

View Article Online View Journal

ChemComm

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: A. Kondoh, S. Ishikawa, T. Aoki and M. Terada, *Chem. Commun.*, 2016, DOI: 10.1039/C6CC06591K.

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

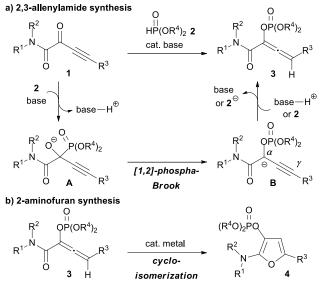
www.rsc.org/chemcomm

Journal Name

Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to gold-catalyzed cycloisomerization providing 2-aminofuran derivatives

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,


Azusa Kondoh,^a Sho Ishikawa,^b Takuma Aoki,^b and Masahiro Terada^{*a,b}

www.rsc.org/

Published on 29 September 2016. Downloaded by Boston University on 29/09/2016 16:28:34

An efficient synthetic method for 2,3-allenylamides having an oxygen functionality at the 2-position, which are difficult to access by conventional methods, was newly developed by utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. Further manipulation of the 2,3-allenylamides via gold-catalyzed cycloisomerization enables the formation of 2-aminofuran derivatives.

2,3-Allenylcarbonyl compounds are one of the privileged classes of compounds used as building blocks in organic synthesis.¹ A variety of transformations have been developed on the basis of their versatile reactivities, including nucleophilic cyclization catalyzed by transition metals,² cycloaddition under nucleophilic catalysis,³ and others.⁴ A new synthesis of 2,3-allenylcarbonyl compounds also has received considerable attention in recent years.^{5,6} Particularly, the synthesis of 2,3-allenylcarbonyl compounds having a functional group on a specific sp^2 -carbon is attractive because it paves the way for the synthesis of highly functionalized complex molecules through the transformation of 2,3allenylcarbonyl compounds. In this context, we have developed an efficient synthesis of 2,3-allenylcarbonyl compounds having an oxygen-functionality at the 2-position, which are difficult to access by conventional methods, by utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis.^{8,9} Our reaction design is shown in Scheme 1. α -Alkynylketoamide **1** is employed as the substrate and is treated with phosphite 2 in the presence of a catalytic amount of Brønsted base (Scheme 1a). The deprotonation of phosphite 2 by the Brønsted base and the following 1,2selective addition of the resulting anion of 2 provide alkoxide A. The migration of the dialkoxyphosphoryl moiety from carbon

Scheme 1 Synthesis of 2,3-allenylamides utilizing [1,2]-phospha-Brook rearrangement and their application to metal-catalyzed cycloisomerization

to oxygen, i.e., the [1,2]-phospha-Brook rearrangement, proceeds to form enolate B. Finally, the regioselective protonation at the γ -position by the conjugated acid of the Brønsted base catalyst or 2 provides desired 2,3-allenylamide 3. Our methodology is characterized by the catalytic generation of enolate (propargyl anion) having an oxygen-functionality under mild reaction conditions. Generally, the synthesis of related funtionalized allenes involves the stoichiometric generation of allenyl or propargyl anions under highly basic conditions.⁷ As an application of newly synthesized **3**, we also have developed a cycloisomerization reaction catalyzed by π acidic transition metals,² which provides 2-aminofuran derivative 4 having an oxygen-functionality at the 3-position, in hopes that 4 would be a useful building block for the construction of six-membered cyclic frameworks through the Diels-Alder reaction (Scheme 1b).¹⁰ Herein we report an efficient synthesis of 2,3-allenylamides utilizing the [1,2]phospha-Brook rearrangement catalyzed by a phosphazene

^{a.} Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan. Email:

mterada@m.tohoku.ac.jp.

^{b.} Department of Chemistry, Graduate School of Science, Tohoku University, Aobaku, Sendai 980-8578, Japan.

⁺ Electronic Supplementary Information (ESI) available: Experimental procedures screening of reaction conditions, and characterization data. See DOI: 10.1039/x0xx00000x

ted Manuscr

emcom

H yield (%)^b 94

> <5[°] 76^d 79 83 80^e 69^f 92 56^h 96[′] 90ⁱ 80 71 86 87 89 80 <1^j

80

Journal Name

COMMUNICATION

base, and the cycloisomerization of the 2,3-allenylamides catalyzed by a cationic Au(I) complex.

At the outset of our study, N-benzyl-2-oxo-N-phenyloct-3ynamide (1a) was employed as the initial substrate. 1a was treated with 1.0 equivalent of diethyl phosphite (2a) in the presence of 10 mol% Brønsted base in toluene at room temperature. The use of a tertiary amine, such as N,Ndiisopropylethylamine, provided no adduct, and 72% of starting 1a was recovered (Table 1, entry 1). The use of DBU and TBD accelerated the consumption of 1a, and desired 2,3allenylamide 3aa was obtained along with propargylic amide 5aa, albeit in low yield (entries 2 and 3). A dramatic improvement of the yield of 3aa was achieved by employing phosphazene bases, such as P1-tBu and P2-tBu (entries 4 and 5). In particular, P1-tBu facilitated the regioselective protonation and desired 3aa was obtained in 63% yield along with 2% of 5aa (entry 4). The use of tBuOK resulted in an almost 1:1 mixture of 3aa and 5aa in moderate combined yield (entry 6). Whereas the solvents screened did not increase the yield of 3aa so much (entries 7-11), the decrease of the reaction temperature was beneficial as it improved the mass balance of the reaction and increased the yield of 3aa. The optimum reaction temperature was - 40 °C; at that temperature, 3aa was obtained in 82% yield, and 5aa was not detected (entry 13). Finally, the yield of 3aa was improved to

92% by employing 1.5 equivalents of 2a (entry 14) ella of the second sec clarify whether or not 3aa was formed by the isomerization 5aa, 5aa was treated with a catalytic amount of P1-tBu in the presence or absence of 2a. This resulted in the recovery of 5aa and the formation of only a trace amount of 3aa, thus clearly suggesting that 3aa was formed through the regioselective protonation of the enolate intermediate (B in Scheme 1) at the y-position.¹¹ Considering the acidity of diethyl phosphite (dimethyl phosphite, $pK_a = 18.4$ in DMSO, estimated)¹² and the conjugated acid of P1-tBu (pK_{BH+} = 15.7 in DMSO),¹³ the latter would preferentially serve as the proton source, and its bulkiness would contribute to the regioselective protonation at the less hindered γ -position to provide 2,3-allenylamide **3aa**. With the optimum reaction conditions in hand, the scope of α alkynylketoamide 1 and phosphite 2 was investigated (Table 2). At first, different phosphites were tested (entries 1-3). Dimethyl phosphite (2b) gave a similar result to 2a (entry 1). Sterically hindered diisopropyl phosphite (2c) provided only a trace amount of the desired product and a substantial amount of recovered 1a (entry 2). The reaction of diphenyl phosphite (2d) proceeded to provide 3ad in 76% yield along with propargylic amide 5ad in 16% NMR yield (entry 3). Then the effect of substituents on the nitrogen of α -alkynylketoamide **1** was examined. Both diphenylamide 1b and dibenzylamide 1c were applicable to the reaction, affording corresponding products 3ba and 3ca in good yields, respectively (entries 4

Table 1 Optimization of reaction conditions ^a							products 3ba and 3ca in good yields, respectively (entries 4								
					0		Table 2	Scope o	of ketoan	nides 1 and	l phosphites 2 ^a				
$\begin{array}{c} Bn & O \\ HP(OEt)_2 2a (1.0 eq.) \\ Ph & HP(OEt)_2 2a (1.0 eq.) \\ HP(OEt)_2 2a (1.0 eq.) \\ Bn & O \\ HP(OEt)_2 2a (1.0 eq.) \\ HP(OEt)_2 \\ Solvent, temp., 3 h \\ O \\ H \\ HP(OEt)_2 \\ HP$						$R^{1} \xrightarrow{R^{2}}_{0} \xrightarrow{0}_{R^{3}} \xrightarrow{P1-tBu (10 \text{ mol}\%)}_{toluene, -40 \text{ °C}, 3 \text{ h}} R^{1} \xrightarrow{R^{2}}_{0} \xrightarrow{O}_{H} O$						OP(0	DR ⁴)₂ → R H		
	N Me ₂ N	NtBu -P-NMe ₂ M	N <i>t</i> Bu 1e ₂ N—P—NMe ₂	Ph		Ξt) ₂	entry	1	R ¹	R ²	R ³	2	R^4	3	yie (%
i N H	N N	NMe ₂	N ≷P(NMe₂)3	0	nBu	1	1a	Ph	Bn	<i>n</i> Bu	2b	Me	3ab	94
(BD	P1- <i>t</i> Bu	P2-tBu		5aa		2	1a	Ph	Bn	<i>n</i> Bu	2c	<i>i</i> Pr	3ac	<5
entry	base	solvent	temp.		yield ^b (%)		3	1a	Ph	Bn	<i>n</i> Bu	2d	Ph	3ad	76
entry	Dase	solvent	(°C)	3aa	5aa	1a	4	1b	Ph	Ph	<i>n</i> Bu	2a	Et	3ba	79
1	<i>i</i> Pr₂NEt	toluene	rt	0	0	72	5	1c	Bn	Bn	<i>n</i> Bu	2a	Et	3ca	83
2	DBU	toluene	rt	15	12	6	6	1d	Me	Me	<i>n</i> Bu	2 a	Et	3da	80
3	TBD	toluene	rt	28	18	0	7	1e	(CH ₂);	2O(CH ₂) ₂	<i>n</i> Bu	2a	Et	3ea	69
4	P1- <i>t</i> Bu	toluene	rt	63	2	0	8	1f	Ph	Bn	<i>c</i> Hex	2 a	Et	3fa	92
5	P2- <i>t</i> Bu	toluene	rt	63	28	0	9 ^{<i>g</i>}	1g	Ph	Bn	<i>t</i> Bu	2 a	Et	3ga	56
6	<i>t</i> BuOK	toluene	rt	32	34	0	10	1h	Ph	Bn	Ph	2 a	Et	3ha	96
7	P1- <i>t</i> Bu	CH_2CI_2	rt	55	2	0	11	1 i	Bn	Bn	Ph	2a	Et	3ia	90
8	P1- <i>t</i> Bu	Et ₂ O	rt	59	3	0	12	1j	Ph	Bn	(CH ₂) ₄ Cl	2a	Et	3ja	80
9	P1- <i>t</i> Bu	THF	rt	66	<1	0	13	1k	Ph	Bn	(CH₂)₄Br	2 a	Et	3ka	71
10	P1- <i>t</i> Bu	DMF	rt	26	<1	20	14	11	Ph	Bn	(CH ₂) ₄ OAc	2 a	Et	3la	86
11	P1- <i>t</i> Bu	EtOH	rt	70	7	3	15	1m	Ph	Bn	(CH₂)₄OTHP	2 a	Et	3ma	87
12	P1-tBu	toluene	-20	79	1	0	16	1n	Ph	Bn	(CH ₂) ₄ OTBS	2a	Et	3na	89
13	P1- <i>t</i> Bu	toluene	-40	82	<1	0	17	10	Ph	Bn	(CH₂)₄OH	2a	Et	3oa	80
14 ^c	P1-tBu	toluene	-40	92 (91)	<1	0	18	1p	Ph	Bn	TIPS	2a	Et	Зра	<1
							10			-		•		•	~ ~ ~

^{*a*}Reaction conditions: **1a** (0.25 mmol), **2a** (0.25 mmol), base (0.025 mmol), solvent (1.0 mL). ^{*b*}Yields were determined by ¹H and ³¹P NMR analyses of the crude mixture. Trimethyl phosphate was used as the internal standard. Isolated yield is shown in parentheses. ^{*c*}0.38 mmol **2a** (1.5 eq.) was used.

^{*a*}Reaction conditions: **1** (0.25 mmol), **2** (0.38 mmol), P1-*t*Bu (0.025 mmol), toluene (1.0 mL), -40°C, 3 h. ^{*b*}Isolated yields unless otherwise noted. ^{*c*}60% of **1a** was recovered. ^{*d*}**5ad** (16% NMR yield) was formed. ^{*c*}**5da** (13% NMR yield) was formed. ^{*f*}**5ea** (20% NMR yield) was formed. ^{*g*}The reaction was conducted for 3.5 h. ^{*h*}**5ga** (29% NMR yield) was formed. ^{*i*}NMR yields. ^{*j*}**5pa** (95% NMR yield) was formed.

н

Bn

Et

3aa

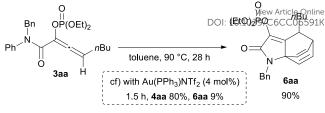
2a

19

Ph

1a

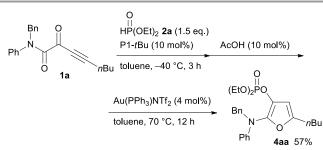
Journal Name


and 5). Less sterically hindered dialkyl amides, such as dimethyl amide 1d and morpholine amide 1e, provided corresponding allenylamides 3da and 3ea in moderate yields along with propargylic amides, indicating that the size of the amide moiety influenced the regioselectivity of the enolate protonation (entries 6 and 7). Next, the substituents on the alkyne terminus of 1 were screened. Cyclohexyl-substituted 1f underwent the reaction smoothly and 3fa was obtained in good yield (entry 8). The reaction of tert-butyl- substituted 1g resulted in the formation of a mixture of 3ga and 5ga (entry 9). The reactions of **1h** and **1i** having a phenyl group proceeded to provide allenylamides 3ha and 3ia, which were incompatible with silica-gel column purification (entries 10 and 11). A variety of functional groups including chloro, bromo, and even unprotected hydroxy groups, were tolerated under the reaction conditions, and the corresponding products were obtained in good yields (entries 12-17). The reaction of triisopropylsilyl-substituted 1p provided only alkynylamide 5pa (entry 18). The results of the reactions of 1g and 1p (entries 9 and 18) suggested that the bulky substituents on the alkyne terminus prevented regioselective protonation at the yposition. 1q having a terminal alkyne moiety underwent the reaction without any problems to afford 3ga in good yield (entry 19).

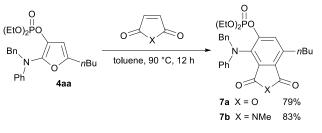
Next, we investigated the cycloisomerization of 2,3allenylamides **3** into 2-aminofuran derivatives **4** as an application of newly synthesized 2,3-allenylamides **3**. Screening for π -acidic transition metals as catalyst revealed that the cationic Au(I) complex efficiently catalyzed the cycloisomerization of **3aa** in toluene at 70 °C, providing **4aa** in 85% yield (Table 3, entry 1).¹¹ It is noteworthy that heating **3aa** in the absence of Au(I) catalyst accelerated the intramolecular Diels-Alder reaction of the phenyl group on the nitrogen with

Table 3 Cycloisomerization of 2,3-allenylamides 3 into 2-aminofuran derivatives 4 ^a									
R ² R ^{1~} N.		$\mathbf{R}^{\mathbf{R}^{3}}$	toluene,	3)NTf₂ (4 mol%) 70 °C, 12 h	$(EtO)_2PO$ R^2 R^1 R^1 R^3				
entry	3	R ¹	R ²	R ³	4	yield (%) ^b			
1	3aa	Ph	Bn	<i>n</i> Bu	4aa	85			
2	3ba	Ph	Ph	<i>n</i> Bu	4ba	80			
3	3ca	Bn	Bn	<i>n</i> Bu	4ca	<1			
4	3fa	Ph	Bn	<i>c</i> Hex	4fa	78			
5	3ga	Ph	Bn	<i>t</i> Bu	4ga	83			
6	3ha	Ph	Bn	Ph	4ha	15 ^c			
7	3ia	Bn	Bn	Ph	4ia	64			
8	3ja	Ph	Bn	(CH ₂) ₄ Cl	4ja	83			
9	3ka	Ph	Bn	(CH ₂) ₄ Br	4ka	69			
10	3la	Ph	Bn	(CH ₂) ₄ OAc	4la	50			
11	3ma	Ph	Bn	(CH₂)₄OTHP	4ma	60			
12	3na	Ph	Bn	(CH ₂) ₄ OTBS	4na	79			
13	3oa	Ph	Bn	(CH₂)₄OH	4oa	42			
14	3qa	Ph	Bn	Н	4qa	12 ^{<i>d</i>}			

^aReaction conditions: **3**, Au(PPh₃)NTf₂ (4 mol%), toluene (0.125 *M*), 70 °C, 12 h. ^bIsolated yields. ^c**6ha** (68% NMR yield) was formed. ^d**6qa** (52% NMR yield) was formed.



Scheme 2 Intramolecular Diels-Alder reaction of 3aa


an allene moiety to provide 6aa,¹⁴ which indicated the potential of the newly synthesized allenylamide for diverse applications (Scheme 2). Then, investigation of the substrate scope for the cycloisomerization was carried out (Table 3). The reaction of diphenylamide 3ba proceeded smoothly to provide 4ba in good yield; in contrast, the reaction of dibenzylamide 3ca did not take place (entries 2 and 3). Then, substrates having various substituents on the allene moiety were examined. The reaction of cyclohexyl- and tert-butylsubstituted 3fa and 3ga proceeded without any problems to afford 4fa and 4ga in good yields, respectively (entries 4 and 5). When the reaction was performed with 3ha, which had a phenyl group on the allene moiety, the intramolecular Dielspreference proceeded in Alder reaction to the cycloisomerization even in the presence of Au(I) catalyst (entry 6). In contrast, the reaction of dibenzylamide **3ia** having a phenyl group on the allene moiety proceeded to afford 4ia in good yield (entry 7). 2,3-Allenylamides 3 possessing a variety of functional groups were applicable to the cycloisomerization, and corresponding 2-aminofuran derivatives 4 were obtained in moderate to good yields (entries 8-13). The reaction of 3qa provided Diels-Alder product 6qa as the major product (entry 14).

The investigation was further extended to the one-pot synthesis of 2-aminofuran derivative **4aa** from α -alkynylketoamide **1a** (Scheme 3). **1a** was treated with **2a** in the presence of 10 mol% P1-*t*Bu in toluene at -40 °C for 3 h. After adding 10 mol% AcOH to deactivate P1-*t*Bu, 4 mol% Au(PPh₃)NTf₂ was added, and the resulting mixture was stirred at 70 °C for 12 h to furnish desired product **4aa** in 57% yield.

Finally, the transformation of 2-aminofuran derivatives was attempted.¹⁵ **4aa** was found to participate in the Diels-Alder reaction with maleic anhydride and *N*-methylmaleimide and subsequent dehydrative aromatization to furnish 2-aminophenol derivatives **7a** and **7b** in high yields (Scheme 4).^{10c}

Scheme 3 One-pot synthesis of 2-aminofuran derivative 4aa from 1a

Scheme 4 Transformation of 4aa

In conclusion, we have newly developed an efficient synthesis of 2,3-allenylamides by utilizing the [1,2]-phospha-Brook rearrangement under Brønsted base catalysis. The reaction involves the generation of an amide enolate by treatment of α alkynylketoamide with phosphite through the [1,2]-phospha-Brook rearrangement, followed by the regioselective protonation at the y-position to provide 2,3-allenylamides having an oxygen functionality at the 2-position, which are difficult to access by conventional methods. Thus synthesized 2,3-allenylamides were subsequently applied to the goldcycloisomerization to afford 2-aminofuran catalyzed derivatives. The one-pot synthesis of 2-aminofuran derivatives as well as their further transformation into 2-aminophenol derivatives was also achieved.

This work was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas "Advanced Molecular Transformations by Organocatalysts" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS).

Notes and references

- 1 (a) *Modern Allene Chemistry*, ed. N. Krause and A. S. K. Hashmi, Wiley-VCH, Germany, 2004; (b) S. Yu and S. Ma, *Angew. Chem. Int. Ed.*, 2012, **51**, 3074; (c) S. Ma, *Chem. Rev.* 2005, **105**, 2829.
- For selected reviews, see: (a) A. V. Gulevich, A. S. Dudnik, N. Chernyak and V. Gevorgyan, *Chem. Rev.*, 2012, **113**, 3084; (b) N. Krause and C. Winter, *Chem. Rev.*, 2011, **111**, 1994; (c) C. Aubert, L. Fensterbank, P. Garcia, M. Malacria and A. Simonneau, *Chem. Rev.*, 2011, **111**, 1954; (d) S. Ma, *Acc. Chem. Res.*, 2003, **36**, 701.
- For selected recent reviews, see: (a) Z. Wang, X. Xu and O. Kwon, *Chem. Soc. Rev.*, 2014, **43**, 2927; (b) Y. C. Fan and O. Kwon, *Chem. Commun.*, 2013, **49**, 11588; (c) Q.-Y. Zhao, Z. Lian, Y. Wei and M. Shi, *Chem. Commun.*, 2012, **48**, 1724; (d) B. J. Cowen and S. J. Miller, *Chem. Soc. Rev.*, 2009, **38**, 3102.
- For selected examples, see: (a) G. Wang, X. Liu, Y. Chen, J. Yang, J. Li, L. Lin and X. Feng, ACS Catal., 2016, 6, 2482; (b) C. Xue, X. Huang, S. Wu, J. Zhou, J. Dai, C. Fu and S. Ma, Chem. Commun., 2015, 51, 17112; (c) J. Band, H. Kim, J. Kim and C.-M. Yu, Org. Lett., 2015, 17, 1573; (d) C. T. Mbofana and S. J. Miller, J. Am. Chem. Soc., 2014, 136, 3285; (e) X. Fan, Y. Wang, Y. He, S. Guo and X. Zhang, Eur. J. Org. Chem., 2014, 713; (f) T. Hashimoto, K. Sakata, F. Tamakuni, M. J. Dutton and K. Maruoka, Nat. Chem., 5, 240; (g) K. Oisaki, D. Zhao, M. Kanai and M. Shibasaki, J. Am. Chem. Soc., 2007, 129, 7439.
- 5 For reviews, see: (a) K. M. Brummond and J. E. DeForrest, Synthesis, 2007, 795; (b) M. Ogasawara, Tetrahedron:

Journal Name

Page 4 of 4

Asymmetry, 2009 20, 259; (c) S. Yu and S. Ma. Chem. Commun., 2011, 47, 5384. DOI: 10.1039/C6CC06591K 6 For selected very recent examples, see: (a) A. Roy, B. A. Bhat and S. D. Lepore, Org. Lett. 2016, 18, 1230; (b) X. Wang, X. Wu and J. Wang, Org. Lett. 2016, 18, 576; (c) Q. Yao, Y. Liao, L. Lin, X. Lin, J. Ji, X. Liu and X. Feng, Angew. Chem. Int. Ed., 2016, 55, 1859; (d) Y. Tang, Q. Chen, X. Liu, G. Wang, L. Lin and X. Feng, Angew. Chem. Int. Ed., 2015, 54, 9512; (e) H. Qian, X. Yu, J. Zhang and J. Sun, J. Am. Chem. Soc., 2013, 135, 18020; (f) R. Koch, H. M. Bertermann and C. Wentrup, J. Org. Chem., 2014, 79, 65; (g) I. Mizota, Y. Matsuda, S. Kamimura, H. Tanaka and M. Shimizu, Org. Lett., 2013, 15, 4206; (h) Y. Wang, W. Zhang and S. Ma, J. Am. Chem. Soc. 2013, 135, 11517; (i) I. T. Chrouch, R. K, Neff and D. E. Frantz, J. Am. Chem. Soc., 2013, 135, 4970; (j) Y. Wang and S. Ma, Adv. Synth. Catal., 2013, 355, 741, and references cited therein.

- 7 (a) G. R. Boyce, S. Liu and J. S. Johnson, Org. Lett., 2012, 14, 652; (b) S. Sano, H. Shimizu, K. Kim, W. S. Lee, M. Shiro and Y. Nagao, Chem. Perm. Bull., 2006, 54, 196; (c) N. A. Nedolya, N. I. Schlyakhtina, V. P. Zinov'eva, A. I. Albanov and L. Brandsma, Tetrahedron Lett., 2002, 43 1569; (d) H. Hu, D. Smith, R. E. Crammer and M. A. Tius, J. Am. Chem. Soc., 1999, 121, 9895; (e) J. K. Crandall, D. M. Coppert, T. Schuster and F. Lin, J. Am. Chem. Soc. 1992, 114, 5998; (f) M. J. Sleeman and G. V. Meehan, Tetrahedron Lett., 1989, 30, 3345.
- 8 For selected examples, see: (a) M. A. Horwitz, B. P. Zavesky, J. I. Martinez-Alvarado and J. S. Johnson, Org. Lett., 2016, 18, 36; (b) M. A. Horwitz, N. Tanaka, T. Yokosaka, D. Uraguchi, J. S. Johnson and T. Ooi, Chem. Sci., 2015, 6, 6086; (c) M. Corbett, D. Uraguchi, T. Ooi and J. S. Johnson, Angew. Chem. Int. Ed., 2012, 51, 4685; (d) A. S. Demir, I. Esiringü, M. Göllü and Ö. Reis, J. Org. Chem., 2009, 74, 2197; (e) A. S. Demir and S. Eymur, J. Org. Chem., 2007, 72, 8527; (f) C. C. Bausch and J. S. Johnson, Adv. Synth. Catal., 2005, 347, 1207; (g) A. S. Demir, Ö. Reis, A. Ç. İğdir, İ. Esiringü and S. Eymur, J. Org. Chem., 2011, 50, 2249; (i) L. El Kaïm, L. Gaultier, L. Grimaud and A. Dos Santos, Synlett, 2005, 2335.
- 9 (a) A. Kondoh and M. Terada, Org. Lett., 2013, 15, 4568; (b) A. Kondoh, T. Aoki and M. Terada, Org. Lett., 2014, 16, 3528; (c) A. Kondoh and M. Terada, Org. Chem. Front., 2015, 2, 801; (d) A. Kondoh, T. Aoki and M. Terada, Chem. Eur. J., 2015, 21, 12577; (e) A. Kondoh, A. Takei and M. Terada, Synlett, 2016, 27, 1848; (f) A. Kondoh and M. Terada, Org. Biomol. Chem., 2016, 14, 4704.
- For recent selected examples of 2-aminofuran synthesis, see:
 (a) C. Cheng, S. Liu and G. Zhu, J. Org. Chem., 2015, **80**, 7604;
 (b) T. N. T. Huynh, P. Retailleau, C. Denhez, K. P. P. Nguyen and D. Guillaume, Org. Biomol. Chem., 2014, **12**, 5098; (c) A. G. Neo, A. Bornadiego, J. Díaz, S. Marcaccini and C. F. Marcos, Org. Biomol. Chem., 2013, **11**, 6546; (d) R. B. Dateer, K. Pati and R.-S. Liu, Chem. Commun., 2012, **48**, 7200; (e) P. Liu, M. Lei, L. Ma and L. Hu, Synlett, 2011, 1133.
- 11 See the ESI for details.
- 12 J.-N. Li, L. Liu, Y. Fu and Q.-X. Guo, *Tetrahedron*, 2006, **62**, 4453.
- R. Schwesinger, H. Schlemper, C. Hasenfratz, J. Willaredt, T. Dambacher, T. Breuer, C. Ottaway, M. Fletschinger, J. Boele, H. Fritz, D. Putzas, H. W. Rotter, F. G. Bordwell, A. V. Satish, G.-Z. Ji, E.-M. Peters, K. Peters, H. G. van Schnering and L. Walz, *Liebigs Ann.*, 1996, 1055.
- 14 (a) G. Himbert and L. Henn, *Angew. Chem. Int. Ed.*, 1982, 21, 620; (b) Y. Schmidt, J. K. Lam, H. V. Pham, K. N. Houk and C. D. Vanderwal, *J. Am. Chem. Soc.*, 2013, 135, 7339; (c) G. Cheng, X. He, L. Tian, J. Chen, C. Li, X. Jia and J. Li, *J. Org. Chem.*, 2015, 80, 11100, and references cited therein.
- 15 The diethoxyphosphoryl moiety of **4** could be removed under basic conditions. See the ESI for details.

4 | J. Name., 2012, 00, 1-3