 in high yield and with excellent enantioselectivity (Table 2, entry 15). Surprisingly, in several selected cases, a drastic increase in the enantioselectivity was obtained when prolinetetrazole 3i was applied as the catalyst (Table 2, entries 1, 2, 7, 13 and 14). It should be noted that, in all the cases, both 4 and 5 were obtained as a single diastereoisomer, respectively. Finally, the possibility to easily isolate the two diastereoisomers for all of adducts 4 and 5 by column chromatography testifies to the synthetic utility of this process.

2 | J. Name., 2012, 00, 1-3

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23.

Journal Name

Entry	n	p^1/p^2	A/E	Yield (%)	ee (%)
		к / к	4/3	total (4/5)	4/5
1	1	Ph/t-Bu	4a/5a	76 (34/42)	95/93
				71 (31/40)	98/97 ^[b]
2	1	4-MePh/t-Bu	4b/5b	76 (35/41)	89/89
				70 (32/38)	94/98 ^[b]
3	1	4-MeOPh/t-Bu	4c/5c	77 (37/40)	93/91
4	1	4-FPh/t-Bu	4d/5d	82 (36/46)	93/92
5	1	4-ClPh/t-Bu	4e/5e	82 (37/45)	95/92
6	1	4-BrPh/t-Bu	4f/5f	86 (42/44)	94/91
7	1	3-NO₂Ph/t-Bu	4g/5g	77 (38/39)	88/90
				74 (33/41)	98/97 ^[b]
8	1	2-FPh/t-Bu	4h/5h	79 (37/42)	95/94
9	1	2-naphthyl/t-Bu	4i/5i	75 (34/41)	94/92
10	1	2-thienyl/ <i>t</i> -Bu	4j/5j	61 (30/31)	94/92
11	1	Bn/t-Bu	4k/5k	57 (29/28)	94/89
12	1	Me/t-Bu	41/51	83 (38/45)	96/93
13	1	Ph/Et	4m/5m	83 (39/44)	87/84
				86 (41/45)	89/88 ^[b]
14	1	Dh/i Dr	An/En	85 (41/44)	90/86
14	T	F 11/ <i>1</i> -P1	411/ 311	81 (41/40)	94/93 ^[b]
15	2	Ph/t-Bu	4o/5o	53 (24/29)	93/95

^{*a*}Unless otherwise specified, all reactions were carried out using **1** (0.30 mmol, 1.0 equiv), **2** (0.36 mmol, 1.2 equiv) in solvent (0.6 mL) with **3d** (20 mol %) at 25 °C. After workup, the crude product was oxidized by PCC to afford **4** and **5** after purified by flash chromatography on silica gel. The total yield is reported, the values in brackets refer to the yield of isolated diastereomerically pure compounds **4** and **5**, which could be easily separated by column chromatograph on silica gel. The *ee* values are determined by HPLC analysis of isolated compounds **4** and **5** on chiral stationary phases. ^{*b*}**3i** (20 mol%) was used as the catalyst.

We noticed that, except for the lactols, substituted racemic cyclic hemiaminals, with both aromatic and aliphatic substituents, were also successfully applied in this one-pot reaction and provided α -amino lactams **4p-q** and **5p-q** with excellent enantioselectivity (Scheme 2).

This journal is © The Royal Society of Chemistry 20xx

To our delight, the catalyst (-)-**3d** showed similar good catalytic activity, and the process proceeded in good reaction yield and with high enantioselectivity (Scheme 3). Thus, starting from the racemic precursors and catalyzed by the enantiomeric pair of the catalyst, we can obtained all possible stereoisomeric products only after simple column

chromatography. Additionally, to demonstrate the practicality of the catalytic system, the sequential amination and oxidation reactions were enlarged to a gram scale. When racemic lactol **1a** and di-*tert*butyl azodicarboxylate **2a** were reacted under the optimal reaction conditions, the reaction proceed smoothly to afford the substituted lactol **A** in 93% yield, followed by the PCCmediated oxidation reaction to provide the desired lactone **4a** and **5a** in good yield and excellent enantionselectivity (Scheme 4).

The most attractive application of this direct amination reaction is to provide facial access to optically active α -amino lactones. Deprotection of **5a** in the presence of CF₃COOH afforded hydrazine **7** as a CF₃COOH salt, and the reduction of **7** with H₂/Raney Ni followed by a N-Boc protection gives the N-Boc protected α -amino lactone **8** with maintained enantioselectivity (Scheme 5, a). Gratifyingly, **4a**, the diastereoisomer of **5a**, could also undergo deprotection leading to CF₃COOH salt **9** (Scheme 5, b). The absolute configuration of the amination product **9** was determined unambiguously by X-ray crystal structure analysis, and those of others were assigned by analogy.²⁰

Notably, except the readily formation of α -amino lactones, when catalyzed by BF₃•Et₂O instead of CF₃COOH in CH₂Cl₂,

ARTICLE

ARTICLE

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23.

under the optimized conditions. These reactions were then quenched after 2 h, 4 h, 6 h, and 8 h, respectively, and the unreacted 1a was isolated and directly oxidized into lactone 6, the enantiomeric excess of 6 are analyzed by chiral HPLC

Scheme 5. The synthesis of target $\alpha\mbox{-}amino$ lactone derivatives

lactol **10** underwent Boc-deprotection and transesterification sequence to give bicyclic carbamate **11**, and the subsequent cleavage of the N-N bond gave a novel bicyclic oxazolidinone derivative **12** as a single diastereoisomer, which might be potentionally used as chiral auxiliary (Scheme 6, a).²¹ The absolute configuration of **11** was determined unambiguously by X-ray crystal structure analysis.²⁰ Reduction of the aminated lactol **13** with NaBH₄ gave the corresponding functionalized amino alcohol **14** (Scheme 6, b). All these interesting backbones might be suitable for further medicinal chemistry exploration.

Experimentally, racemic lactols were directly used in this asymmetric C-N bond formation reaction. Thus, to gain more insight into the reaction mechanism, some control experiments were performed under the optimized conditions. Several parallel reactions between **1a** and **2a** were carried out

Scheme 6. The synthesis of bicyclic oxazolidinone and amino alcohol.

This journal is © The Royal Society of Chemistry 20xx

Scheme 8. Proposed transition state.

analysis.²² Surprisingly, we found that the enantiomeric excess of **6** was increased along with the reaction time until the reaction was complete, which showed different reaction behavior from our previous studies (Scheme 7).^{11e} We view this to be a very significant control experiment, suggesting that (*R*)-**1a**, as the benzylic stereogenic center showing *R* configuration, worked faster with **2a** than its isomer (*S*)-**1a**, and thus some of (*S*)-**1a** remained unchanged in the reaction process, which was then isolated and further oxidized into lactone **6**. All these results showed that there might be a kinetic resolution of lactol **1** in the reaction process of the amination step.

Based on these observations, we proposed two transition states, **TS1** and **TS2**, to rationalize the possible reaction mechanisms of the formation of **4a** and **5a** (Scheme 8).²³ In both **TS1** and **TS2**, the azodicarboxylate **2** might be directed by the proton of the carboxylic acid from the conbination of the substrate–catalyst.

Conclusions

In summary, we have developed a novel strategy that involves the first organocatalyzed directly asymmetric α amination of lactols or cyclic hemiaminals, and a subsequent oxidation reaction providing easy access to optically active α amino lactones or lactams. These reactions are operationally simple and proceed smoothly under mild reaction conditions. Notably, starting from racemic lactols or cyclic hemiaminals, catalyzed by the enantiomeric pair of the catalyst, all possible stereoisomeric products, which are very useful building blocks for the synthesis of complex molecules but difficult to prepare optically enriched, were discretely provided only after simple column chromatography workup. Furthermore, the reactions could be performed on a gram scale under the optimized conditions. Additionally, α -aminated products can be easily transformed into other more useful chiral building blocks. Further studies based on the reactivity of substituted racemic lactols or cyclic hemiaminals and its application are in progress.

Experimental

General methods

The ¹H and ¹³C NMR spectra were recorded at 500 or 600 MHz for ¹H and at 125 or 150 MHz for ¹³C, respectively. The chemical shifts (δ) for ¹H and ¹³C are given in ppm relative to residual signals of the solvents (CDCl₃@ 7.24 ppm ¹H NMR, 77.23 ppm ¹³C NMR). Coupling constants are given in Hz. The following abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. High-resolution mass spectra (HRMS) were obtained from the Waters Q-Tof Ultima Global. X-ray data were obtained from Zhongke chemical technology service center. Optical rotations are reported as follows: [a]_D²⁰(c in g per 100 mL, solvent). All the reactions were set up under air and using freshly distilled solvents, without any precautions to exclude moisture, unless otherwise noted, open air chemistry on the benchtop.

ARTICLE

Chromatographic purification of products was accomplished using force-flow chromatography (FC) on silied gel (2000 400 mesh). For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica gel 60 GF254, 0.25 mm) were used, using UV light as the visualizing agent and Phosphomolybdic acid as stain developing solutions. Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. HPLC analyses on chiral stationary phase were performed on an Hitachi Chromaste. Daicel Chiralpak IA, IB or IC columns with *i*-PrOH/*n*-hexane as the eluent were used. HPLC traces were compared to racemic samples catalyzed by DL-Proline. All catalysts and azodiformates were commercial reagents. All cyclic hemiacetals were synthesized from corresponding Weinreb amide reduced by LiAlH₄ or corresponding lactone reduced by DIBAL-H (1.5M solution in toluene).

General procedure

A glass vial equipped with a magnetic stirring bar was charged with cyclic hemiacetal **1** (0.3 mmol), azodicarboxylate **2** (0.36 mol) and **3d** (7 mg, 20 mol%) in acetonitrile (0.6 mL) at 25 °C. Until the starting material cyclic hemiacetal **1** was completely consumed by TLC monitor, the solvent was removed under vacuum and the crude product was dissolved in dichloromethane (3 mL). Then PCC (194 mg, 0.3 mmol) and Celite (194 mg) were added before stirred at 40 °C for 6h. Then the reaction mixture was filtered, and the filtrate was purified by flash chromatography on silica gel to give products **4** and **5**. For the synthesis of compound (-)-**4a** and (-)-**5a**, D-Proline was added instead of the **3d**.

1-((3R,5S)-2-oxo-5-phenyltetrahydrofuran-3di-tert-butyl yl)hydrazine-1,2-dicarboxylate (4a) was obtained as a white solid (40 mg) in 34% yield (36 mg; 31% yield by cat. 3i) for two steps; mp = 115–117 °C; TLC: $R_f = 0.75$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.41 (m, 5H), 6.50 (s, 1H), 5.35 (dd, J = 11.0, 5.5 Hz, 1H), 5.15 (d, J = 156.3 Hz, 1H), 2.75 - 2.99 (m, 1H), 2.28 - 2.57 (m, 1H), 1.44 (d, J = 17.8 Hz, 18H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.8, 155.7, 154.4, 139.4, 129.0, 128.5, 125.0, 82.7, 81.9, 78.5, 56.8, 33.2, 28.3, 28.2 ppm; **HRMS:** [M+Na]⁺ calcd. For C₂₀H₂₈N₂O₆Na 415.1845, found: 415.1849; $[\alpha]_{D}^{20} = +14.77$ (c = 0.52 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.22 min, t_{major} = 7.26 min, ee = 95%. (by cat. **3i**: t_{minor} = 6.25 min, t_{major} = 7.25 min, ee = 98%)

di-*tert*-butyl **1-((***3R*,*5R*)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5a) was obtained as a white solid (49 mg) in 42% yield (47 mg, 40% yield by cat. **3i**) for two steps; mp = 89–91 °C; TLC: $R_f = 0.60$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.30 - 7.40 (m, 5H), 6.51 (s, 1H), 4.90 – 5.42 (m, 2H), 2.74 - 2.98 (m, 1H), 2.30 - 2.55 (m, 1H), 1.44 (d, *J* = 17.5 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 155.8, 154.6, 138.4, 129.1, 129.0, 126.0, 82.8, 81.9, 78.7, 59.0, 34.4, 28.3 ppm; HRMS: [M+Na]⁺ calcd. For C₂₀H₂₈N₂O₆Na 415.1845, found: 415.1848; [α]_D²⁰ = -29.53 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH

ARTICLE

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23

= 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.19 min, t_{major} = 12.53 min, ee = 93%. (by cat. **3i**: t_{minor} = 7.20 min, t_{major} = 12.36 min, ee = 97%)

1-((3R,5S)-2-oxo-5-(p-tolyl)tetrahydrofuran-3di-tert-butyl yl)hydrazine-1,2-dicarboxylate (4b) was obtained as a white solid (43 mg) in 35% yield (39 mg, 32% yield by cat. 3i) for two steps; mp = 76-78 °C; TLC: R_f = 0.75 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.10 - 7.19 (m, 4H), 6.52 (s, 1H), 5.56 - 5.66 (m, 1H), 4.90 (d, J = 163.4 Hz, 1H), 2.79 -3.03 (m, 1H), 2.51 - 2.63 (m, 1H), 2.32 (s, 3H), 1.44 (d, J = 10.9 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 155.9, 154.5, 138.4, 136.6, 129.7, 125.1, 82.5, 82.0, 78.7, 56.6, 33.2, 28.3, 28.3, 21.4 ppm; HRMS: $[M+Na]^+$ calcd. For $C_{21}H_{30}N_2O_6Na$ 429.2002, found: 429.2003; $[\alpha]_{D}^{20}$ = +24.93 (c = 0.61 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.82 min, t_{major} = 7.73 min, ee = 89%. (by cat. **3i**: t_{minor} = 6.95 min, t_{major} = 7.80 min, ee = 94%)

di-*tert*-butyl 1-((3R,5R)-2-oxo-5-(p-tolyl)tetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5b) was obtained as a colorless gum (50 mg) in 41% yield (46 mg, 38% yield by cat. 3i) for two steps; TLC: $R_f = 0.62$ (petroleum ether/EtOAc = 4:1 v/v); ¹**H NMR** (500 MHz, CDCl₃) δ 7.19 – 7.30 (m, 4H), 6.55 (s, 1H), 4.94 - 5.43 (m, 2H), 2.77 - 2.99 (m, 1H), 2.41 - 2.60 (m, 1H), 2.38 (s, 3H), 1.49 (d, J = 14.8 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.4, 155.7, 154.7, 138.8, 135.3, 129.7, 126.2, 125.5, 82.8, 81.5, 78.8, 59.0, 34.8, 28.3, 21.4 ppm; HRMS: [M+Na]⁺ *calcd*. For $C_{21}H_{30}N_2O_6Na$ 429.2002, found: 429.2004, $[\alpha]_D^{20} = -$ 24.97 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.72 min, t_{major} = 14.41 min, ee = 89%. (by cat. **3i**: t_{minor} = 7.81 min, t_{maior} = 14.51 min, ee = 98%)

1-((3R,5S)-5-(4-methoxyphenyl)-2di-tert-butyl oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4c) was obtained as a colorless gum (47 mg) in 37% yield for two steps; TLC: $R_f = 0.76$ (petroleum ether/EtOAc = 4:1 v/v). ¹H NMR (500 MHz, $CDCl_3$) δ 7.17 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.51 (s, 1H), 5.55 - 5.65 (m, 1H), 4.92 (d, J = 169.2 Hz, 1H), 3.78 (s, 3H), 2.75 - 3.03 (m, 1H), 2.46 - 2.66 (m, 1H), 1.45 (d, J = 7.7 Hz, 18H) ppm; 13 **C NMR** (125 MHz, CDCl₃) δ 173.9, 159.9, 155.8, 154.6, 131.3, 126.7, 114.5, 82.8, 82.0, 78.6, 57.1, 55.7, 33.1, 28.3, 28.3 ppm; **HRMS:** $[M+Na]^+$ calcd. For $C_{21}H_{30}N_2O_7Na$ 445.1951, found: 445.1952; $[\alpha]_D^{20}$ = +29.80 (c = 0.51 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 8.79 min, t_{major} = 10.37 min, ee = 93%.

di-*tert*-butyl 1-((3*R*,5*R*)-5-(4-methoxyphenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5c) was obtained as a colorless gum (51 mg) in 40% yield for two steps; TLC: $R_f = 0.63$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.30 (m, 2H), 6.90 (dd, *J* = 8.6, 2.8 Hz, 2H), 6.53 (s, 1H), 4.90 –5.36 (m, 2H), 3.80 (s, 3H), 2.71 - 2.93 (m, 1H), 2.32 - 2.55 (m, 1H), 1.45 (d, *J* = 11.6 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.2, 160.2, 155.7, 154.5, 130.4, 127.8, 127.3, 114.2, 82.8, 81.3, 78.7, 59.4, 55.5, 34.7, 28.3 ppm; Journal Name

HRMS: $[M+Na]^+$ calcd. For C₂₁H₃₀N₂O₇Na 445.1951_{rtic}found: 445.1955; $[α]_D^{20} = -31.99$ (c =1.00 in CHCG);¹PHe³ehartborneace excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, *t_{minor}* = 10.10 min, *t_{major}* = 19.03 min, ee = 91%.

di-*tert*-butyl 1-((3R,5S)-5-(4-fluorophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4d) was obtained as a colorless gum (44 mg) in 36% yield for two steps; TLC: $R_f = 0.74$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.21 - 7.27 (m, 2H), 7.02 - 7.09 (m, 2H), 6.50 (s, 1H), 5.58 - 5.66 (m, 1H), 4.87 (d, J = 155.7 Hz, 1H), 2.78 - 3.09 (m, 1H), 2.41 - 2.63 (m, 1H), 1.45 (d, J = 10.6 Hz, 18H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.7, 162.8 (d, J_{CF} = 248 Hz), 155.6, 154.5, 135.3, 127.7, 116.2, 116.0, 83.0, 82.2, 78.2, 57.2, 33.6, 28.3, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For $C_{20}H_{27}FN_2O_6Na$ 433.1751, found: 433.1755; $[\alpha]_D^{20}$ = +9.24 (c = 0.67 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 5.64 min, t_{major} = 6.53 min, ee = 93%.

di-tert-butyl 1-((3R,5R)-5-(4-fluorophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5d) was obtained as a colorless gum (57 mg) in 46% yield for two steps; TLC: $R_f = 0.62$ (petroleum ether/EtOAc = 4:1 v/v). ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.35 (m, 2H), 7.01 - 7.10 (m, 2H), 6.52 (s, 1H), 5.32 (dd, J = 10.8, 5.4 Hz, 1H), 5.13 (d, J = 138.5 Hz, 1H), 2.75 - 2.97 (m, 1H), 2.26 - 2.53 (m, 1H), 1.44 (d, J = 15.0 Hz, 18H) ppm; 13 C NMR (125 MHz, CDCl₃) δ 173.1, 163.1 (d, *J*_{CF} = 248 Hz), 155.7, 154.1, 134.0, 128.0, 127.4, 116.2, 115.9, 82.8, 80.2, 78.1, 59.2, 34.2, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For $C_{20}H_{27}FN_2O_6Na$ 433.1751, found: 433.1752; $[\alpha]_D^{20} = -26.04$ (c = 1.02 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.26 min, t_{major} = 11.22 min, ee = 92%.

di-tert-butyl 1-((3R,5S)-5-(4-chlorophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4e) was obtained as a white solid (47 mg) in 37% yield for two steps; mp = 105-107 °C; TLC: R_f = 0.76 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 7.7 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 6.50 (s, 1H), 5.55 - 5.66 (m, 1H), 4.85 (d, J = 149.5 Hz, 1H), 2.83 - 3.05 (m, 1H), 2.45 - 2.60 (m, 1H), 1.45 (d, J = 11.1 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 155.8, 154.5, 138.0, 134.5, 129.3, 126.5, 83.0, 82.1, 78.0, 57.0, 33.3, 28.3, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For $C_{20}H_{27}CIN_2O_6Na$ 449.1455, found: 449.1457; $[\alpha]_D^{20} = +27.01$ (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 5.73 min, t_{major} = 6.65 min, ee = 95%.

di-tert-butyl1-((3R,5R)-5-(4-chlorophenyl)-2-oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate(5e)was obtained as a colorless gum (57 mg) in 45% yield for twosteps; mp = 59-61 °C; TLC: $R_f = 0.63$ (petroleum ether/EtOAc =4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.34 (d, J = 7.4 Hz, 2H),7.27 (d, J = 8.0 Hz, 2H), 6.51 (s, 1H), 5.32 (dd, J = 10.6, 5.3 Hz,1H), 5.13 (d, J = 146.1 Hz, 1H), 2.74 - 2.98 (m, 1H), 2.26 - 2.49

Published on 31 May 2016. Downloaded by UNIVERSITY OF CINCINNATI on 31/05/2016 14:42:23

Journal Name

(m, 1H), 1.44 (d, J = 16.2 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 155.6, 154.5, 137.0, 135.0, 129.2, 127.5, 82.9, 82.1, 77.9, 59.1, 34.6, 28.3 ppm; HRMS: [M+Na]⁺ calcd. For $C_{20}H_{27}CIN_2O_6Na$ 449.1455, found: 449.1457; $[\alpha]_D^{20} = -26.77$ (c = 0.80 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.39 min, t_{major} = 11.15 min, ee = 92%.

di-tert-butyl

1-((3R,5S)-5-(4-bromophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4f) was obtained as a colorless gum (59 mg) in 42% yield for two steps; TLC: $R_f = 0.77$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.49 (d, J = 7.8 Hz, 2H), 7.13 (d, J = 8.2 Hz, 2H), 6.51 (s, 1H), 5.51 - 5.66 (m, 1H), 4.84 (d, J = 146.7 Hz, 1H), 2.78 - 3.09 (m, 1H), 2.42 - 2.62 (m, 1H), 1.45 (d, J = 10.9 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 155.8, 154.4, 138.5, 132.5, 126.8, 122.5, 83.0, 82.1, 78.4, 56.9, 33.4, 28.3, 28.3 ppm; **HRMS:** $[M+Na]^+$ calcd. For C₂₀H₂₇BrN₂O₆Na 493.0950, found: 493.0951; $[\alpha]_{D}^{20}$ = +23.93 (c = 0.82 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 5.91 min, t_{major} = 6.83 min, ee = 94%.

di-*tert*-butyl 1-((3R,5R)-5-(4-bromophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5f) was obtained as a colorless gum (62 mg) in 44% yield for two steps; TLC: $R_f = 0.63$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, $CDCl_3$) δ 7.50 (d, J = 7.6 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 6.51 (s, 1H), 4.89 - 5.40 (m, 2H), 2.76 - 2.99 (m, 1H), 2.24 -2.49 (m, 1H), 1.44 (d, J = 16.2 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 172.9, 155.7, 154.5, 137.5, 132.2, 127.7, 123.0, 82.9, 82.0, 77.7, 59.0, 34.2, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For $C_{20}H_{27}BrN_2O_6Na$ 493.0950, found: 493.0952; $[\alpha]_D^{20} = -30.18$ (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.59 min, t_{major} = 11.53 min, ee = 91%.

di-tert-butyl 1-((3R,5S)-5-(3-nitrophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4g) was obtained as a yellow solid (50 mg) in 38% yield (43 mg, 33% yield by cat. **3i**) for two steps; mp = 80-82 °C; TLC: $R_f = 0.69$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, J = 7.6 Hz, 1H), 8.15 (s, 1H), 7.53 - 7.66 (m, 2H), 6.55 (s, 1H), 5.61-5.81 (m, 1H), 4.82 (d, J = 106.0 Hz, 1H), 2.90 - 3.21 (m, 1H), 2.49 – 2.64 (m, 1H), 1.46 (d, J = 12.8 Hz, 18H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.1, 155.6, 154.4, 148.9, 141.5, 131.3, 130.5, 123.6, 120.4, 83.3, 82.3, 57.2, 33.6, 28.3, 28.3 ppm; **HRMS:** $[M+Na]^+$ calcd. For $C_{20}H_{27}N_3O_8Na$ 460.1696, found: 460.1695; $[\alpha]_D^{20}$ = +11.51 (c = 1.47 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 15.93 min, t_{maior} = 20.79 min, ee = 88%. (by cat. **3i**: t_{minor} = 15.93 min, t_{major} = 20.78 min, ee = 98%)

di-tert-butyl 1-((3R,5S)-5-(3-nitrophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5g) was obtained as a yellow gum (51 mg) in 39% yield (54 mg, 41% yield by cat. **3i**) for two steps; mp = 52-53 °C; TLC: $R_f = 0.60$

This journal is C The Royal Society of Chemistry 20xx

ARTICLE

(petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCla), δ 8.17 - 8.26 (m, 2H), 7.69 (d, J = 5.8 Hz, 印印; 知身死(CDQBD, 四和); 1H), 6.55 (s, 1H), 5.44 (dd, J = 10.8, 5.8 Hz, 1H), 5.13 (d, J = 128.3 Hz, 1H), 2.90 - 3.09 (m, 1H), 2.31 - 2.55 (m, 1H), 1.43 (d, J = 20.1 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 172.5, 155.8, 154.4, 148.8, 140.4, 132.1, 130.5, 124.0, 121.1, 83.2, 82.4, 59.1, 34.4, 28.3 ppm; **HRMS:** $[M+Na]^+$ calcd. For $C_{20}H_{27}N_3O_8Na$ 460.1696, found: 460.1698; [α]_D²⁰ = -27.13 (c = 1.30 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 19.61 min, t_{maior} = 21.69 min, ee = 90%. (by cat. **3i**: t_{minor} = 19.71 min, t_{major} = 21.83 min, ee = 97%)

di-tert-butyl

1-((3R,5S)-5-(2-fluorophenyl)-2-

oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4h) was obtained as a white solid (45 mg) in 37% yield for two steps; mp = 92-94 °C; TLC: R_f = 0.72 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.28 - 7.35 (m,1H), 7.24 -7.28(m, 1H), 7.13 (t, J = 7.0 Hz, 1H), 7.07 (t, J = 9.2 Hz, 1H), 6.50 (s, 1H), 5.74 - 5.87 (m, 1H), 4.92 (d, J = 158.1 Hz, 1H), 2.82 -3.10 (m, 1H), 2.47 - 2.66 (m, 1H), 1.45 (d, J = 10.8 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 159.8 (d, J_{CF} = 245 Hz), 155.7, 154.5, 130.5, 126.3, 124.7, 116.2, 116.1, 82.9, 82.0, 74.6, 57.0, 32.6, 28.4, 28.3 ppm; **HRMS**: [M+Na]⁺ calcd. For C₂₀H₂₇FN₂O₆Na 433.1751, found: 433.1752; [α]_D²⁰ = +17.61 (c = 0.80 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.37 min, t_{major} = 7.83 min, ee = 95%.

di-tert-butyl 1-((3R,5R)-5-(2-fluorophenyl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5h) was obtained as a white solid (52 mg) in 42% yield for two steps; mp = 120-122 °C; TLC: $R_f = 0.64$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.42 (t, J = 7.2 Hz, 1H), 7.28 - 7.36 (m, 1H), 7.16 (t, J = 6.5 Hz, 1H), 7.05 (t, J = 9.1 Hz, 1H), 6.50 (s, 1H), 5.61 (dd, J = 10.6, 5.6 Hz, 1H), 5.16 (d, J = 139.1 Hz, 1H), 2.86 - 3.04 (m, 1H), 2.26 - 2.54 (m, 1H), 1.44 (d, J = 17.9 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 161.1, 155.7, 154.5, 130.7, 127.3, 124.7, 116.0, 82.9, 82.0, 73.5, 58.9, 33.7, 28.3 ppm; **HRMS:** $[M+Na]^{+}$ calcd. For $C_{20}H_{27}FN_2O_6Na$ 433.1751, found: 433.1750; $[\alpha]_{D}^{20} = -25.30$ (c = 0.99 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.40 min, t_{maior} = 9.99 min, ee = 94%.

di-tert-butyl 1-((3R,5S)-5-(naphthalen-2-yl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4i) was obtained as a white solid (45 mg) in 34% yield for two steps; mp = 129-131 °C; TLC: R_f = 0.66 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.79 - 7.89 (m, 3H), 7.73 (s, 1H), 7.46 - 7.53 (m, 2H), 7.32 (d, J = 8.5 Hz, 1H), 6.52 (s,1H), 5.75 - 5.87 (m, 1H), 4.94 (d, J = 157.6 Hz, 1H), 2.89 - 3.16 (m, 1H), 2.57 - 2.76 (m, 1H), 1.46 (d, J = 16.4 Hz, 18H) ppm; ¹³C **NMR** (125 MHz, CDCl₃) δ 174.0, 155.8, 154.6, 136.8, 133.3, 129.2, 128.3, 127.9, 126.9, 126.7, 123.8, 123.0, 82.9, 82.1, 78.7, 57.0, 33.3, 28.4, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For $C_{24}H_{30}N_2O_6Na$ 465.2002, found: 465.2001; $[\alpha]_D^{20}$ = +54.29 (c =

ARTICLE

0.99 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.26 min, t_{major} = 8.06 min, ee = 94%.

di-*tert*-butyl 1-((3R,5R)-5-(naphthalen-2-yl)-2oxotetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5i) was obtained as a colorless gum (55 mg) in 41% yield for two steps; TLC: $R_f = 0.56$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.78 - 7.89 (m, 4H), 7.46 - 7.54 (m, 2H), 7.42 (d, J = 8.4 Hz, 1H), 6.53 (s, 1H), 5.53 (dd, J = 10.9, 5.5 Hz, 1H), 5.21 (d, J = 161.5 Hz, 1H), 2.92 - 3.09 (m, 1H), 2.40 - 2.67 (m, 1H), 1.44 (d, J = 28.2 Hz, 18H) ppm; 13 C NMR (125 MHz, CDCl₃) δ 173.5, 155.7, 154.5, 135.7, 133.5, 133.2, 129.0, 128.3, 128.0, 126.8, 125.3, 123.3, 82.8, 81.9, 78.5, 59.0, 34.3, 28.3 ppm; $\textbf{HRMS}{:}~\left[\text{M}{+}\text{Na}\right]^{+}$ calcd. For $C_{24}H_{30}N_{2}O_{6}\text{Na}$ 465.2002, found: 465.2004; $[\alpha]_{D}^{20}$ = -37.75 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 8.35 min, t_{major} = 15.47 min, ee = 92%.

di-tert-butyl 1-((3*R*,5*S*)-2-oxo-5-(thiophen-2yl)tetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (4j) was obtained as a white solid (36 mg) in 30% yield for two steps; mp = 117-118 °C; TLC: $R_f = 0.77$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.31 (s, 1H), 7.04 (s, 1H), 6.98 (s, 1H), 6.48 (s, 1H), 5.76 - 5.88 (m, 1H), 5.06 (d, *J* = 134.5 Hz, 1H), 2.83 - 3.06 (m, 1H), 2.69 - 2.81 (m, 1H), 1.46 (s, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 155.6, 154.5, 142.1, 127.7, 126.5, 125.6, 83.0, 82.1, 75.7, 57.3, 33.7, 28.4, 28.3 ppm; HRMS: [M+Na]⁺ calcd. For C₁₈H₂₆N₂O₆SNa 421.1409, found: 421.1408; $[\alpha]_D^{20}$ = +21.71 (c = 0.21 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.50 min, t_{major} = 9.01 min, ee = 94%.

di-tert-butyl 1-((3R,5R)-2-oxo-5-(thiophen-2yl)tetrahydrofuran-3-yl)hydrazine-1,2-dicarboxylate (5j) was obtained as a white solid (37 mg) in 31% yield for two steps; mp = 132-134 °C; TLC: R_f = 0.64 (petroleum ether/EtOAc = 4:1 v/v); ¹**H NMR** (500 MHz, CDCl₃) δ 7.36 (s, 1H), 7.12 (d, J = 2.6 Hz, 1H), 7.00 (s, 1H), 6.49 (s, 1H), 5.57 (dd, J = 11.0, 5.5 Hz, 1H), 5.13 (d, J = 199.2 Hz, 1H), 2.90 - 3.03 (m, 1H), 2.45 - 2.65 (m, 1H), 1.46 (s, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 172.6, 155.8, 154.5, 140.6, 127.4, 82.9, 82.0, 74.4, 58.8, 34.7, 28.3 ppm; **HRMS**: [M+Na]⁺ calcd. For C₁₈H₂₆N₂O₆SNa 421.1409, found: 421.1409; $[\alpha]_D^{20} = -54.47$ (c = 0.45 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 8.39 min, t_{maior} = 14.13 min, ee = 92%.

di-tert-butyl 1-((3*R*,5*R*)-5-benzyl-2-oxotetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (4k) was obtained as a white solid (35 mg) in 29% yield for two steps; mp = 104-106 °C; TLC: $R_f = 0.69$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* = 7.3 Hz, 2H), 7.25 (d, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 7.2 Hz, 2H), 6.37 (s, 1H), 4.64 - 5.05 (m, 2H), 2.95 - 3.07 (m, 1H), 2.85 - 2.95 (m, 1H), 2.43 - 2.60 (m, 1H), 2.30 - 2.41 (m, 1H), 1.42 (s, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.5, 155.6, 154.4, 135.6, 130.0, 129.7, 129.5, 127.4, 82.8, 81.5, 78.8, 57.2, 41.6, 30.0, 28.3 ppm; **HRMS**: $[M+Na]_{Vie}^{+}$ calcde Figure C₂₁H₃₀N₂O₆Na 429.2002, found: 429.2003; $[M]_{D}^{3/3}$ CFP.299 $e^{3/4}$ 0.48 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 85/15, 1mL/min], λ = 210 nm, t_{major} = 7.65 min, t_{minor} = 9.21 min, ee = 94%.

di-tert-butyl 1-((3R,5S)-5-benzyl-2-oxotetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5k) was obtained as a colorless gum (34 mg) in 28% yield for two steps; TLC: $R_f = 0.64$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.25 - 7.33 (m, 2H), 7.21 - 7.24 (m, 1H), 7.19 (d, J = 7.0 Hz, 2H), 6.40 (s, 1H), 4.97 (d, J = 173.5 Hz, 1H), 4.49 - 4.62 (m, 1H), 3.07 (dd, J = 13.6, 5.8 Hz, 1H), 2.92 (dd, J = 13.4, 4.8 Hz, 1H), 2.45 -2.60 (m, 1H), 1.94 - 2.28 (m, 1H), 1.44 (s, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 174.0, 155.7, 154.6, 135.8, 129.6, 129.0, 127.3, 82.9, 81.9, 78.3,58.5, 42.0, 31.9, 28.3 ppm; HRMS: [M+Na]⁺ calcd. For C₂₁H₃₀N₂O₆Na 429.2002, found: 429.2005; $[\alpha]_{D}^{20}$ = -18.09 (c = 0.42 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [nhexane/i-PrOH = 85/15, 1mL/min], λ = 210 nm, t_{minor} = 12.47 min, t_{maior} = 18.74 min, ee = 89%.

di-*tert*-butyl 1-((3*R*,5*R*)-5-methyl-2-oxotetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (4I) was obtained as a white solid (38 mg) in 38% yield for two steps; mp = 94-96 °C; TLC: R_f = 0.72 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 6.42 (s, 1H), 5.99 – 5.26 (m, 1H), 4.68 – 4.80 (m, 1H), 2.48 - 2.73 (m, 1H), 2.12 - 2.25 (m, 1H), 1.45 (s, 18H), 1.37 (d, *J* = 6.5 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.8, 155.7, 154.6, 82.8, 82.0, 75.1, 57.1, 32.1, 28.3, 21.8 ppm; HRMS: [M+Na]⁺ calcd. For C₁₅H₂₆N₂O₆Na 353.1689, found: 353.1688; [α]_D²⁰ = +2.31 (c = 0.59 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*hexane/*i*-PrOH = 80/20, 1mL/min], λ = 230 nm, t_{minor} = 7.65 min, t_{major} = 9.21 min, ee = 96%.

di-*tert*-butyl 1-((3*R*,5*S*)-5-methyl-2-oxotetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5I) was obtained as a white solid (45 mg) in 45% yield for two steps; mp = 48-49 °C; TLC: R_f = 0.68 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 6.43 (s, 1H), 5.00 (d, *J* = 185.3 Hz, 1H), 4.42 – 4.53 (m, 1H), 2.45 - 2.70 (m, 1H), 1.89 - 2.17 (m, 1H), 1.45 (s, 18H), 1.42 (d, *J* = 6.4 Hz, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.6, 155.8, 154.6, 82.7, 81.9, 74.6, 58.9, 33.5, 28.3, 21.1 ppm; HRMS: [M+Na]⁺ calcd. For C₁₅H₂₆N₂O₆Na 353.1689, found: 353.1689; [α]_D²⁰ = -17.61 (c = 1.07 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, *t_{minor}* = 7.62 min, *t_{maior}* = 12.23 min, ee = 93%.

diethyl 1-((3*R*,5*S*)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (4m) was obtained as a colorless gum (39 mg) in 39% yield (41 mg, 41% yield by cat. 3i) for two steps; TLC: $R_f = 0.74$ (petroleum ether/EtOAc = 3:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.38 (t, *J* = 7.2 Hz, 2H), 7.30 – 7.35 (m, 1H), 7.26 (d, *J* = 7.5 Hz, 2H), 6.74 (s, 1H), 5.60 - 5.73 (m, 1H), 5.00 (d, *J* = 64.1 Hz, 1H), 4.15 - 4.26 (m, 4H), 2.89 - 3.03 (m, 1H), 2.56 - 2.69 (m, 1H), 1.26 (dt, *J* = 14.1, 7.2 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.3, 156.7, 155.6, 139.3, 129.1, 128.7, 125.1, 78.6, 63.6, 62.7, 57.8, 33.2, 14.7 ppm; HRMS:

[M+Na]⁺ calcd. For C₁₆H₂₀N₂O₆Na 359.1219, found: 359.1217; $\left[\alpha\right]_{D}^{20}$ = +19.32 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 20.01 min, t_{major} = 21.39 min, ee = 87%. (by cat. **3i**: t_{minor} = 19.67 min, *t_{major}* = 20.90 min, ee = 89%)

diethyl 1-((3R,5R)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5m) was obtained as a white solid (44 mg) 44% yield (45 mg, 45% yield by cat. 3i) for two steps; mp = 108-109 °C; TLC: $R_f = 0.65$ (petroleum ether/EtOAc = 3:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.30 - 7.41 (m, 5H), 6.74 (s, 1H), 5.38 (dd, J = 11.1, 5.5 Hz, 1H), 5.26 (d, J = 86.0 Hz, 1H), 4.06 - 4.29 (m, 4H), 2.85 - 3.02 (m, 1H), 2.32 - 2.51 (m, 1H), 1.21 - 1.27 (m, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.0, 156.6, 155.7, 138.1, 129.1, 129.0, 126.0, 78.7, 63.6, 62.7, 59.6, 34.6, 14.6 ppm; **HRMS:** $[M+Na]^+$ calcd. For $C_{16}H_{20}N_2O_6Na$ 359.1219, found: 359.1218; $[\alpha]_D^{20} = -26.42$ (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 8.07 min, t_{major} = 16.69 min, ee = 84%. (by cat. **3i**: t_{minor} = 7.93 min, t_{major} = 15.80 min, ee = 88%)

diisopropyl 1-((3R,5S)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (4n) was obtained as a colorless gum (45 mg) in 41% yield (45 mg, 41% yield by cat. 3i) for two steps; TLC: $R_f = 0.70$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.35 - 7.41 (m, 2H), 7.29 - 7.35 (m, 1H), 7.26 (d, J = 7.5 Hz, 2H), 6.63 (s, 1H), 5.61 - 5.71 (m, 1H), 4.79 - 5.17 (m, 3H), 2.89 - 3.04 (m, 1H), 2.56 - 2.67 (m, 1H), 1.22 – 1.29 (m, 12H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.6, 156.5, 155.1, 139.4, 129.2, 128.6, 125.1, 78.7, 71.6, 70.7, 57.4, 33.6, 22.2, 22.1 ppm; **HRMS:** [M+Na]⁺ calcd. For C₁₈H₂₄N₂O₆Na 387.1532, found: 387.1534; $[\alpha]_D^{20} = +19.56$ (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 9.82 min, t_{major} = 11.38 min, ee = 90%. (by cat. **3i**: t_{minor} = 9.73 min, t_{major} = 11.23 min, ee = 94%.)

diisopropyl 1-((3R,5R)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate (5n) was obtained as a white solid (48 mg) in 44% yield (44 mg, 40% yield by cat. 3i) for two steps; mp = 147-148 °C; TLC: R_f = 0.62 (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.40 (m, 5H), 6.61 (s, 1H), 5.06 - 5.43 (m, 2H), 4.83 - 5.01 (m, 2H), 2.78 - 2.99 (m, 1H), 2.27 - 2.52 (m, 1H), 1.18 - 1.31 (m, 12H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 173.1, 156.6, 155.2, 138.2, 129.1, 126.0, 78.7, 71.5, 70.6, 59.4, 34.7, 22.2, 22.2 ppm; HRMS: [M+Na]⁺ *calcd*. For $C_{18}H_{24}N_2O_6Na$ 387.1532, found: 387.1535; $[\alpha]_D^{20} = -$ 24.83 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 10.83 min, t_{major} = 23.17 min, ee = 86%. (by cat. **3i**: t_{minor} = 10.79 min, $t_{major} = 22.95 \text{ min, ee} = 93\%$.)

di-tert-butyl 1-((3R,6S)-2-oxo-6-phenyltetrahydro-2H-pyran-3-yl)hydrazine-1,2-dicarboxylate (40) was obtained as a white solid (29 mg) in 24% yield for two steps; mp = 105-107 °C; TLC: $R_f = 0.73$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.29 – 7.39 (m, 5H), 6.62 (s, 1H), 5.37 (dd, J = 9.9, 2.7 Hz, 1H), 4.88 - 5.34 (m, 1H), 2.33 - 2.48 (m, 1H), 2.22 - 2.30 (m,

ARTICLE

1H), 1.96 - 2.10 (m, 2H), 1.45 (d, J = 9.5 Hz, 18H), ppm $\frac{13}{100}$ NMR (150 MHz, CDCl₃) δ 171.8, 155.5, 95.5, 95.2, 3238, 6, 89.28, 9, 128.7, 126.7, 82.5, 81.2, 79.4, 54.8, 29. 9, 29.7, 28.4, 28.2 ppm; **HRMS:** $[M+Na]^{+}$ calcd. For $C_{21}H_{30}N_2O_6Na$ 429.2002, found: 429.2005; $[\alpha]_{D}^{20}$ = -20.14 (c = 0.50 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{major} = 8.47 min, t_{minor} = 11.11 min, ee = 93%.

di-tert-butyl 1-((3R,6R)-2-oxo-6-phenyltetrahydro-2H-pyran-3-yl)hydrazine-1,2-dicarboxylate (50) was obtained as a white solid (35 mg) in 29% yield for two steps; mp = 110-111 °C; TLC: $R_f = 0.70$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.27 – 7.39 (m, 5H), 6.49 (s, 1H), 5.30 – 5.42 (m, 1H), 4.71 (d, J = 166.7 Hz, 1H), 2.34 - 2.50 (m, 1H), 2.20 - 2.32 (m, 2H), 2.03 – 2.11 (m, 1H), 1.46 (s, 18H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 169.5, 155.7, 154.9, 139.4, 129.0, 128.9, 128.7, 125.9, 125.8, 83.5, 82.5, 81.5, 58.7, 31.1, 29.9, 28.3 ppm; HRMS: [M+Na]⁺ calcd. For C₂₁H₃₀N₂O₆Na 429.2002, found: 429.2003; $[\alpha]_{D}^{20}$ = -2.88 (c = 0.78 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 7.70 min, $t_{major} = 9.06$ min, ee = 95%.

di-tert-butyl 1-((3R,5S)-2-oxo-5-phenyl-1-tosylpyrrolidin-3yl)hydrazine-1,2-dicarboxylate (4p) was obtained as a white solid (59 mg, 36% yield by cat. 3i) for two steps; mp = 84-85 °C; TLC: $R_f = 0.20$ (petroleum ether/EtOAc = 6:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.51 - 7.59 (m, 2H), 7.25 – 7.31 (m, 3H), 7.13 – 7.19 (m, 2H), 6.98 – 7.12 (m, 2H), 6.31 (s, 1H), 5.44 (d, J = 8.4 Hz, 1H), 5.36 (d, J = 63.1 Hz, 1H), 2.65 (ddd, J = 31.1, 19.1, 9.1 Hz, 1H), 2.38 (s, 3H), 2.32 (dd, J = 12.2, 5.7 Hz, 1H), 1.42 (d, J = 26.8 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 170.3, 155.7, 154.7, 145.5, 139.7, 135.2, 129.4, 129.1, 128.8, 128.4, 126.2, 82.8, 81.8, 60.1, 58.4, 53.7, 32.6, 28.2, 21.9 ppm; HRMS: [M+Na]⁺ calcd. For C₂₇H₃₅N₃O₇SNa 568.2093, found: 568.2095; $[\alpha]_{D}^{20}$ = -43.55 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [nhexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 11.81 min, *t_{major}* = 18.85 min, ee = 97%.

1-((3R,5R)-2-oxo-5-phenyl-1-tosylpyrrolidin-3di-*tert*-butyl yl)hydrazine-1,2-dicarboxylate (5p) was obtained as a white solid (57 mg, 35% yield by cat. 3i) for two steps; mp = 176-177 °C; TLC: $R_f = 0.15$ (petroleum ether/EtOAc = 6:1 v/v); ¹H **NMR** (500 MHz, CDCl₃) δ 7.45 (d, J = 52.3 Hz, 2H), 7.06 – 7.32 (m, 7H), 6.41 (s, 1H), 4.83 - 5.34 (m, 2H), 2.82 (s, 1H), 2.39 (s, 3H), 2.16 (s, 1H), 1.41 (dd, J = 17.2, 13.0 Hz, 18H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 170.6, 155.6, 154.4, 145.2, 141.0, 135.7, 129.5, 128.8, 128.5, 127.6, 127.2, 82.6, 81.8, 60.4, 59.0, 53.6, 32.3, 28.3, 21.9 ppm; **HRMS:** [M+Na]⁺ *calcd*. For $C_{27}H_{35}N_3O_7SNa$ 568.2093, found: 568.2096; $[\alpha]_D^{20} = -12.21$ (c = 1.00 in CHCl₃); As compound rac-**5p** couldn't be separated by chiral HPLC, N-Boc-5q was obtained and the enantiomeric excess of product N-Boc-5p was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 70/30, 1mL/min], λ = 210 nm, t_{minor} = 31.81 min, t_{major} = 35.97 min, ee = 98%.

di-tert-butyl

1-((3R,5S)-5-(((tertbutyldimethylsilyl)oxy)methyl)-2-oxo-1-tosylpyrrolidin-3-

ARTICLE

yl)hydrazine-1,2-dicarboxylate (4q) was obtained as a white solid (53 mg, 29% yield by cat. 3i) for two steps; mp = 52-53 °C; TLC: $R_f = 0.20$ (petroleum ether/EtOAc = 8:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 8.0 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 6.21 (s, 1H), 5.08 (d, J = 148.9 Hz, 1H), 4.40 (d, J = 6.9 Hz, 1H), 3.97 - 4.12 (m, 1H), 3.69 (d, J = 9.3 Hz, 1H), 2.40 (s, 3H), 2.23 -2.37 (m, 2H), 1.40 (d, J = 20.5 Hz, 18H), 0.78 (s, 9H), -0.00 (d, J = 33.1 Hz, 6H) ppm; ¹³C NMR (125 MHz, CDCl₃) δ 171.2, 155.8, 154.2, 145.2, 136.2, 129.7, 128.4, 82.1, 81.5, 65.0, 58.3, 42.2, 28.3, 27.8, 26.0, 21.8, 18.3, -5.3 ppm; **HRMS:** [M+H]⁺ calcd. For $C_{28}H_{48}N_3O_8SSi$ 614.2931, found: 614.2933; $[\alpha]_D^{20}$ = -35.44 (c = 0.50 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{minor} = 6.33 min, t_{major} = 8.11 min, ee = 93%.

di-tert-butyl

1-((3R,5R)-5-(((tertbutyldimethylsilyl)oxy)methyl)-2-oxo-1-tosylpyrrolidin-3-

yl)hydrazine-1,2-dicarboxylate (5q) was obtained as a white solid (52 mg, 28% yield by cat. 3i) for two steps; mp = 67-68 °C; TLC: $R_f = 0.15$ (petroleum ether/EtOAc = 8:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 7.2 Hz, 2H), 7.29 (d, J = 7.6 Hz, 2H), 6.24 (s, 1H), 4.77 (d, J = 117.3 Hz, 1H), 3.82 - 4.21 (m, 3H), 2.35 - 2.47 (m, 4H), 2.11 - 2.22 (m, 1H), 1.41 (d, J = 9.9 Hz, 18H), 0.83 (s, 9H), 0.03 (s, 6H) ppm; 13 C NMR (125 MHz, CDCl₃) δ 171.3, 155.7, 154.7, 145.5, 135.6, 129.8, 128.5, 82.5, 81.7, 64.1, 58.1, 42.3, 28.3, 28.3, 26.1, 24.9, 21.9, 18.4, -5.2, -5.3 ppm; **HRMS:** $[M+H]^+$ calcd. For C₂₈H₄₈N₃O₈SSi 614.2931, found: 614.2935; $[\alpha]_D^{20}$ = -2.69 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [*n*-hexane/*i*-PrOH = 90/10, 1mL/min], λ = 210 nm, t_{minor} = 9.53 min, t_{major} = 11.55 min, ee = 94%.

di-tert-butyl 1-((3S,5R)-2-oxo-5-phenyltetrahydrofuran-3yl)hydrazine-1,2-dicarboxylate ((-)-4a) was obtained by cat. (-)-3d as a white solid (43 mg) in 37% yield for two steps; mp = 112-113 °C; TLC: $R_f = 0.75$ (petroleum ether/EtOAc = 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) 7.28 – 7.41 (m, 3H), 7.25 (d, *J* = 8.0 Hz, 2H), 6.47 (s, 1H), 5.59 - 5.69 (m, 1H), 4.91 (d, J = 164.9 Hz, 1H), 2.80 - 3.09 (m 1H), 2.48 - 2.65 (m, 1H), 1.45 (d, J = 12.0 Hz, 18H) ppm; 13 C NMR (150 MHz, CDCl₃) δ 173.5, 155.8, 154.5, 139.4, 129.2, 128.6, 125.6, 82.8, 82.1, 78.6, 56.7, 33.6, 28.3, 28.3 ppm; **HRMS:** [M+Na]⁺ calcd. For C₂₀H₂₈N₂O₆Na 415.1845, found: 415.1846; $[\alpha]_D^{20}$ = -16.17 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [n-hexane/i-PrOH = 80/20, 1mL/min], λ = 210 nm, t_{major} = 6.27 min, t_{minor} = 7.31 min, ee = -92%.

1-((35,55)-2-oxo-5-phenyltetrahydrofuran-3di-*tert*-butyl yl)hydrazine-1,2-dicarboxylate ((-)-5a) was obtained by cat. (-)-3d as a white solid (48 mg) in 41% yield for two steps; mp = 87-88 °C; TLC: R_f = 0.60 (PE:EA, 4:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.29 - 7.41 (m, 5H), 6.49 (s, 1H), 4.93 - 5.48 (m, 2H), 2.75 - 3.01 (m, 1H), 2.24 - 2.54 (m, 1H), 1.44 (d, J = 18.2 Hz, 18H) ppm; ¹³C NMR (150 MHz, CDCl₃) δ 173.9, 155.8, 154.5, 139.0, 129.0, 129.0, 126.1, 83.0, 82.0, 78.7, 59.0, 34.5, 28.3 ppm; **HRMS**: $[M+Na]^{\dagger}$ calcd. For $C_{20}H_{28}N_2O_6Na$ 415.1845, found: 415.1845; $[\alpha]_D^{20}$ = +22.57 (c = 1.00 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on

Journal Name

Daicel Chiralpak IC column [n-hexane/i-PrOHew Artic 80/20 1mL/min], λ = 210 nm, t_{major} = 7.24 min, $\mathbb{P}_{minor}^{O[: 1Q:1]}$ -92%.

General procedure for the synthesis of α -amino lactone derivatives. To a solution of 5a (35 mg, 0.089 mmol) in dichloromethane (1 mL) was added TFA (0.5 mL) at 0 °C. After stirring at room temperature for 3h, the mixture was concentrated and desolved in etanol/aceticacid (0.6 mL/0.2 mL), then Raney Ni (89 mg) was added and purging with H₂, the mixture was stirred overnight. Then the mixture was filtered and concentrated and dissolved in dichloromethane (1 mL), Triethylamine (10mg, 0.1 mmol), DMAP (4.4 mg, 0.036 mmol) and di-tert-butyl dicarbonate (21.8mg, 0.1 mmol) was added at 0 °C. After stirring for 10h at room temperature, 1M HCl solution was added into the mixture, which was then extracted with dichloromethane. The combined organic layer was dried over Na₂SO₄, filtered and concentrated in vacuo to give a residue which was purified by flash chromatography to give 8. For the synthesis of compound 9, 4a (59 mg, 0.15 mmol) was added instead of 5a, following the first step of the procedure above and then recrystallized from dichloromethane.

((3R,5R)-2-oxo-5-phenyltetrahydrofuran-3tert-butyl yl)carbamate (8) was obtained as white solid (4.6 mg) in 19% yield; mp = 166-168 °C; TLC: R_f=0.55 (petroleum ether/EtOAc = 3:1 v/v); ¹**H NMR** (500 MHz, CDCl₃) δ 7.32–7.41 (m, 5H), 5.38 (dd, J=11.2, 5.2 Hz, 1H), 5.05-5.17 (m, 1H), 4.51-4.61 (m, 1H), 3.05-3.19 (m, 1H), 2.13 (dd, J=23.8, 11.9 Hz, 1H), 1.44 (s, 9H) ppm; ¹³C NMR (125MHz, CDCl₃) δ 174.7, 155.6, 138.0, 129.1, 129.0, 126.0, 80.9, 78.9, 52.2, 39.6, 28.5 ppm; HRMS: [M+Na]⁺ calcd. For $C_{15}H_{19}NO_4Na$ 300.1212, found: 300.1213; $[\alpha]_D^{20}$ -7.17 (c = 0.18 in $CHCl_3$); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IB column [nhexane/i-PrOH=80/20, 1mL/min], λ=210 nm, t_{maior}=7.19 min, t_{minor} =8.34 min, ee = 93%.

2-((3R,5S)-2-oxo-5-phenyltetrahydrofuran-3-yl)hydrazin-1-

ium 2,2,2-trifluoroacetate (9) was obtained as white solid (45.8 mg) in 70% yield; TLC: R_f=0.35 (CH₂Cl₂:MeOH = 20:1 v/v); ¹**H NMR** (500 MHz, d₆-DMSO) δ 9.27 (s, 3H), 7.41–7.46 (m, 2H), 7.36-7.41 (m, 3H), 6.16 (s, 1H), 5.74 (dd, J=7.3, 5.8 Hz, 1H), 4.07 (t, J=7.4 Hz, 1H), 2.60 (dt, J=14.1, 7.2 Hz, 1H), 2.53 (dd, J=8.2, 5.5 Hz, 1H) ppm; ¹³C NMR (125MHz, d₆-DMSO) δ 174.2, 139.0, 128.7, 128.5, 125.7, 78.9, 56.1, 34.6 ppm; HRMS: [M+H]⁺ calcd. For C₁₀H₁₃N₂O₂ 193.0977, found: 193.0979; $[\alpha]_{D}^{20}$ = +24.43 (c = 0.30 in DMSO).

General procedure for the synthesis of bicyclic oxazolidinone 12. Compound 10 and 13 were prepared following the general procedure of the first step. 10 (39.5 mg, 0.1 mmol) was dissolved in dichloromethane (1 ml), and $BF_3 \bullet OEt_2$ (42.6 mg, 0.3 mmol) was added at 0 °C. After stirring at 0 °C for 1.5h, the mixture was concentrated in vacuo and purified by flash chromatography to afford compound 11. To a solution of 11 (22 mg, 0.1 mmol) in methanol (1 mL) was added Raney Ni (100 mg) and purging with H₂. After stirring at room temperature for 12h, the mixture was filtered and concentrated in vacuo, and compound 12 was obtained after flash chromatography.

Chemistry Accepted Manusci

Journal Name

(3aR,5S,6aR)-1-amino-5-phenyltetrahydrofuro[3,2-d]oxazol-

2(3aH)-one (11) was obtained as white solid (19.5 mg) in 89% yield; mp =59-61 °C; TLC: R_{f} =0.20 (petroleum ether/EtOAc = 1:1 v/v); ¹H NMR (600 MHz, CDCl₃) δ 7.29–7.37 (m, 5H), 6.12 (d, J=5.5 Hz, 1H), 5.13 (dd, J=11.1, 4.6 Hz, 1H), 4.46 (t, J=5.7 Hz, 1H), 4.04 (s, 2H), 2.64 (dd, J=13.6, 4.6 Hz, 1H), 1.89 (ddd, J=13.7, 11.1, 5.9 Hz, 1H); ¹³C NMR(125MHz, CDCl₃) δ 157.7, 138.2, 128.8, 128.6, 126.3, 100.6, 79.9, 63.8, 38.5 ppm; HRMS: [M+H]⁺ calcd. For C₁₁H₁₃N₂O₃ 221.0926, found: 221.0928; [α]_D²⁰ = -107.43 (c=0.21 in CHCl₃).

(3aR,5S,6aR)-5-phenyltetrahydrofuro[3,2-d]oxazol-2(3aH)-

one (12) was obtained as white solid (13.4 mg) in 65% yield; mp =159-160 °C; TLC: R_f=0.3 (petroleum ether/EtOAc = 1:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.28–7.38 (m, 5H), 6.38 (s, 1H), 6.28 (d, J=5.5 Hz, 1H), 5.26 (dd, J=11.1, 4.4 Hz, 1H), 4.57 (t, J=5.7 Hz, 1H), 2.37 (dd, J=13.4, 4.5 Hz, 1H), 1.93 (ddd, J=13.4, 11.2, 6.0 Hz, 1H) ppm; ¹³C NMR(125MHz, CDCl₃) δ 159.0, 138.2, 128.9, 128.6, 126.3, 104.3, 79.8, 57.9, 42.0 ppm; HRMS: [M+Na]⁺ calcd. For C₁₁H₁₁NO₃Na 228.0637, found: 228.0639; [α]_D²⁰ -46.36 (c=0.90 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IC column [*n*hexane/*i*-PrOH=80/20, 1mL/min], λ=210 nm, t_{minor}=10.427 min, t_{major}=11.567 min, ee = 97%.

General procedure for the synthesis of amino alcohol: Compound **13** (29.0 mg, 0.074 mmol) was dissolved in methanol (1mL), and sodium borohydride (22.7 mg, 0.6 mmol) was added at 0°C. After stirring at 0°C for 0.5h, the mixture was concentrated in vacuo and purified by flash chromatography to afford compound **14**.

di-*tert*-butyl 1-((2*R*,4*R*)-1,4-dihydroxy-4-phenylbutan-2yl)hydrazine-1,2-dicarboxylate (14) was obtained as colorless gum (22 mg) in 75% yield; TLC: R_{j} =0.35 (petroleum ether/EtOAc = 3:1 v/v); ¹H NMR (500 MHz, CDCl₃) δ 7.32 (s, 4H), 7.24 (s, 1H), 6.06 (d, *J*=110.5 Hz, 1H), 4. 32–4. 73 (m, 2H), 3.36– 3.57 (m, 2H), 1.68–1.83 (m, 1H), 1.56–1.67 (m, 1H), 1.46 (d, *J*=7.2 Hz, 18H) ppm; ¹³C NMR (125MHz, CDCl₃) δ 157.9, 155.9, 143.9, 128.8, 128.7, 128.0, 127.7, 125.8, 82.8, 82.4, 71.4, 62.6, 56.4, 37.6, 28.4, 28.3 ppm; HRMS: $[M+H]^+$ calcd. For C₂₀H₃₃N₂O₆ 397.2339, found: 397.2339; $[\alpha]_D^{20}$ -7.22 (c=0.86 in CHCl₃); The enantiomeric excess was determined by HPLC analysis on Daicel Chiralpak IA column [*n*-hexane/*i*-PrOH=85/15, 1mL/min], λ=210 nm, *t_{minor}*=6.30 min, *t_{major}*=16.05 min, ee = 91%.

Acknowledgements

We thank the National Nature Science Foundation of China (No. 21302156), NSFC-Shandong Joint Fund for Marine Science Research Centers (No. U1406402) and Ocean University of China (OUC 201562031) for generous financial support.

Notes and references

 (a) G. Bergonzini and P. Melchiorre, Angew. Chem. 2012, 124, 995-998; Angew. Chem. Int. Ed. 2012, 51, 971-974; (b) M. Retini, G. Bergonzini and P. Melchiorre, Chem. Commun. **2012**, *48*, 3336-3338. For review, see: (c) L. C. Miller and R. Sarpong, *Chem. Soc. Rev.* **2011**, *40*, 4550, 4562, 39/C6OB00953K

- 2 For selected reviews, see: (a) M. Teplitski, U. Mathesius and K. P. Rumbaugh, *Chem. Rev.* 2011, *111*, 100-116; (b) D. M. Stacy, M. A. Welsh, P. N. Rather and H. E. Blackwell, *ACS Chem. Biol.* 2012, *7*, 1719-1728; (c) M. Schuster, D. J. Sexton, S. P. Diggle and E. P. Greenberg, *Annu. Rev. Microbiol.* 2013, *67*, 43-63.
- (a) S. R. Donohue, J. H. Krushinski, V. W. Pike, E. Chernet, L. Phebus, A. K. Chesterfield, C. C. Felder, C. Halldin and J. M. Schaus, *J. Med. Chem.* 2008, *51*, 5833-5842; (b) K. R. Campos, A. Klapars, Y. Kohmura, D. Pollard, H. Ishibashi, S. Kato, A. Takezawa, J. H. Waldman, D. J. Wallace, C. Chen and N. Yasuda, *Org. Lett.* 2011, *13*, 1004-1007.
- 4 M. Jacob, M. L. Roumestant, P. Viallefont and J. Martinez, Synlett 1997, 6, 691-692.
- 5 M. Venkataiah, G. Reddipalli, L. S. Jasti and N. W. Fadnavis, *Tetrahedron: Asymmetry* **2011**, *22*, 1855-1860.
- 6 A. R. Healy, M. Izumikawa, A. M. Z. Slawin, K. Shin-ya and N. J. Westwood, *Angew. Chem. Int. Ed.* **2015**, *54*, 4046-4050.
- 7 W. Li, J. Gan and D. Ma, Angew. Chem. Int. Ed. 2009, 48, 8891-8895.
- 8 Z. Yang, Z. Wang, S. Bai, K. Shen, D. Chen, X. Liu, L. Lin and X. Feng, *Chem. Eur. J.* **2010**, *16*, 6632-6637.
- 9 N. A. Aslam and S. A. Babu, *Tetrahedron* **2014**, *70*, 6402-6419.
- (a) S. De Lamo Marin, C. Catala, S. R. Kumar, A. Valleix, A. Wagner and C. Mioskowski, *Eur. J. Org. Chem.* **2010**, 3985–3989;
 (b) S. K. Ghosh, B. Somanadhan, K. S.-W. Tan, M. S. Butler and M. J. Lear, *Org. Lett.* **2012**, *14*, 1560-1563;
 (c) T.-Y. Yuen, S. E. Eaton, T. M. Woods, D. P. Furkert, K. W. Choi and M. A. Brimble, *Eur. J. Org. Chem.* **2014**, 1431-1437.
- (a) Y.-K. Liu, Z.-L. Li, J.-Y. Li, H.-X. Feng and Z.-P. Tong, Org. Lett. 2015, 17, 2022-2025; (b) H.-X. Feng, R. Tan and Y.-K. Liu, Org. Lett. 2015, 17, 3794-3797; (c) X.-L. Sun, Y.-H. Chen, D.-Y. Zhu, Y. Zhang and Y.-K. Liu, Org. Lett. 2016, 18, 864-867; (d) J.-Y. Li, Z.-L. Li, W.-W. Zhao, Y.-K. Liu, Z.-P. Tong and R. Tan, Org. Biomol. Chem. 2016, 14, 2444-2453; (e) P.-W. Cai, Z.-H. You, L.-H. Xie, R. Tan, Z.-P. Tong and Y.-K. Liu, Synthesis, 2016, DOI: 10.1055/s-0035-1561972; (f) Z.-L. Li, C. Liu, R. Tan, Z.-P. Tong and Y.-K. Liu, Catalysts 2016, 6, 65-78.
- (a) Y. Zhu, P. Qian, J. Yang, S. Chen, Y. Hu, P. Wu, W. Wang, W. Zhang and S. Zhang, *Org. Biomol. Chem.* **2015**, *13*, 4769-4775; (b) J. Wang, P. Qian, Y. Hua, J. Yang, J. Jiang, S. Chen, Y. Zhang and S. Zhang, *Tetrahedron Lett.* **2015**, *56*, 2875-2877.
- 13 B. List, R. A. Lerner and C. F. Barbas III, J. Am. Chem. Soc. 2000, 122, 2395-2396.
- 14 A. Msutu and R. Hunter, Tetrahedron Lett. 2014, 55, 2295-2298.
- 15 (a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. **2005**, 44, 794-797; (b) Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew. Chem. Int. Ed. **2005**, 44, 4212-4215.
- 16 For reviews, see: (a) F. Zhou, F.-M. Liao, J.-S. Yu and J. Zhou, *Synthesis* 2014, *46*, 2983-3003; (b) C.-B. Ji, Y.-L. Liu, X.-L. Zhao, Y.-L. Guo, H.-Y. Wang and J. Zhou, *Org. Biomol. Chem.* 2012, *10*, 1158-1161; For selected examples, see: (c) N. Kumaragurubaran, K. Juhl, W. Zhuang, A. Bøgevig and K. A. Jørgensen, *J. Am. Chem. Soc.* 2002, *124*, 6254-6255; (d) A. Bøgevig, K. Juhl, N. Kumaragurubaran, W. Zhuang and K. A. Jørgensen, *Angew. Chem. Int. Ed.* 2002, *41*, 1790-1793; (e) B. List, *J. Am. Chem. Soc.* 2002, *124*, 5656-5657.
- 17 J.-Y. Fu, X.-Y. Xu, Y.-C. Li, Q.-C. Huang and L.-X. Wang, Org. Biomol. Chem. 2010, 8, 4524-4526.
- 18 N. S. Chowdari and C. F. Barbas III, Org. Lett. 2005, 7, 867-870.
- 19 (a) S. T. Tong, P. W. R. Harris, D. Barker and M. A. Brimble, *Eur. J. Org. Chem.* **2008**, 164-170; (b) Z. P. Demko and K. B.

Organic & Biomolecular Chemistry Accepted Manuscript

Journal Name

View Article Online DOI: 10.1039/C6OB00953K

Sharpless, Org. Lett. **2002**, *4*, 2525-2527; (c) A. Hartikka and P. I. Arvidsson, Eur. J. Org. Chem. **2005**, 4287-4295.

- 20 CCDC 1436994 (9) and CCDC 1437043 (11) contain the supplementary crystallographic data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
- 21 D. A. Evans, Aldrichimica Acta **1982**, *15*, 23-32.
- 22 See the ESI⁺ for more details.

ARTICLE

23 (a) H. Iwamura, S. P. Mathew and D. G. Blackmond, *J. Am. Chem. Soc.* 2004, *126*, 11770-11771; (b) H. Iwamura, D. H. Wells, Jr., S. P. Mathew, M. Klussmann, A. Armstrong and D. G. Blackmond, *J. Am. Chem. Soc.* 2004, *126*, 16312-16313; (c) J. E. Hein, A. Armstrong and D. G. Blackmond, *Org. Lett.* 2011, *13*, 4300-4303.

This journal is © The Royal Society of Chemistry 20xx