ARTICLE

Novel arylpyridine-based 1,3,4-oxadiazoles: Synthesis, antibacterial, and anti-inflammatory evaluation

Sowmya Padejjar Vasantha¹ | Boja Poojary¹ | Revanasiddappa Bistuvalli Chandrashekarappa²

¹Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India

²Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Mangalore, Karnataka, India

Correspondence

Boja Poojary, Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka, India. Email: bojapoojary@gmail.com

In view of developing novel bioactive compounds, a series of 2-(5-[2-methyl-6-arvlpvridin-3-vl]-1.3.4-oxadiazol-2-vlthio)-1-arvlethanones (6a–n) were designed and synthesized in good yield. Novel compounds were evaluated for their antibacterial and anti-inflammatory activities. All synthesized compounds were screened for their antibacterial activity against Staphylococcus aureus, Bascillus subtilis, Eschericia coli, and Pseudomonas aeruginosa strains. Compounds 6a, 6b, **6c**, **6h**, and **6i** displayed the highest antibacterial activity with minimal inhibitory concentration (MIC) values ranging from $6.25-12.5 \,\mu$ g/mL in comparison with the standard Ciprofloxacin. The results of anti-inflammatory activity of carrageenaninduced footpad edema assay indicated that tested compounds exhibited remarkable anti-inflammatory activity with percentage of inhibition of 63.9-70.1% (potency 96.8–106.20% of indomethacin activity) after 3 hr. Particularly, 6c-e and 6j-l were found to be excellent inhibitors of inflammation, with potential higher than that of the standard, Indomethacin.

KEYWORDS

bioorganic chemistry, medicinal chemistry, organic chemistry

1 | INTRODUCTION

Antimicrobial agents have gained a lot of importance because of life-threatening infectious diseases like diphtheria, typhoid, tuberculosis, cholera, HIV, plague^[1] etc caused by microbes increased to an alarming level around the world. This is mainly due to rapid development of multidrugresistant microbial pathogens. Hence, minimizing multidrugresistant pathogens may be an important approach to the primary prevention or treatment of these diseases. These clinical limitations such as drug resistance, toxicity, and side effects had attracted a great deal of research interest in therapeutic antimicrobial-based drug formulations.

Inflammation is a normal reaction to injury or infection. Nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently used medications for the treatment of pain and inflammation caused by chronic illnesses, including diabetes, cardiovascular disease, arthritis, psoriasis, infection, and cancer^[2] through interacting and inhibiting the enzymatic activity.^[3,4] For long-term use, NSAIDs are frequently associated with serious side effects like upper gastrointestinal (GI) irritation, bleeding, dyspepsia, ulceration, and in some cases death.^[5] These side effects are due to non-selective inhibition of COXs, thereby design and development of NSAIDs with enhanced safety profile is still a necessity and challenge for the pharmaceutical industry.

In this context, considerable interest has been focused on 1,3,4-oxadiazole derivatives that has occupied a unique place in the field of medicinal chemistry. They are well known as antifungal,^[6] anticancer,^[7] fungicidal,^[8] antidepressant,^[9] hypoglycemic,^[10] and anti-HIV^[11] agents. Additionally, 1,3,4-oxadiazoles are very good bioisosteres of esters and amides, which help substantially to enhance the pharmacological activity by participating in hydrogen bonding interactions with the receptors. Hence, they have motivated countless researchers to study their synthesis and

© 2019 The Chemical Society Located in Taipei & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

2

pharmacological properties. Moreover, the presence of toxophoric -N=C-O- linkage in the oxadiazole core contributes to significant pharmacokinetic property like lipophilicity, which in turn increases the ability of drug to reach the target by transmembrane diffusion.^[12] Besides, the literature survev reveals that the presence of alkyl or acyl, carboxamide linkage on the oxadiazole core plays an important role in biological activity by increasing the ability of penetration into the active site.[13]

On the other hand, different substituted pyridines are well documented in the literature as they have been associated with an extensive range of pharmaceutical and pesticide including anticancer, anti-inflammatory, activities analgesic,^[14] antimicrobial,^[15] anticonvulsant,^[16] anti-TB, antidepressant,^[17] phosphodiestrase-3 inhibitor,^[18] HIV inhibition,^[19] antihypertensive agents,^[20] selective inhibitors of hepatitis C virus (HCV)^[21], and insecticidal activities.^[22] Additionally, Numerous studies pointed out the antimicrobial and anti-inflammatory properties of 1,3,4-oxadiazole and pyridine derivatives as promising antimicrobial and antiinflammatory agents (Figure 1).^[23-28] Additionally, there are reports that incorporation of chlorine/bromine atoms into a molecule provides compounds that exhibit superior antiinflammatory and antimicrobial activities.^[29-32] Heterocyclic compounds with a chloro-substituted/bromo-substituted phenyl ring are reported as potent analgesic used in inflammatory pain, for example, SC-558,^[33] zomepirac^[34] and DuP-697.^[35] Furthermore, antimicrobial and anti-inflammatory activities of 1,3,4-oxadiazoles clubbed with chloro-substituted/ bromo-substituted arylpyridine moieties are not even reported in the literature. In the light of above findings, we considered it of interest to synthesize a new class of heterocyclic molecules in which all of these 1,3,4-oxadiazole, pyridine, and S-alkyl linker moieties are present and tried to develop potential bioactive molecules. Herein, a variety of arylpyridine derivatives bearing 1,3,4-oxadiazoles, containing a diverse set of aromatic substitutions through S-alkyl linkage, were designed and synthesized by placing the aryl pyridine moiety at the fifth position and S-alkyl at the second position of the 1,3,4-oxadiazole ring and screening the results of antibacterial and anti-inflammatory activities.

2 | RESULTS AND DISCUSSION

2.1 | Chemistry

In the present work, the desired arylpyridine-based 1,3,4-oxodiazoles were geared up by the series of steps and are depicted in Scheme 1. The enaminones 2a-b were obtained by refluxing the 4-chloroacetophenone 1a and 4-bromoacetophenone 1b with dimethyl formamide dimethyl acetal. In a one-pot, three-component heterocylocondensation process of 2a-b, diketoester and ammonium acetate in acetic glacial acid media furnished corresponding ethyl (6-aryl-2-methylpyridine)-3-carboxylates **3a-b**. The intermediates, 3a-b, were then subjected to hydrazinolysis by hydrated hydrazine into corresponding arylpyridine carbohydrazides 4a-b. 5-Arylpyridine-1,3,4-oxadiazol-2-thiones 5a-b were synthesized by intramolecular cyclization of different arylpyridine carbohydrazides 4a-b with carbon disulfide in the presence of sodium hydroxide in absolute ethanol, as a solvent, and finally, the preparation of target compounds was achieved via the nucleophilic substitution reaction of 5-arylpyridine-1,3,4-oxadiazol-2-thiones 5a**b** with substituted phenacyl bromides/chlorides in acetone and triethylamine. The structures of 2-(5-[2-methyl-

FIGURE 1 Literature reports for active 1,3,4-oxadiazole, pyridine and S-alkyl linker-based anti-inflammatory and antimicrobial derivatives and strategy employed for designing arylpyridine-based 1,3,4-oxadiazoles

SCHEME 1 Outline for the synthesis. Reagents and conditions: (i) DMF-DMA, 90°C, 5-6 hr. (ii) ethyl acetoacetate, NH₄OAc, AcOH, reflux, 3 hr. (iii) N₂H₄, reflux, 5–6 hr. (iv) CS₂, NaOH, EtOH, reflux 4 hr. (v) Phenacyl bromide/chloride, Et₃N, acetone, reflux, 5 hr

6-arylpyridin-3-yl]-1,3,4-oxadiazol-2-ylthio)-1-arylethanones (**6a–n**) (Table 1) were ascertained by their spectral and analytical data.

The formation of intermediates **5a–b** from corresponding carbohydrazides was confirmed by the presence of characteristic stretching vibrations for NH, C=N, and C=S groups in FT-IR. When compound 4b was converted to the corresponding oxadiazole thione **5b**, the absorption bands due to amide carbonyl and NH/NH2 groups disappeared, instead new absorption bands for NH, C=N, and C=S groups were observed at 3,062, 1,581, 1,332 cm^{-1} , respectively. In the ¹H NMR spectrum of compound **5b**, the presence of the pyridine ring was affirmed by two doublets at 8.03 ppm (J = 8.4 Hz) for C₄-H and 8.22 ppm (J = 8.4 Hz) for C₅-H and a sharp singlet at 2.80 ppm attributable for the methyl group on the pyridine unit. The signals resonating at 7.71 and 8.11 ppm as two doublets due to four protons supported the presence of aryl nucleus in the molecule. Furthermore, the ¹³C NMR spectrum of **5b** confirmed the formation of the 1,3,4-oxodiazole ring by displaying signals at 177.1 and 159.4 ppm due to C-2 and C-5 carbon atoms of the 1,3,4-oxadiazole ring. The structure of new intermediate 5b was further confirmed by its mass spectrum that displayed (M + 1), (M + 2) ion peaks at m/z 347.25, 349.10, respectively, which is in agreement with its molecular formula.

The formation of new arylpyridine-based 1,3,4-oxodiazole derivatives (6a-n) was confirmed by their spectral analysis (Supporting Information). In general, in the FT-IR spectra (6a–n), the bands corresponding to NH and C=S of the 1,3,4-oxadiazole-2-thione ring disappeared. Also, new characteristic peaks corresponding to C=O and C-S stretching vibrations were appeared, indicating the Salkylation. Additionally, in the ¹H NMR spectra the presence of a new signal between 5.03-5.20 ppm for the S-CH₂ group clearly demonstrated the S-alkylation. Similarly, in the ¹³C NMR spectra of (6a–n), the signal corresponding to C=S of intermediates **5a-b** was found to be missing, instead the presence of a new signal corresponding to C=O is evidenced the formation of S-alkylated analogs. In particular, for the prototype **6**l, its ¹H NMR showed additional doublets at 7.80 and 7.95 ppm with coupling constants 8.4 and 2 Hz corresponding to C₃–H and C₆–H of the 2,4-dichlorophenyl ring, respectively. A doublet of doublet in the region 7.63–7.65 ppm integrating for one proton with coupling constants 8.4 and 2 Hz corresponding to C₅-H of the 2,4-dichlorophenyl ring clearly confirmed the S-alkylated derivative. In addition to this, the spectrum showed a singlet at 5.03 ppm integrating two protons of the S–CH₂ group, which provides the additional support for the S-substitution. The signal at 2.87 ppm attributed to the -CH₃ group attached to the pyridine moiety. Similarly, pyridine-C₄-H and C₅-H appeared as doublets at 8.05 and 8.31 ppm with a coupling constant of 8 Hz and doublet of doublets in the region at 7.72-7.74 and 8.13-8.15 ppm were attributed to 3

the four protons of the 4-bromophenyl moiety, which further confirmed the structure. Its ¹³C NMR further confirmed the S-alkylated product. The spectrum of **6** displayed a highly deshielded signal at 193.4 ppm due to the presence of carbonyl carbon, which was absent in previous 1,3,4-oxadiazole-2-thiones. Moreover, a signal corresponding to C=S carbon of intermediate 5b was found to be missing and it showed additional signal at 42.2 ppm corresponding to the S-CH₂ carbon, which clearly indicates the formation of target 61. The shifting of stretching vibration to a lower region (C-S) 1,191 cm⁻¹ from (C=S) $1,332 \text{ cm}^{-1}$ and the absence of vibration at $3,062 \text{ cm}^{-1}$ corresponding to the NH; while a new vibration at $1,681 \text{ cm}^{-1}$ corresponding to C=O in its IR spectrum provide additional support for the formation of target 61 from 1,3,4-oxadiazole-2-thione derivative 5b. The mass spectrum provided support to the structure of the compound **61** as it displayed (M - 1), [(M-1)+2], and [(M-1)+4] ion peaks at m/z 532.80, 534.10, 536.80, respectively, which is in agreement with its molecular formula C₂₂H₁₄N₃BrCl₂O₂S, evidencing the formation of compound.

2.2 | In vitro antibacterial activity

Antibacterial potency of newly synthesized compounds was checked by performing their in vitro antibacterial activity using agar disc-diffusion method against Eschericia coli and Pseudomonas aeruginosa representative of Gram-positive and Staphylococcus aureus, Bascillus subtilis representative of Gram-negative bacterial strains. Ciprofloxacin was used as the positive control. The results of the preliminary antimicrobial activity of compounds 6a-n are reported in Table 2. The results revealed that they showed varying degrees of inhibition against the tested microorganisms. In general, compounds **6b**, **6c**, **6h**, **6i**, and **6n** displayed the best antibacterial activity with zone of inhibition ranging between 13.6 and 16.5 mm toward Gram-positive bacteria B. subtilis and were considered the most sensitive among the tested microorganisms, while the other compounds were weakly active or completely inactive with the inhibition zone ≤ 12.5 mm. In contrast, none of the tested compounds displayed an observable inhibitory effect against S. aureus organism. Compounds 6h and 6i produced good inhibiting potency toward Gram-negative E. coli with the inhibition zone >13 mm, while the compound 6g was moderately active with the inhibition zone 11.5 mm. Furthermore, compounds 6a, 6b, 6i, and 6n produced marked activity against Gramnegative P. aeruginosa with the inhibition zone ranging value between 12.5-14.5 mm, compared with other compounds of the series. The compounds 6d, 6e, 6f, 6j, 6k, 6l, and 6m were found to be active against all bacterial strains but results were not appreciable. Based on the preliminary screening, the most active compounds were further examined for their in vitro minimal inhibitory concentration (MIC) against the same organisms using the microdilution

 TABLE 1
 Physical data of the newly synthesized 2-(5-(2-methyl-6-arylpyridin-3-yl)-1,3,4-oxadiazol-2-ylthio)-1-arylethanones (6a–n) via Scheme 1

6a-n

Compound	R	R ₁	Mol. formula	Mol. weight	Yield (%)	Melting point (°C)
ба	Cl		C ₂₃ H ₁₈ N ₃ ClO ₂ S	435.08	90	180–181
6b	Cl	Br	C ₂₂ H ₁₅ N ₃ BrO ₂ S	498.98	91	212–213
6с	Cl	~ P	C ₂₃ H ₁₈ N ₃ ClO ₃ S	451.08	98	198–199
6d	Cl	CI	$C_{22}H_{15}N_3Cl_2O_2S$	455.03	85	209–210
6e	Cl	CI	$C_{22}H_{14}N_3Cl_3O_2S$	488.99	73	139–140
6f	Cl	CI CI	$C_{29}H_{18}N_3Cl_3O_2S$	577.02	79	147–149
6g	Cl	$\langle $	$C_{22}H_{16}N_3ClO_2S$	421.07	97	151–152
6h	Br		$C_{23}H_{18}N_3BrO_2S$	479.03	94	183–184
6i	Br	Br	$C_{22}H_{15}N_3Br_2O_2S$	545.25	95	213–214
6j	Br		$C_{23}H_{18}N_3BrO_3S$	495.03	94	199–200
6k	Br	CI	C ₂₂ H ₁₅ N ₃ BrClO ₂ S	498.98	98	217–218
61	Br	CI	$C_{22}H_{14}N_3BrCl_2O_2S$	532.94	83	144–146

TABLE 1 (Continued)

Compound	R	<i>R</i> ₁	Mol. formula	Mol. weight	Yield (%)	Melting point (°C)
6m	Br	CI CI	C ₂₉ H ₁₈ N ₃ BrCl ₂ O ₂ S	620.35	76	168–169
6n	Br		C ₂₂ H ₁₆ N ₃ BrO ₂ S	465.01	96	153–154

method. Results are summarized in Table 3. It was observed that the results were in agreement with the preliminary screening results. The tested compounds displayed moderate to good inhibitory activity with the MIC values ranging from 100 to 6.25 µg/mL. Among the tested compounds, **6i** $(R = Br and R_1 = 4$ -bromophenyl) showed highest inhibition with an MIC value of 6.25 µg/mL toward *B. subtilis* and *E. coli* strain and good activity toward *P. aeruginosa* with an MIC value of 12.5 µg/mL. Furthermore, tested **6b**, **6h** and **6i** exhibited good activity with an MIC value of 12.5 µg/mL and compound **6g** showed moderate activity toward *B. subtilis* with an MIC value of 25 µg/mL. Replacement of bromine by chlorine in **6i** led to compound **6b** $(R = Cl and R_1 = 4$ - bromophenyl), whose activity was reduced to MIC values of 12.5 and 100 µg/mL toward

 TABLE 2
 Antibacterial activity of synthesized compounds 6a–n using the agar cup plate method

Antibacterial activity data of the target 6a-n in terms of the zone of inhibition						
	Antibacterial activity diameter of growth inhibition zone ^a					
	Gram positi	ve	Gram negative			
Sample	S. aureus	B. subtilis	E. coli	P. aeruginosa		
Control	—	—	—	—		
6a	14 ± 0	11.5 ± 0.5	8 ± 0	14.5 ± 0		
6b	10.5 ± 0.5	15.5 ± 0.5	5 ± 0	13.5 ± 0.5		
6c	7.5 ± 0.5	16.5 ± 0.5	8 ± 0	8.5 ± 0.5		
6d	6.5 ± 0.5	12.5 ± 0.5	10 ± 0	9.5 ± 2.5		
6e	11.5 ± 0.5	11.5 ± 0.5	10 ± 0	9 ± 0		
6f	10.5 ± 0.5	10.5 ± 0.5	8 ± 0	8 ± 0		
6g	11 ± 1	11 ± 1	11.5 ± 0.5	10.5 ± 0.5		
6h	8.5 ± 0.5	15.5 ± 0.5	13 ± 0	8.5 ± 0.5		
6i	9.5 ± 0.5	15.5 ± 0.5	13.5 ± 0.5	13.5 ± 0.5		
6j	8.5 ± 0.5	10.5 ± 0.5	9.5 ± 0.5	10.5 ± 0.5		
6k	11.5 ± 0.5	9.5 ± 0.5	6.5 ± 0.5	8.5 ± 0.5		
61	13 ± 1	10.5 ± 0.5	7 ± 1	10.5 ± 0.5		
6m	11 ± 1	12 ± 0	7 ± 1	13 ± 1		
6n	7 ± 1	13.5 ± 0.5	7.5 ± 0.5	12.5 ± 0.5		
Ciprofloxacin	31 ± 1	17 ± 1	14.5 ± 0.5	15.5 ± 0.5		

^a Results are expressed as mean \pm SEM (n = 5).

P. aeruginosa and E. coli, respectively. Furthermore, among the tested compounds, **6c** (R = Cl and $R_1 = 4$ -methoxyphenyl) exhibited highest inhibition against B. subtilis strain with an MIC value of 6.25 µg/mL, which displayed reduction in inhibition activity toward P. aeruginosa and S. aureus organisms with an MIC value 50 µg/mL. Compound **6h** (R = Br and R_1 = 4-methylphenyl) displayed good activity against B. subtilis and E. coli with an MIC value of 12.5 µg/mL and it showed moderate activity toward P. aeruginosa. Replacement of bromine in 6h by chlorine, that is compound **6a** (R = Cl and $R_1 = 4$ -methylphenyl) led to significant loss of activity toward B. subtilis and E. coli. However, it showed increased activity against P. aeruginosa with an MIC value of 12.5 µg/mL. Rest of the tested compounds exhibited weak to moderate activity against the tested organisms with MIC values ranging from 25-100 µg/mL. Thus, it was clear that the introduction of chlorine did not improve the potency. Additionally, activity results revealed that halo, methoxy, or methylphenacyl substituents in the aryl part are essential for the antibacterial activity.

2.3 | In vivo anti-inflammatory activity

Based on the antibacterial potency, compounds **6c–6e**, **6g**, **6j–6l**, and **6n** were evaluated for their anti-inflammatory activity by employing the carrageenan-induced paw edema bioassay in rats and acute toxicity. We used a well-known anti-inflammatory agent, Indomethacin, as the standard.

 TABLE 3
 Antibacterial activity of the selected target molecules in terms of MIC

Antibacterial activity MIC in µg/mL				
Sample	B. subtilis	E. coli	P. aeruginosa	
Control		_	—	
6a	50	100	12.5	
6b	12.5	100	12.5	
6c	6.25	50	50	
6g	50	25	50	
6h	12.5	12.5	50	
6i	12.5	6.25	6.25	
6n	25	100	25	
Ciprofloxacin	2	2	4	

TABLE 4 Anti-inflammatory effect of the selected compounds (50 mg/kg) and indomethacin (10 mg/kg) against carrageenan-induced paw edema in rats

	Anti-inflammatory activity: Change in paw volume (mL) after drug treatment (±SEM) (% inhibition)					
Sample	0 hr	1 hr	2 hr	3 hr	3 hr	
Control	$0.139 \pm 0.0077 \ (0)$	0.283 ± 0.0161 (0)	$0.306\pm0.0186(0)$	$0.368\pm0.0136~(0)$	0	
6a	ND	ND	ND	ND	ND	
6b	ND	ND	ND	ND	ND	
6c	0.11 ± 0.0037 (20.9)***	$0.135\pm0.0043~(52.3)^{***}$	$0.11\pm0.0026(64.1)^{***}$	$0.11\pm0.0045~(70.1)^{***}$	106.2	
6d	$0.112\pm0.0031~(19.4)^{***}$	$0.135\pm0.0043~(52.3)^{***}$	$0.12\pm0.0052(60.8)^{***}$	$0.112\pm0.0031~(69.7)^{***}$	105.6	
6e	0.107 ± 0.0033 (23.0)***	$0.158 \pm 0.007 \ (44.2)^{**}$	$0.117\pm0.0021~(61.8)^{***}$	0.112 ± 0.0017 (69.6)***	105.5	
6f	ND	ND	ND	ND	ND	
6g	$0.117 \pm 0.0021 \ (15.8)^{**}$	$0.161 \pm 0.0043 \ (42.4)$	$0.158\pm0.0045~(48.3)^*$	$0.130\pm0.0021~(64.7)^*$	98	
6h	ND	ND	ND	ND	ND	
6i	ND	ND	ND	ND	ND	
бј	$0.112\pm0.004~(19.4)^{***}$	$0.143\pm0.0042~(49.5)^{***}$	$0.12\pm0.0026(60.8)^{***}$	$0.115\pm0.0022~(68.8)^{***}$	104.2	
6k	$0.115\pm0.0043~(17.3)^{***}$	0.132 ± 0.0048 (53.4)***	$0.13\pm0.0068(57.5)^{***}$	$0.12\pm0.0026~(67.4)^{***}$	102.1	
61	0.107 ± 0.0033 (23.0)***	$0.13\pm0.0026(54.1)^{***}$	$0.118\pm0.004(61.4)^{***}$	$0.115\pm0.0043~(68.8)^{***}$	104.2	
6m	ND	ND	ND	ND	ND	
6n	$0.119 \pm 0.007 (14.3)^{**}$	$0.164 \pm 0.0026 \ (42)$	$0.162\pm0.0031(47)$	0.133 ± 0.0043 (63.9)*	96.8	
Indomethacin	$0.12\pm0.0059~(13.7)$	$0.15\pm0.0072(47)$	$0.15\pm0.0075(51.0)$	$0.125\pm0.0067~(66.0)$	100	

Differences between means at *p < 0.01; **p < 0.005; and ***p < 0.0001 were regarded significant. ND: not determined.

^a Potency is expressed as % of edema inhibition of the tested compounds relative to % of edema inhibition of indomethacin at 3 hr.

The results are summarized in Table 4, as for activity, the tested compounds possess significant inhibition of inflammation that is, paw edema, when compared to the normal control group at a dose level of 50 mg/kg. The treatment with doses of 50 mg/kg of 6c having the 4-chlorophenyl attached to the pyridine ring moiety and the 4-methoxyphenyl ring attached to the other extreme end of the 1,3,4-oxadiazole ring resulted a most active compound by exhibiting significant inhibition of paw-edema 70.1%, when compared to the normal control group and was more effective than the standard-treated group 66% at a test dose of 10 mg/kg, their potency being nearly equal to 106.2% that of Indomethacin. Furthermore, replacing the 4-chlorophenyl group with 4-bromophenyl in 6c led to compound **6j** displaying a significant activity. It must be noted that its inhibiting potency was decreased to 68.8%, indicating that the 4-bromophenyl substituent was less efficient when compared to the 4-chlorophenyl group. Acute treatment with the compound 6d having the 4-chlorophenyl substituent on both extreme ends emerged as a good anti-inflammatory agent by exhibiting the percentage inhibition value of 69.7%, this effect was significant (p < 0.001) when compared to the standard-treated group. Meanwhile, replacing the 4-chlorophenyl substituent in the pyridine ring of **6d** with the 4-bromophenyl substituent resulted in compound 6k, which emerged as a potent compound with a percentage inhibition of 67.4% notably, which promoted a decrease in the inhibition of inflammation with their potency being nearly equal to 102.1% that of Indomethacin. However, when compared to 6d, the activity was slightly less, which clearly indicates the efficacy of the 4-chloro substituent on the antiinflammatory activity. Furthermore, introduction of one more chloro substituent in **6d** and **6k** decreased their activity from 69.7 to 68.8%, i.e., compounds **6e** and **6l** displayed good anti-inflammatory activity, but lower than that of the starting compounds **6d** and **6k**. Additionally, among the tested compounds, animals treated with compounds **6g** and **6n** with an unsubstituted phenyl ring exhibited the lowest anti-inflammatory activity.

When we correlate the structures of tested compounds and their activity, it is clear that anti-inflammatory activity is sensitive to structural changes that is, the chlorophenyl substituent on pyridine electron donating and p-methoxyphenacyl spacer on other end of the oxadiazole moiety imparted superior activity than the other phenacyl spacer derivatives. Furthermore, derivatives with the chlorophenyl substituent on the pyridine ring considerably enhanced the anti-inflammatory activity when compared to the oxadiazoles with bromophenyl on the pyridine ring. While the addition of the dichlorophenacyl spacer decreased the anti-inflammatory activity compared to the monochlorophenacyl derivatives. Meanwhile, the unsubstituted phenacyl moiety did not affect the reduction in the edema thickness.

The acute toxicity study demonstrated that none of the screened compounds induce any appreciable behavioral change at the administered doses during the observation period.

3 | CONCLUSIONS

In conclusion, a series of 2-(5-[2-methyl-6-arylpyridin-3-yl]-1,-3,4-oxadiazol-2-ylthio)-1-arylethanones (**6a–n**) were prepared in good yield and their anti-inflammatory and antimicrobial activity were investigated. Evaluation of anti-inflammatory

7

activity revealed that most of the synthesized compounds showed a significant decrease in inflammation induced by carrageenan in rat's paws. Compound 6c induced amazing antiinflammatory activity by exhibiting the highest percentage of inhibition of 70.1% (with potency 106.2% to that of indomethacin), whereas the reference drug Indomethacin displayed percentage of inhibition of 66%. Furthermore, compounds 6d, 6e, **6k**, and **6l** exhibited significant anti-inflammatory activity compared to the standard drug. Moreover, the activity results demonstrated that halogen atoms particularly chlorophenyl on the pyridine ring and the methoxyphenacyl spacer have made good contribution to potency. In addition to this, the in vitro antimicrobial profile evidenced that among the series, compounds 6c and 6i emerged as more potent antibacterial agents. Furthermore, compounds **6a**, **6b**, and **6h** displayed good antibacterial activity compared with the standard. The investigation confirmed that the design is successful in generating members of the antibacterial and anti-inflammatory agent family.

4 | EXPERIMENTAL

All the chemicals and reagents were purchased from Merck, S.D. Fine, and Sigma-Aldrich Company and used as received. The purity of compounds was checked by thin layer chromatography (TLC) analyses performed on silica gel-G-coated aluminum plates (Merck) and spots were visualized by UV light. Melting points were determined in open glass capillaries and are uncorrected. FT (ATR)-IR absorption spectra were acquired on apparatus Thermo Nicolet, Avatar 370 in the 4,000–400 cm⁻¹ range. The ¹H and ¹³C NMR spectra were recorded for d_6 -DMSO solution on Bruker Avance III, 400 and 100 MHz, respectively, with TMS as the internal standard. Elemental analysis (C, H, and N) of compounds was carried out using CHNS Elementar Vario EL III. The mass spectra were recorded using a Water, synapt G2 high detection mass spectrometer and are uncorrected.

4.1 | Synthesis of ethyl 2-methyl-6-arylnicotinate (3a–b)

A mixture of enaminones $2\mathbf{a}-\mathbf{b}$ (2 mmol), ethylacetoacetate (2.2 mmol), and ammonium acetate (40 mmol) was refluxed for 5 hr. in glacial acetic acid media. The progress of reaction was monitored via TLC till single spot. After cooling, poured into ice-cold water, residue formed was collected by filtration and washed with petroleum ether and dried. The residue was purified by recrystallization in ethanol to afford compound **3a–b** as brown solids.

4.2 | Ethyl 6-(4-chlorophenyl)-2-methylpyridine-3-carboxylate (3a)

Brown solid. Yield: 98%, mp. 42-43°C. FT IR (ATR, cm⁻¹): 1,723 (C=O), 1,641 (C=N), 1,579 (C=C), and 823 (C–Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 1.34 (t, 3H, J = 7.4 Hz, $-CH_3$), 2.77 (s, 3H, $-CH_3$), 4.29–4.34 $(q, 2H, J = 7.2 \text{ Hz}, -CH_2), 7.53-7.55 \text{ (dd, } 2H, ^1J = 8.8 \text{ Hz},$ $^{2}J = 2$ Hz, C₃ and C₅-H of 4-ClC₆H₄), 7.95 (d, 1H, J = 8.4 Hz, C₄-H of pyridine), 8.04-8.06 (dd, 2H, ${}^{1}J = 8.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C₆-H of 4-ClC₆H₄), and 8.24 (d, 1H, J = 8.4 Hz, C₄–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 165.7, 158.6, 156.4, 139.2, 136.5, 135.7, 129.5, 128.1, 123.6, 117.4, 60.8, 24.6, and 14.1; MS: calculated for $C_{15}H_{14}NClO_2$ is 275.07; found: (M +) 275.75, (M + 2) 277.75 m/z; Anal. Calc. for C₁₅H₁₄NClO₂: C, 65.34; H, 5.12; and N, 5.08%. Found: C, 65.49; H, 5.56; and N, 5.06%.

4.3 | Ethyl 6-(4-bromophenyl)-2-methylpyridine-3-carboxylate (3b)

Brown solid. Yield: 98%, mp. 49–51°C. FT IR (ATR, cm⁻¹): 1,724 (C=O), 1,641 (C=N), 1,581(C=C), and 775 (C–Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 1.34 (t, 3H, J = 7.4 Hz, –CH₃), 2.78 (s, 3H, –CH₃), 4.30–4.35 (q, 2H, J = 7.2 Hz, –CH₂), 7.70–7.72 (dd, 2H, ¹J = 8.8 Hz, ²J = 2 Hz, C₃ and C₅–H of 4-BrC₆H₄), 7.95 (d, 1H, J = 8.4 Hz, C₄–H of pyridine), 8.08–8.10 (dd, 2H, ¹J = 8.8 Hz, ²J = 2 Hz, C₂ and C₆–H of 4-BrC₆H₄), and 8.25 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 165.8, 158.6, 156.4, 139.4, 136.5, 131.7, 128.9, 123.9, 123.6, 117.4, 60.9 (–CH₂), 24.6 (–CH₃), and 14 (–CH₃); MS: calculated for C₁₅H₁₄NBrO₂ is 319.02; found: (*M*+) 319.20, (*M* + 2) 321.20 *m/z*; Anal. Calc. for C₁₅H₁₄NBrO₂: C, 56.27; H, 4.41; and N, 4.37%. Found: C, 56.49; H, 4.56; and N, 4.20%.

4.4 | Synthesis of 2-methyl-6-arylnicotinohydrazide 4a-b

A mixture of hydrazine hydrate (99%, 6 mL) and ethyl 2-methyl-6-arylnicotinate 3a-b (6 mmol) was heated under reflux condition for 6 hr and allowed to cool to room temperature. The resultant solid was filtered and washed with water and dried, and recrystallized from dioxane.

4.5 | 6-(4-Chlorophenyl)-2-methylpyridine-3-carbohydrazide (4a)

White solid. Yield: 97%, mp. 179–180°C. FT IR (ATR, cm⁻¹): 3,325, 3,296 (NH₂), 3,192 (NH), 1,640 (C=O), 1,585 (C=N), 1,516 (C=C), and 824 (C–Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.60 (s, 3H, –CH₃), 4.54 (s, 2H, –NH₂), 7.54 (d, 2H, J = 8.4 Hz, C₃ and C₅–H of 4-ClC₆H₄), 7.79 (d, 1H, J = 8 Hz, C₄–H of pyridine), 7.87 (d, 1H,

 $J = 8.4 \text{ Hz}, \text{ C}_5\text{-H of pyridine}) 8.05 (d, 2H, J = 8.4 \text{ Hz}, \text{ C}_2 and \text{ C}_6\text{-H of 4-ClC}_6\text{H}_4), and 9.64 (s, 1H, NH); {}^{13}\text{C NMR} (100 \text{ MHz}, \text{DMSO-d}_6, \delta, \text{ppm}): 167.1, 155.7, 154.3, 137.3, 136.5, 135.7, 130.7, 129.2, 128.2, 117.1, and 22.9 (-CH_3); MS: calculated for C_{13}H_{12}N_3\text{CIO} is 261.07; found: ($ *M*+) 261.75, (*M*+ 2) 263.75*m*/*z* $; Anal. Calc. for C_{13}H_{12}N_3\text{CIO: C}, 59.66; H, 4.62; and N, 16.06\%. Found: C, 59.49; H,4.56; and N, 16.06\%.$

4.6 | **6-(4-Bromoophenyl)-2-methylpyridine-3-carbohydrazide** (4b)

White solid. Yield: 98%, mp. 182–183°C. FT IR (ATR, cm⁻¹): 3,326, 3,294 (NH₂), 3,195 (NH), 1,641 (C=O), 1,583 (C=N), 1,506 (C=C), and 784 (C–Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.60 (s, 3H, –CH₃), 4.54 (s, 2H, NH₂), 7.71 (d, 2H, J = 8.4 Hz, C₃ and C₅–H of 4-BrC₆H₄), 7.79 (d, 1H, J = 8 Hz, C₄–H of pyridine), 7.87 (d, 1H, J = 8.4 Hz, C₅–H of pyridine) 8.07 (d, 2H, J = 8.4 Hz, C₂ and C₆–H of 4-BrC₆H₄), and 9.63 (s, 1H, NH); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 167.0, 155.7, 154.5, 137.1, 136.5, 131.7, 129.4, 128.6, 122.9, 117.0, and 22.9 (–CH₃); MS: calculated for C₁₃H₁₂N₃BrO is 305.02; found: (M + 1) 306.02, [(M + 1) + 2] 308.02 m/z; Anal. Calc. for C₁₃H₁₂N₃BrO: C, 51.00; H, 3.95; and N, 13.72%. Found: C, 50.49; H, 3.56; and N, 13.06%.

4.7 | 5-[2-methyl-6-arylpyridin-3-yl]-1,3,4-oxadiazole-2 (3H)-thione 5a–b

2-methyl-6-arylnicotinohydrazide 4a-b (1 mmol) was dissolved in absolute ethanol. Carbon disulfide (2 mmol) was added, followed by the addition of sodium hydroxide (2 mmol). The mixture was heated until the evolution of H₂S ceased (6–7 hr). After completion of the reaction, the mixture was cooled, diluted with water, and was neutralized by dilute hydrochloric acid. The precipitated product was filtered off, washed with cold water and dried, and recrystallized from ethanol-water.

4.8 | 5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazole-2(3H)-thione (5a)

Off White solid. Yield: 96%, mp. 218–220°C. FT IR (ATR, cm⁻¹): 3,092 (NH), 1,585 (C=N), 1,507 (C=C), 1,336 (C=S), 1,287 (C–O–C), and 836 (C–Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.81(s, 3H, –CH₃), 7.59 (d, 2H, J = 8.4 Hz, C₃ and C₅–H of 4-ClC₆H₄), 8.03 (d, 1H, J = 8.4 Hz, C₄–H of pyridine), 8.19 (d, 2H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 177.6 (C=S), 159.9, 156.9,156.2, 137.6, 136.5, 135.3, 129.4, 129.1, 118.2, 116.9, and 25.4 (–CH₃); MS: calculated for C₁₄H₁₀N₃ClOS is 303.02; found: (*M*+) 303.77, (*M* + 2) 305.77 *m/z*; Anal. Calc. for C₁₄H₁₀N₃ClOS: C, 55.35; H,

3.32; and N, 13.83%. Found: C, 55.49; H, 3.56; and N, 13.06%.

4.9 | 5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazole-2(3H)-thione (5b)

Off White solid. Yield: 98%, mp. 2,111–212°C. FT IR (ATR, cm⁻¹): 3,062 (NH), 1,581 (C=N), 1,508 (C=C), 1,332 (C=S), 1,299 (C–O–C), and 761 (C–Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.80 (s, 3H, –CH₃), 7.71 (d, 2H, J = 8.4 Hz, C₃ and C₅–H of 4-BrC₆H₄), 8.01(d, 1H, J = 8.4 Hz, C₄–H of pyridine), 8.11 (d, 2H, J = 8.4 Hz, C₂ and C₆–H of 4-BrC₆H₄), and 8.22 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 177.1 (C=S), 159.4, 156.4, 155.7, 137.1, 136.3, 131.8, 128.8, 123.7, 117.6, 116.1, and 24.9 (–CH₃); MS: calculated for C₁₄H₁₀N₃BrOS is 346.97; found: (M+) 347.25, (M + 2) 349.10 m/z; Anal. Calc. for C₁₄H₁₀N₃BrOS: C, 48.29; H, 2.89; and N, 12.07%. Found: C, 48.49; H, 2.56; and N, 12.06%.

4.10 | General procedure for synthesis of 2-(5-[2-methyl-6-arylpyridin-3-yl]-1,3,4-oxadiazol-2-ylthio)-1-arylethanone 6a–n

Triethylamine (1 mmol) was added as a base to a suspension of 1,3,4-oxadiazole-2-thione 5a-b (1 mmol) in acetone, stirred for 15 min. Then, appropriate phenacyl bromide/chloride (1 mmol) was added and the mixture was heated under reflux for 3 hr. Completion of the reaction was monitored by TLC. After completion, the reaction mixture was poured to ice cold water, the resulting solid was collected and recrystallized from ethanol.

4.11 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(p-tolyl)Ethan-1-one (6a)

Off White solid. Yield: 90%, mp. 180-181°C. FT IR (ATR, cm⁻¹): 1,668 (C=O), 1,583 (C=N), 1,471 (C=C), 1,176 (C-S-C), 1,091 (C-O), and 815 (C-Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.42 (s, 3H, -CH₃), 2.86 (s, 3H, -CH₃), 5.16 (s, 2H, $-CH_2$), 7.42 (d, 2H, J = 8 Hz, C_2 and C_6 -H of 4-MeC₆H₄), 7.61 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₃ and C_5 -H of 4-ClC₆H₄), 7.96 (d, 2H, J = 8 Hz, C_3 and C_5 -H of 4-MeC₆H₄), 8.04 (d, 1H, J = 8.4 Hz, C₄-H of pyridine), 8.22 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C₆-H of 4-ClC₆H₄), and 8.32 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.4 (C=O), 164.4, 163.2, 156.4, 155.3, 139.1, 137.8, 136.1, 134.8, 133.4, 131.6, 129.6, 129.2, 128.9, 128.4, 116.8, 42.3 (-CH₂), 25.9 (-CH₃), and 24.9 (-CH₃); MS: calculated for $C_{23}H_{18}N_3CIO_2S$ is 435.08; found: (*M*+) 435.55, (*M* + 2) 437.55 m/z; Anal. Calc. for C₂₃H₁₈N₃ClO₂S: C, 63.37; H, 4.16; and N, 9.64%. Found: C, 63.49; H, 4.56; and N, 9.06%.

4.12 | 1-(4-Bromophenyl)-2-({5-[6-(4-chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl} thio)Ethan-1-one (6b)

Off White solid. Yield: 91%, mp. 212-213°C. FT IR (ATR, cm⁻¹): 1,660 (C=O), 1,581(C=N), 1,485 (C=C), 1,176 (C-S-C), 1,091 (C-O), 830 (C-Cl) ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.86 (s, 3H, -CH₃), 5.12 (s, 2H, -CH₂), 7.62 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₃ and C₅-H of 4-ClC₆H₄), 7.78 (d, 2H, J = 8 Hz, C₃ and C₅-H of 4-BrC₆H₄), 7.98 (d, 2H, J = 8 Hz, C₂ and C₆-H of 4-BrC₆H₄), 8.06 (d, 1H, J = 8.4 Hz, C₄-H of pyridine), 8.22 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C₆-H of 4-ClC₆H₄), and 8.34 (d, 1H, J = 8.4 Hz, C₅-H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.7 (C=O), 165.4. 163.7. 156.4. 155.7. 137.2. 136.7. 135.1. 133.5. 132.0, 131.7, 130.3, 128.7, 128.5, 124.0, 116.8, 42.3 $(-CH_2)$, and 24.9 $(-CH_3)$; MS: calculated for $C_{22}H_{15}N_3BrO_2S$ is 498.98; found: (*M*+) 499.55, (*M* + 2) 500.55, and (M + 4) 502.55 m/z; Anal. Calc. for C₂₂H₁₅N₃BrO₂S: C, 52.76; H, 3.02; and N, 8.39%. Found: C, 53.49; H, 3.06; and N, 8.26%.

4.13 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(4-methoxy phenyl)Ethan-1-one (6c)

Off White solid. Yield: 98%, mp. 198-199°C. FT IR (ATR, cm⁻¹): 1,667 (C=O), 1,583 (C=N), 1,493 (C=C), 1,176 (C-S-C), 1,091 (C-O), and 836 (C-Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.87 (s, 3H, -CH₃), 3.79 (s, 3H, -OCH₃), 5.14 (s, 2H, $-CH_2$), 7.05 (d, 2H, J = 8 Hz, C₃ and C_5 -H of 4-OMeC₆H₄), 7.62 (dd, 2H, ¹J = 6.8 Hz, $^{2}J = 2$ Hz, C₃ and C₅-H of 4-ClC₆H₄), 7.98 (d, 2H, J = 8 Hz, C₃ and C₅-H of 4-OMeC₆H₄), 8.06 (d, 1H, J = 8.4 Hz, C₄–H of pyridine), 8.21 (dd, 2H, ¹J = 6.8 Hz, $^{2}J = 2$ Hz, C₂ and C₆-H of 4-ClC₆H₄), and 8.30 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 194.4 (C=O), 163.4, 162.2, 160.4, 156.4, 152.3, 136.8, 136.1, 134.2, 131.6, 131.1, 128.8, 128.6, 128.4, 116.6, 114.1, 55.5(-OCH₃), 42.5 (-CH₂), and 25.9 (-CH₃); MS: calculated for C₂₃H₁₈N₃ClO₃S is 451.08; found: (M+) 451.93, (M + 2) 453.07 m/z; Anal. Calc. for C₂₃H₁₈N₃ClO₃S: C, 61.13; H, 4.01; and N, 9.30%. Found: C, 61.49; H, 3.56; and N, 9.06%.

4.14 | 1-(4-Chlorophenyl)-2-({5-[6-(4-chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl} thio)Ethan-1-one (6d)

Off White solid. Yield: 85%, mp. 209–210°C. FT IR (ATR, cm⁻¹): 1,666 (C=O), 1,585 (C=N), 1,483 (C=C), 1,176 (C–S–C), 1,089 (C–O), and 821 (C–Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.87 (s, 3H, –CH₃), 5.06 (s, 2H, –CH₂), 7.52 (d, 2H, J = 8 Hz, C₃ and C₅–H of 4-ClC₆H₄), 7.73 (dd, 2H, ¹J = 6.8 Hz, ²J = 2 Hz, C₃ and C₅–H of 4-ClC₆H₄), 7.84

(d, 2H, J = 8 Hz, C₃ and C₅–H of 4-ClC₆H₄), 8.06 (d, 1H, J = 8.4 Hz, C₄–H of pyridine), 8.12 (dd, 2H, ¹J = 6.8 Hz, 2J = 2 Hz, C₂ and C₆–H of 4-ClC₆H₄), and 8.22 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.7 (C=O), 164.6, 163.2, 156.7, 155.6, 137.8, 136.4, 135.7, 134.8, 133.4, 131.6, 130.2, 129, 128.9, 128.4, 116.8, 42.2 (–CH₂), and 24.9 (–CH₃); MS: calculated for C₂₂H₁₅N₃Cl₂O₂S is 455.03; found: (M + 1) 455.97, (M + 2) 457.96, and (M + 4) 459.96 m/z; Anal. Calc. for C₂₂H₁₅N₃Cl₂O₂S: C, 57.90; H, 3.31; and N, 9.21%. Found: C, 56.98; H, 3.56; and N, 9.16%.

4.15 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(2,4-dichloro phenyl)Ethan-1-one (6e)

Brown solid. Yield: 73%, mp. FT IR (ATR, cm^{-1}): 139-140°C. 1,683 (C=O), 1,581 (C=N), 1,477 (C=C), 1,191 (C-S-C), 1,095 (C-O), and 833 (C-Cl); ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 2.87 (s, 3H, -CH₃), 5.03 (s, 2H, $-CH_2$), 7.60 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C_3 and C_5-H of 4-ClC₆H₄), 7.65 (dd, 1H, ${}^{1}J = 8.8 \text{ Hz}, {}^{2}J = 2.4 \text{ Hz}, \text{ C}_{5}\text{-H of } 2,4\text{-Cl}_{2}\text{C}_{6}\text{H}_{3}), 7.80$ (d, 1H, J = 2 Hz, C₃–H of 2,4-Cl₂C₆H₃), 7.95 (d, 1H, J = 8.4 Hz, C₆-H of 2,4-Cl₂C₆H₃), 8.05 (d, 1H, J = 8.4 Hz, C₄-H of pyridine), 8.22 (dd, 2H. ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C₆-H of 4-ClC₆H₄), and 8.31 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ, ppm): 193.4 (C=O), 164.2, 163.1, 156.5, 155.7, 137.5, 137.1, 136.1, 134.8, 134.7, 131.8, 131.5,130.3, 128.9, 128.6, 127.6, 117.7, 116.9, 42.2 $(-CH_2)$, 24.9 $(-CH_3)$; MS: calculated for $C_{22}H_{14}N_3Cl_3O_2S$ is 488.99; found: (*M*+) 489.30, (M + 2) 491.35, and (M + 4) 492.80 m/z; Anal. Calc. for C₂₂H₁₄N₃Cl₃O₂S: C, 53.84; H, 2.88; and N, 8.56%. Found: C, 53.49; H, 2.86; and N, 8.46%.

4.16 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(1,7-dichloro-9H-fluoren-2-yl))Ethan-1-one (6f)

Brown solid. Yield: 79.2%, mp. FT IR (ATR, cm⁻¹): 147–149°C. 1,668 (C=O), 1,583 (C=N), 1,482 (C=C), 1,176 (C–S–C), 1,092 (C–O), and 836 (C–Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.86 (s, 3H, –CH₃), 3.96 (s, 2H, C₉–H of 2,7-dichloro-9*H*-fluorene), 5.16 (s, 2H, –CH₂), 7.40–7.43 (m, 2H, C6 and C8-H of 2,7-dichloro-9*H*-fluorene), 7.61 (dd, 2H, ¹*J* = 6.8 Hz, ²*J* = 2 Hz, C₃ and C₅–H of 4-ClC₆H₄), 7.71–7.75 (m, 2H, C₃, C₅–H of 2,7-dichloro-9*H*-fluorene), 8.04 (d, 1H, *J* = 8.4 Hz, C₄–H of pyridine), 8.22 (dd, 2H, ¹*J* = 6.8 Hz, ²*J* = 2 Hz, C₂ and C₆–H of 4-ClC₆H₄), and 8.32 (d, 1H, *J* = 8.4 Hz, C₅–H of pyridine); ¹³C NM R (100 MHz, DMSO-d₆, δ , ppm): 193.6 (C=O), 165.6, 165.2, 156.5, 155.7, 143.6, 143.1, 143, 139.8, 137.5, 134.7, 134.5, 133.1, 132.9, 130.6, 128.9,128.7, 128.6,

128.3, 127.8, 126.5, 116.9, 42.3 (-CH₂), 36.7, 24.9 (-CH₃); MS: calculated for $C_{29}H_{18}N_3Cl_3O_2S$ is 577.02; found: (M + 1) 578.09, (M + 2) 579.02, (M + 4) 581.02, and (M + 6) 583.03 *m/z*; Anal. Calc. for $C_{29}H_{18}N_3Cl_3O_2S$: C, 60.17; H, 3.13; and N, 7.26%. Found: C, 60.19; H, 3.10; and N, 7.16%.

4.17 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-phenylethan-1-one (6g)

Brown solid. Yield: 97%, mp. 151-152°C. FT IR (ATR, cm⁻¹): 1,670 (C=O), 1,583 (C=N), 1,452 (C=C), 1,180 (C-S-C), 1,000 (C-O), and 819 (C-Cl); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.85 (s, 3H, -CH₃), 5.06 (s, 2H, -CH₂), 7.61 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₃ and C₅-H of 4-ClC₆H₄), 7.71–7.75 (m, 3H, C₃, C₄ and C₅–H of C₆H₅), 8.04 (d, 1H, J = 8.4 Hz, C₄-H of pyridine), 8.21 (dd, 2H, ${}^{1}J = 6.8 \text{ Hz}, {}^{2}J = 2 \text{ Hz}, \text{ C}_{2} \text{ and } \text{ C}_{6}\text{-H} \text{ of } 4\text{-ClC}_{6}\text{H}_{4}),$ 8.13-8.15 (m, 2H, C₂ and C₆-H of C₆H₅), and 8.32 (d, 1H, J = 8.4 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 194.1 (C=O), 164.5, 163.3, 156.2, 155.3, 137.8, 136.6, 135.5, 134.8, 131.6, 128.9, 128.8, 128.6, 128.2, 127.9, 116.8, 42.3 (-CH₂), 24.9 (-CH₃); MS: calculated for $C_{22}H_{16}N_3ClO_2S$ is 421.07; found: (*M*+) 423.9 m/z; 421.9, (M + 2)Anal. Calc. for C₂₂H₁₆N₃ClO₂S: C, 62.63; H, 3.82; and N, 9.96%. Found: C, 62.49; H, 3.65; and N, 9.76%.

4.18 | 2-({5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(p-tolyl)Ethan-1-one (6h)

Cream solid. Yield: 94%, mp. 183-184°C. FT IR (ATR, cm⁻¹): 1,664 (C=O), 1,583 (C=N), 1,481 (C=C), 1,176 (C-S-C), 1,091 (C-O), and 715 (C-Br); ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 2.42 (s, 3H, -CH₃), 2.87 (s, 3H, -CH₃), 5.05 (s, 2H, $-CH_2$), 7.42 (d, 2H, J = 8 Hz, C_2 and C_6 -H of 4-MeC₆H₄), 7.74 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 1.6$ Hz, C₃ and C_5 -H of 4-Br C_6 H₄), 7.96 (d, 2H, J = 8 Hz, C_3 and C_5 -H of 4-MeC₆H₄), 8.06 (d, 1H, J = 8 Hz, C₄-H of pyridine), 8.13 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C₆-H of 4-BrC₆H₄), and 8.32 (d, 1H, J = 8 Hz, C₅-H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.4 (C=O), 165.8, 165.4, 156.7, 155.8, 139.1,137.5, 134.7, 133.4, 131.8, 129.6, 129.2, 128.9, 123.6, 116.9, 42.2 (-CH₂), 25.9 and 24.9 (-CH₃); MS: calculated $(-CH_3),$ for $C_{23}H_{18}N_3BrO_2S$ is 479.03; found: (M + 1) 480.38, (M + 2)481.38 m/z; Anal. Calc. for C₂₃H₁₈N₃BrO₂S: C, 57.51; H, 3.78; and N, 8.75%. Found: C, 57.49; H, 3.86; and N, 8.76%.

4.19 | 1-(4-Bromophenyl)-2-({5-[6-(4-bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl} thio)Ethan-1-one (6i)

Off white solid. Yield: 95%, mp. 213–214°C. FT IR (ATR, cm⁻¹): 1,666 (C=O), 1,587 (C=N), 1,483 (C=C), 1,180 (C-

S–C), 1,071 (C–O), and 698 (C–Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.86 (s, 3H, –CH₃), 5.13 (s, 2H, –CH₂), 7.74 (dd, 2H, ¹*J* = 6.8 Hz, ²*J* = 1.6 Hz, C₃ and C₅–H of 4-BrC₆H₄), 7.78 (d, 2H, *J* = 8 Hz, C₃ and C₅–H of 4-BrC₆H₄), 7.98 (d, 2H, *J* = 8 Hz, C₂ and C₆–H of 4-BrC₆H₄) 8.03 (d, 1H, *J* = 8 Hz, C₄–H of pyridine), 8.16 (dd, 2H, ¹*J* = 6.8 Hz, ²*J* = 2 Hz, C₂ and C₆–H of 4-BrC₆H₄), and 8.32 (d, 1H, *J* = 8 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.3 (C=O), 165.8, 165.5, 156.8, 155.5, 137.5, 134.7, 132.0, 131.8,130.3, 128.9, 124, 123.6, 116.9, 42.3 (–CH₂), 24.9 (–CH₃); MS: calculated for C₂₂H₁₅N₃Br₂O₂S is 545.25; found: (*M* + 1) 546.35, (*M* + 2) 547.35, and (*M* + 4) 549.35 *m*/*z*; Anal. Calc. for C₂₂H₁₅N₃Br₂O₂S: C, 48.46; H, 2.77; and N, 7.71%. Found: C, 48.49; H, 2.86; and N, 7.66%.

4.20 | 2-({5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(4-methoxy phenyl)Ethan-1-one (6j)

Off white solid. Yield: 94%, mp. 199-200°C. FT IR (ATR, cm⁻¹): 1,668 (C=O), 1,583 (C=N), 1,471 (C=C), 1,176 (C-S-C), 1,091 (C-O), and 712 (C-Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.88 (s, 3H, -CH₃), 3.79 (s, 3H, - OCH_3), 5.13 (s, 2H, $-CH_2$), 7.05 (d, 2H, J = 8 Hz, C_3 and C_5-H of 4-OMeC₆H₄), 7.74 (dd, 2H, ¹J = 6.8 Hz, $^{2}J = 1.6$ Hz, C₃ and C₅-H of 4-BrC₆H₄), 7.98 (d, 2H, J = 8 Hz, C₃ and C₅-H of 4-OMeC₆H₄), 8.05 (d, 1H, J = 8 Hz, C₄–H of pyridine), 8.15 (dd, 2H, ${}^{1}J = 6.8$ Hz, $^{2}J = 2$ Hz, C₂ and C₆-H of 4-BrC₆H₄), and 8.31 (d, 1H, J = 8 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSOd₆, δ, ppm): 193.4 (C=O), 165.8, 165.4, 160.4, 156.7, 155.8, 137.5, 134.7, 131.8, 131.1, 128.9, 128.7, 123.6, 116.9, 114, 55.5 (-OCH₃), 42.2 (-CH₂), and 24.9 (-CH₃); MS: calculated for $C_{23}H_{18}N_3BrO_3S$ is 495.03; found: (M + 1)496.35, (M + 2)497.35 *m/z*; Anal. Calc. for C₂₃H₁₈N₃BrO₃S: C, 55.65; H, 3.66; and N, 8.47%. Found: C, 55.49; H, 3.76; and N, 8.46%.

4.21 | 2-({5-[6-(4-Chlorophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(4-chlorophenyl)Ethan-1-one (6k)

Off white solid. Yield: 98%, mp. 217–218°C. FT IR (ATR, cm⁻¹): 1,666 (C=O), 1,585 (C=N), 1,483 (C=C), 1,176 (C–S–C), and 1,089 (C–O), 712 (C–Br); ¹H NMR (400 MHz, DMSO-d₆, δ , ppm): 2.83 (s, 3H, –CH₃), 5.16 (s, 2H, –CH₂), 7.52 (d, 2H, J = 8 Hz, C₃ and C₅–H of 4-ClC₆H₄), 7.75 (dd, 2H, ¹J = 6.8 Hz, ²J = 1.6 Hz, C₃ and C₅–H of 4-BrC₆H₄), 7.84 (d, 2H, J = 8 Hz, C₃ and C₅–H of 4-ClC₆H₄), 8.07 (d, 1H, J = 8 Hz, C₄–H of pyridine), 8.14 (dd, 2H, ¹J = 6.8 Hz, ²J = 2 Hz, C₂ and C₆–H of 4-BrC₆H₄), and 8.32 (d, 1H, J = 8 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.4 (C=O), 165.9, 165.5, 156.6, 155.4, 137.5, 134.6, 135.7, 133.5, 131.5, 130.2,

4.22 | 2-({5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(2,4-dichloro phenyl)Ethan-1-one (6l)

Brown solid. Yield: 83%, mp. 144-146°C. FT IR (ATR, cm⁻¹): 1,681 (C=O), 1,581 (C=N), 1,475 (C=C), 1,191 (C-S-C), 1,064 (C-O), and 763 (C-Br); ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 2.87 (s, 3H, -CH₃), 5.03 (s, 2H, $-CH_2$), 7.63 (dd, 1H, ${}^{1}J = 8.4$ Hz, ${}^{2}J = 2$ Hz. C₅-H of 2,4-Cl₂C₆H₃), 7.74 (dd, 2H, ${}^{1}J = 6.8$ Hz, $^{2}J = 1.6$ Hz, C₃ and C₅-H of 4-BrC₆H₄), 7.80 (d, 1H, J = 2 Hz, C₃-H of 2,4-Cl₂C₆H₃), 7.95 (d, 1H, J = 8.4Hz, C₆-H of 2,4-Cl₂C₆H₃), 8.05 (d, 1H, J = 8 Hz, C₄-H of pyridine), 8.15 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C_6 -H of 4-Br C_6 H₄), and 8.31 (d, 1H, J = 8 Hz, C₅-H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.4 (C=O), 165.8, 165.4, 156.7, 155.8, 137.5, 137.2, 134.7, 131.8, 131.5, 130.3, 128.9, 127.6, 125.1, 123.6, 117.7, 116.9, 42.2 (-CH₂), 24.9 (-CH₃); MS: calculated for C₂₂H₁₄N₃BrCl₂O₂S is 532.94; found: (*M*+) 490.35, (M + 2) 491.35, and (M + 4) 493.35 m/z; Anal. Calc. for C₂₂H₁₄N₃BrCl₂O₂S: C, 49.37; H, 2.64; and N, 7.85%. Found: C, 49.49; H, 2.86; and N, 7.46%.

4.23 | 2-({5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-(1,7-dichloro-9H-fluoren-2-yl))Ethan-1-one (6m)

Pale yellow solid. Yield: 76%, mp. 168-169°C. FT IR (ATR, cm⁻¹): 1,668 (C=O), 1,583 (C=N), 1,477 (C=C), 1,180 (C-S-C), 1,098 (C-O), and 736 (C-Br); ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 2.84 (s, 3H, -CH₃), 3.96 (s, 2H, C₉-H of 2,7-dichloro-9H-fluorene), 5.12 (s, 2H, -CH₂), 7.40-7.43 (m, 2H, C6 and C8-H of 2,7-dichloro-9H-fluorene), 7.70-7.75 (m, 4H, C₃, C₅-H of 4-BrC₆H₄ and 2,7-dichloro-9*H*-fluorene), 8.06 (d, 1H, J = 8 Hz, C₄–H of pyridine), 8.16 (dd, 2H, ${}^{1}J = 6.8$ Hz, ${}^{2}J = 2$ Hz, C₂ and C_6 -H of 4-Br C_6 H₄), and 8.32 (d, 1H, J = 8 Hz, C_5 -H of pyridine); ¹³C NMR (100 MHz, DMSO-d₆, δ , ppm): 193.6 (C=O), 165.6, 165.2, 156.5, 155.7, 143.6, 143.1, 143, 139.8, 137.5, 134.7, 133.1, 132.9, 131.8, 130.6, 128.9, 128.7, 128.3, 127.8, 126.5, 123.6, 116.9, 42.2 (-CH₂), 36.7, 24.9 (-CH₃); MS: calculated for C₂₉H₁₈N₃BrCl₂O₂S is 620.35; found: (M+) 620.96, (M+2) 622.90, (M+4)624.90, and (M + 6) 626.96 m/z; Anal. Calc. for C₂₉H₁₈N₃BrCl₂O₂S: C, 55.88; H, 2.91; and N, 6.74%. Found: C, 55.79; H, 2.86; and N, 6.76%.

4.24 | 2-({5-[6-(4-Bromophenyl)-2-methylpyridin-3-yl]-1,3,4-oxadiazol-2-yl}thio)-1-phenylethan-1-one (6n)

Brown solid. Yield: 96%, mp. 153-154°C. FT IR (ATR, cm⁻¹): 1,681 (C=O), 1,581 (C=N), 1,475 (C=C), 1,176 (C-S-C), 1,064 (C-O), and 719 (C-Br); ¹H NMR (400 MHz, DMSO-d₆, δ, ppm): 2.85 (s, 3H, -CH₃), 5.20 (s, 2H, -CH₂), 7.59-7.63 (m, 2H, C₃ and C₅-H of C₆H₅), 7.71-7.75 (m, 3H, J = 8 Hz, C₃ and C₅-H of 4-BrC₆H₄ and C₄-H of C_6H_5), 8.04 (d, 1H, J = 8 Hz, C_4 -H of pyridine), 8.07-8.15 (m, 4H, C₂, C₆-H of 4-BrC₆H₄ and C₆H₅), and 8.32 (d, 1H, J = 8 Hz, C₅–H of pyridine); ¹³C NMR (100 MHz, DMSOd₆, δ, ppm): 193.4 (C=O), 165.8, 165.4, 156.7, 155.8, 137.5, 135.6, 134.7, 131.8, 130.1, 128.9, 128.7, 128.5, 123.6, 116.9, 42.2 (-CH₂), 24.9 (-CH₃); MS: calculated for $C_{22}H_{16}N_3BrO_2S$ is 465.01; found: (*M*+) 465.55, (*M* + 2) 467.50 m/z; Anal. Calc. for C₂₂H₁₆N₃BrO₂S: C, 56.66; H, 3.46; and N, 9.01%. Found: C, 56.49; H, 3.48; and N, 9.02%.

4.25 | In vitro antimicrobial activity assay

The newly synthesized compounds were screened for their antibacterial activity against four bacterial strains namely *P. aeruginosa, E. coli* representative of Gram Positive and *B. subtilis, S. aureus* representative of Gram Negative bacterial strains. Ciprofloxacin was used as positive control. The primary screening was carried out using the Agar cup plate method.^[36]

The sterilized nutrient agar medium was distributed 100 mL each in two 250 mL conical flasks and allowed to cool to room temperature. To these media, 18-24 hr grown bacterial subcultures were added and shaken thoroughly to ensure uniform distribution of organisms throughout the medium. Then, this agar medium was distributed in equal portions, in sterilized petri dishes, ensuring that each petri dish contains about 45-50 mL of the medium. The medium was then allowed for solidification. Then, cups were made with the help of a sterile cork borer (6 mm diameter) punching into the set of agar media. The solutions of required concentrations (100 µg/mL) of test compounds were prepared by dissolving the compounds in DMSO filled into the cups with 1 mL of respective solution. Then, the petri dishes were kept for incubation in an inverted position for 24-48 hr at 37°C in an incubator. When growth inhibition zones were developed surrounding each cup, their diameter in mm was measured and compared with that of the standard drug. The MIC for the potent compounds 6a, 6b, 6c, 6g, 6h, 6i, and 6n against the same microorganisms used in the primary screening was used according to the reported Broth dilution method.^[37]

4.26 | In vivo anti-inflammatory assay

The rats were divided into ten groups of six animals each. Group I (negative control) received 1 mL of normal saline, Group II (Standard) received 10 mg/kg p.o. indomethacin, and Group III-IX received synthetic compounds 50 mg/kg. After 1 hr, the rats were challenged with subcutaneous injection of 0.1 mL of 1% w/v solution of carrageenan (Sigma chemical co, St. Louis MO, USA) into the plantar side of the left hind paw. The paw was marked in the cup of the apparatus with water. The digital plethysmograph apparatus was used for the measurement of rat paw volume. The paw volume was measured every hour for 3 hr after injection of carrageenan to each group to determine the change in the paw edema thickness. The difference between the initial and subsequent reading gave the actual edema volume.

4.27 | Animals

Animal Wistar rats of either sex and of approximately the same age, weighing about 125–150 g, were used for the study and were housed in polypropylene cages and fed with standard pellet diet and water ad libitum. The animals were under alternate cycle of 12 hr of darkness and light each. Before each test, the animals were fasted for at least 12 hr.

4.28 | Acute toxicity study

Acute toxicity study^[38] on Wister albino rats was carried out using the standard method at an oral dose of 100–1,000 mg/ kg body weight as per OECD 425 guidelines. The control group receives 1% tween 80 suspension. All the animals were observed continuously for 8 hr for any signs of acute toxicity such as tremors, ataxia, and convulsions. Animals were kept under fasting conditions prior to dosing.

4.29 | Statistical analysis

Statistics were performed with one-way analysis of variance ANOVA and expressed as Mean \pm *SEM* followed by Dunnett's test. The differences between mean at *p < 0.01, **p < 0.005, and *** p < 0.0001 were considered to be significant.

Anti-inflammatory activity was calculated as percentage of inhibition in the edema thickness induced by carrageenan was obtained from the following relation.

% inhibition = $(V_c - V_t)/V_c \times 100$,

where V_c and V_t are volumes of paw edema in control and drug treated groups, respectively.

4.30 | Ethics

The experimental protocols according to the CPCSEA guidelines and IAEC clearance were taken prior to the commencement of the study. The animal treatment protocol was approved by Reg. No. SCSCP/IEEC/09/2016-17.

ACKNOWLEDGMENTS

The authors gratefully acknowledge DST-PURSE, Mangalore University, SAIF, Cochin, and MIT Manipal, for spectral data. Authors thank the personnel of Department of Microbiology, MM's NG. Halgekar Institute of Dental Sciences and Research Centre, Belgaum for their valuable help in antimicrobial studies. The authors also thank the Head, Department of Pharmaceutical Chemistry, NGSM Institute of Pharmaceutical Sciences, Paneer, Deralakatte for providing research facilities to carry out the anti-inflammatory study.

CONFLICTS OF INTEREST

The authors declare no potential conflict of interests.

REFERENCES

- [1] L. Fu, X. Liu, C. Ling, J. Cheng, X. Guo, H. He, S. Ding, Y. Yang, *Bioorg. Med. Chem. Lett.* **2012**, 22, 814.
- [2] L. Pari, D. Tewas, J. Eckel, Arch. Physiol. Biochem. 2008, 114, 127.
- [3] C. K. S. Ong, P. Lirk, C. H. Tan, R. A. Seymour, *Clin. Med. Res.* 2007, 5, 19.
- [4] C. J. Smith, Y. Zhang, C. M. Koboldt, J. Muhammad, B. S. Zweifel, A. Shaffer, J. J. Talley, J. L. Masferrer, K. Seibert, P. C. Isakson, *Proc. Natl. Acad. Sci. USA* **1998**, *95*, 13313.
- [5] R. W. Thomsen, A. Riis, E. M. Munk, M. Norgaard, S. Christensen, H. T. Sorensen, Am. J. Gastroenterol. 2006, 101, 2704.
- [6] O. Prakash, M. Kumar, R. Kumar, C. Sharma, K. R. Aneja, *Eur. J. Med. Chem.* 2010, 45, 4252.
- [7] D. Kumar, S. Sundaree, E. O. Johnson, K. Shah, *Bioorg. Med. Chem. Lett.* 2009, 19, 4492.
- [8] Z. N. Cui, Y. X. Shi, L. Zhang, Y. Ling, B. J. Li, Y. Nishida, X. L. Yang, J. Agric. Food Chem. 2012, 60, 11649.
- [9] Y. Ergun, F. O. Orhan, U. G. Ozer, G. Gisi, Eur. J. Pharmacol. 2010, 630, 74.
- [10] M. M. Girges, Arzneimittelforschung 1994, 44, 490.
- [11] V. Summa, A. Petrocchi, F. Bonelli, B. Crescenzi, M. Donghi, M. Ferrara, M. Rowley, J. Med. Chem. 2008, 51, 5843.
- [12] A. Andreani, M. Granaiola, A. Leoni, R. Morigi, M. Ramballdi, *Eur. J. Med. Chem.* 2001, *36*, 743.
- [13] H. S. Chen, Z. M. Li, Y. F. Han, J. Agric. Food Chem. 2000, 48, 5312.
- [14] A. S. Davari, K. Abnous, S. Mehri, M. Ghandadi, F. Hadizadeh, *Bioorg. Chem.* 2014, 57, 83.
- [15] S. Prachayasittikul, L. Treeratanapiboon, S. Ruchirawat, V. Prachayasittikul, EXCLI J. 2009, 8, 129.
- [16] G. Prasanthi, K. V. Prasad, K. Bharathi, Eur. J. Med. Chem. 2014, 73, 97.
- [17] P. V. Sowmya, B. Poojary, B. C. Revanasiddappa, M. Vijayakumar, P. Nikil, V. Kumar, *Res. Chem. Intermed.* 2017, 43, 7399.
- [18] M. H. Helal, S. A. El-Awdan, M. A. Salem, T. A. Abd-elaziz, Y. A. Moahamed, A. A. El-Sherif, G. A. M. Mohamed, *Spectrochim. Acta*, *Part A* 2015, *135*, 764.
- [19] Chemical & Engineering News, 2003, p. 30, May 26.
- [20] C. A. Challener Ed., *Chiral Drugs*, Ashgate Publishing, Aldershot, UK 2001, p. 175.
- [21] M. V. Kozlov, A. A. Kleymenova, L. I. Romanova, K. A. Konduktorov, K. A. Kamarova, O. A. Smirnova, V. S. Prasolov, S. N. Kochetkov, *Bioorg. Med. Chem. Lett.* **2015**, 25, 2382.
- [22] Z. B. Yang, D. Y. Hu, S. Zeng, B. A. Song, Bioorg. Med. Chem. Lett. 2016, 26, 1161.
- [23] B. P. Navin, A. C. Purohit, D. P. Rajani, R. Moo-Puc, G. Rivera, *Eur. J. Med. Chem.* 2013, 62, 677.
- [24] H. S. Abd-Ellah, M. Abdel-Aziz, M. E. Shoman, E. A. M. Beshr, A. F. F. Ahmed, *Biog. Chem.* 2017, 74, 15.

- [25] J. P. Raval, T. N. Akhaja, D. M. Jaspara, K. N. Myangar, N. H. Patel, J. Saudi, *Chem. Soc.* 2014, 18, 101.
- [26] S. V. Bhandari, J. K. Parikh, K. G. Bothara, T. S. Chitre, D. K. Lokwani, T. L. Devale, N. S. Modhave, V. S. Pawar, S. Panda, J. Enz. Inhib. Med. Chem. 2010, 25, 520.
- [27] K. Meric, B. S. Sirri, B. Ayhan, S. Z. Sibel, I. Samil, E. D. Demir, Arzneimittel-Forschung (Drug Res.) 2008, 58, 510.
- [28] M. Shailaja, A. Manjula, B. V. Rao, Ind. J. Chem. 2010, 49B, 1088.
- [29] B. Goel, T. Ram, R. Tyagi, E. Bansal, A. Kumar, D. Mukherjee, J. N. Sinha, *Eur. J. Med. Chem.* **1999**, *34*, 265.
- [30] J. E. Lightowler, H. J. Rylance, J. Pharm. Pharmacol. 1963, 15, 633.
- [31] M. S. Karthikeyan, B. S. Holla, N. S. Kumari, Eur. J. Med. Chem. 2007, 42, 30.
- [32] X. Zheng, Z. Li, Y. Wang, W. Chen, Q. Huang, C. Liu, G. Song, J. Fluorine Chem. 2003, 123, 163.
- [33] R. G. Kurumbail, A. M. Stevens, J. K. Gierse, J. J. McDonald, R. A. Stegeman, J. Y. Pak, *Nature* **1996**, *384*, 644.
- [34] L. J. Marnett, A. S. Kalgutkar, Curr. Opin. Chem. Biol. 1998, 2, 482.
- [35] P. Prasit, Z. Wang, C. Brideau, C. C. Chan, S. Charleson, W. Cromlish, Bioorg. Med. Chem. Lett. 1999, 9, 1773.
- [36] S. B. Rose, R. B. Miller, J. Bacteriol. 1939, 38, 525.

- [37] National Committee for Clinical Laboratory Standards, Methods for dilution antimicrobial susceptibility for bacteria grown aerobically, Approved Standard, National Committee for Clinical Laboratory Standards, Villanova 1985.
- [38] OECD, Test No. 425: Acute Oral Toxicity: Up and Down Procedures. OECD Guidelines for the Testing of Chemicals, OECD, Paris 2001.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Padejjar Vasantha S, Poojary B, Bistuvalli Chandrashekarappa R. Novel arylpyridine-based 1,3,4-oxadiazoles: Synthesis, antibacterial, and anti-inflammatory evaluation. *J Chin Chem Soc.* 2019;1–13. <u>https://doi.org/10.1002/jccs.</u> 201800248