

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/gpss20</u>

Synthesis of 5-Formyl and 5-Acyl-1,2-dithiole-3-ones

S. Gargadennec^a, B. Legouin^a & J.-L. Burgot^a ^a Université de Rennes I, Rennes, France Published online: 27 Oct 2010.

To cite this article: S. Gargadennec, B. Legouin & J.-L. Burgot (2003) Synthesis of 5-Formyl and 5-Acyl-1,2-dithiole-3-ones, Phosphorus, Sulfur, and Silicon and the Related Elements, 178:8, 1721-1726, DOI: <u>10.1080/10426500307824</u>

To link to this article: http://dx.doi.org/10.1080/10426500307824

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

SYNTHESIS OF 5-FORMYL AND 5-ACYL-1,2-DITHIOLE-3-ONES

S. Gargadennec, B. Legouin, and J.-L. Burgot Université de Rennes I, Rennes, France

(Received February 12, 2003; accepted February 12, 2003)

The preparation of new 5-formyl-, 5-acetyl- and 5-propionyl-1,2dithiole-3-ones by oxidation of the corresponding 1,2-dithiole-3-thiones with mercuric acetate is described.

 $\label{eq:keywords: 5-formyl (or 5-acyl)-1,2-dithiole-3-ones; 5-formyl (or 5-acyl)-1,2-dithiole-3-thiones$

1-(5-thioxo-5*H*-1,2-dithiole-3-yl)-ketones 1 together with the corresponding 1,2-dithiole-3-ones 2 are patented for their pharmacological properties, especially for their microbicidal ones.¹⁻³

In the course of our studies devoted to the synthesis of new 1,2dithiole-3-thiones^{1,2} and to their physico-chemical properties,^{4,5} we have determined water/n-octanol log P values of several 1,2-dithiole-3thiones and 3-ones in order to establish quantitative structure activity relationships.⁶ With this aim, we have prepared new 1,2-dithiole-3-ones

Hg (OAc)₂ No HOAc 1a-n 2a-n b d f h i i k I я c e g m n R^1 Ή н Н Ή н н Me Me Me Et Et Et Me (CH₂)₃ R² Et Ph OMe CI H Ph Η Et H Me Me Et Me

Address correspondence to J.-L. Burgot, Laboratoire de Chimie Analytique (UPRES 2231), UFR des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, 35043 Rennes Cedex, France. E-mail: jean–louis.burgot@rennes1.fr

2 by reaction of mercuric acetate with the corresponding 1,2-dithiole-3-thiones **1**, three of which were new and also are described herein. Mercuric acetate⁷ was preferred to benzonitrile oxide³ as the oxidant because it led to better yields.

EXPERIMENTAL SECTION

Infrared spectra were obtained with a diffuse reflectance infrared Fourier-transform 16-PC Perkin-Elmer. ¹H NMR spectra were measured at the CRMPO, Rennes, France, in CDCl₃ with a Bruker AM 300 MHz WB spectrometer and ¹³C NMR spectra with a Bruker AM 75.5 MHz WB spectrometer. Mass spectra were recorded on a varian Mat 311 (Electronic impact 70 eV).

5 H-1,2-Dithiole-3-thiones

4-Ethyl-5-thioxo-5H-1,2-dithiole-3-carbaldehyde 1c

Compound 1c was obtained from 4-ethyl-5-methyl-1,2-dithiole-3-thione⁸ according to the standard procedure using NaNO₂ in glacial acetic acid¹ with a yield of 17%. Red crystals; m.p. 76°C (heptane); IR: $\nu = 1674 \text{ cm}^{-1}$; MS: m/z: 189.959 (calc. for C₆H₆OS₃: 189.9581), ¹H NMR $\delta = 1.26$ (t, 3H, ³J = 7.5 Hz, CH₃); 3.10 (q, 2H, ³J = 7.5 Hz, CH₂); 10.24(s, 1H, CHO); ¹³C NMR $\delta = 14.7$ (qt, ¹J = 129 Hz, ²J = 5.4 Hz, CH₃); 22.7 (td, ¹J = 131 Hz, ²J = 4.5 Hz, CH₂); 155.1 (m, C-4); 159.6 (dt, ²J = 3.4 Hz, ³J = 4.5 Hz, C-5); 185.2 (d, ¹J = 189 Hz, C=O); 217.2 (t, ³J = 7 Hz, C=S).

1-(4-Methyl-5-thioxo-5 H-1,2-dithiole-3-yl)-propan-1-one 11

Compound **11** was obtained from 4-methyl-5-propyl-1,2-dithiole-3thione⁴ according to the standard procedure¹ with a yield of 20%. Red crystals; m.p. = 75°C (hexane); IR: ν = 1700 cm⁻¹; MS: *m/z*: 203.9732 (calc. for C₇H₈OS₃: 203.9737); ¹H NMR δ = 1.27 (t, 3H, ³*J* = 7.2 Hz, CH₂-CH₃); 2.46 (s, 3H, CH₃); 2.99 (q, 2H, ³*J* = 7.2 Hz, CH₂); ¹³C NMR δ = 7.7 (qt, ¹*J* = 129 Hz, ²*J* = 4 Hz, CH₂-CH₃); 17.3 (q, ¹*J* = 131 Hz, CH₃-4); 37.0 (tq, ¹*J* = 129Hz, ²*J* = 4Hz, CH₂); 145.9 (q, ²*J* = 6.2 Hz, C-4); 161.1 (q, ³*J* = 5 Hz, C-5); 195.7 (q, ³*J* = 5.3 Hz, C=O); 213.3 (q, ³*J* = 5.5 Hz, C=S).

1-(4-Ethyl-5-thioxo-5 H-1,2-dithiole-3-yl)-propan-1-one 1m

Compound **1m** was obtained from 4-ethyl-5-propyl-1,2-dithiole-3thione⁹ according to the standard procedure¹ with a yield of 11%. Red crystals; m.p. 45°C (hexane); IR: $\nu = 1702 \text{ cm}^{-1}$; MS: m/z: 217.9891 (calc. for C₈ H₁₀OS₃: 217.9894); ¹H δ = 1.09 (t, 3H, ³J = 7.3 Hz, CH₃-4); 1.20 (t, 3H, ³J = 7.0 Hz, CH₃-5); 2.92 (q, 2H, ³J = 7.3 Hz, CH₂-4); 3.14 (q, 2H, ³J = 7.0 Hz, CH₂-5); ¹³C δ = 7.9 (qt, ¹J = 129 Hz, ²J = 4.5 Hz, CH₃-5); 13.0 (qt, ¹J = 128 Hz, ²J = 4.5 Hz, CH₃-4); 24.4 (tq, ¹J = 131 Hz, ²J = 4.5 Hz, CH₂-4); 37.4 (tq, ¹J = 126 Hz, ²J = 4.5 Hz, CH₂-5); 151.6 (m, C-4); 163.6 (t, ³J = 5 Hz, C-5); 196.2 (q, ³J = 5.3 Hz, C=O); 218.2 (t, ³J = 7 Hz, C=S).

5-Formyl and 5-Acyl-1,2-dithiole-3-ones (General Procedure)

Two equivalents of mercuric acetate in 70 ml of boiling acetic acid are added to 100 mL of a boiling solution containing one equivalent of the corresponding 1-(5-thioxo-5*H*-1,2-dithiole-3-yl)-ketone **1**. The mixture was stirred and heated for 3 h. The solution was then allowed to reach room temperature. After filtration and stripping off the solvent, the crude product was purified by silica gel chromatography with toluene to give the expected 5-acyl-1,2-dithiole-3-ones **2**.

5-Oxo-5 H-1,2-dithiole-3-carbaldehyde 2a

Compound **2a** was obtained from **1a**¹ with a yield of 30%. m.p. 83°C (ethylacetate); IR: $\nu = 1676$, 1647 cm⁻¹; MS: m/z: 145.9491 (calc. for C₄H₂O₂S₂: 145.9496); ¹H $\delta = 7.27$ (s, 1H, H-4); 10.04 (s, 1H, CHO); ¹³C $\delta = 129.2$ (d, ¹J = 175 Hz, C-4); 163.9 (m, C-5); 182.5 (dd, ¹J = 192 Hz, ³J = 5 Hz, CHO); 193.8 (d, ²J = 5.5 Hz, C-3).

4-Methyl-5-oxo-5H-1,2-dithiole-3-carbaldehyde 2b

Compound **2b** was obtained from **1b**¹ with an overall yield of 36%. m.p. 79°C (ethylacetate); IR: $\nu = 1670$, 1647 cm⁻¹; MS: m/z: 159.9652 (calc. for C₅H₄O₂S₂: 159.9653); ¹H $\delta = 2.41$ (s, 3H, CH₃); 10.26 (s, 1H, CHO); ¹³C $\delta = 12.8$ (q, CH₃); 138.4 (m, C-4); 155.2 (m, C-5); 183.7 (d, ¹J = 190 Hz, CHO); 196.1 (q, C-3).

4-Ethyl-5-oxo-5 H-1,2-dithiole-3-carbaldehyde 2c

Compound **2c** was obtained from **1c** with a yield of 80%. m.p. 48°C (ethylacetate); IR: $\nu = 1670$, 1645 cm⁻¹; MS: m/z: 173.9809 (calc. for C₆H₆O₂S₂: 173.9809); ¹H $\delta = 1.26$ (t, 3H, ³J=7.5 Hz, CH₃); 2.88 (q, 2H, ³J=7.5 Hz, CH₂); 10.24 (s, 1H, CHO); ¹³C NMR $\delta = 14.6$ (qt, ¹J=128.5 Hz, ²J=5 Hz, CH₃); 20.8 (tq, ¹J=131.5 Hz, ²J=4 Hz, CH₂); 144.1 (m, C-4); 155.6 (dt, ²J=35 Hz, ³J=4 Hz, C-5); 183.7 (d, ¹J=189 Hz, CHO); 195.9 (t, ³J=6 Hz, C-3).

5-Oxo-4-phenyl-5H-1,2-dithiole-3-carbaldehyde 2d

Compound **2d** was obtained from **1d**¹ with a yield of 75%. m.p. 153°C (heptane); IR: $\nu = 1670$, 1640 cm⁻¹; MS: m/z: 221.9800 (calc. for C₁₀H₆O₂S₂: 221.9809); ¹H $\delta = 7.41$ (m, 2H, C₆H₅-m); 7.51 (m, 3H, C₆H₅-o, p); 9.82 (s, 1H, CHO); ¹³C NMR $\delta = 128.9$ (d, ¹J = 161 Hz, C₆H₅-m); 129.4 (t, ³J = 6.5 Hz, C₆H₅-4); 130.2 (d, ¹J = 160 Hz, C₆H₅-p); 130.3 (dm, ¹J = 161 Hz, C₆H₅-o); 141.0 (t, ³J = 4 Hz, C-4); 157.9 (d, ²J = 35 Hz, C-5); 185.4 (d, ¹J = 194 Hz, CHO); 194.4 (s, C-3).

4-Methoxy-5-oxo-5H-1,2-dithiole-3-carbaldehyde 2e

Compound **2e** was obtained from **1e**¹ with a yield of 80%. m.p. 54°C (hexane); IR: $\nu = 1670$, 1632 cm⁻¹; MS: m/z: 175.9599 (calc. for C₅H₄O₃S₂: 175.9602); ¹H $\delta = 4.19$ (s, 3H, CH₃); 10.11 (s, 1H, CHO); ¹³C NMR $\delta = 60.3$ (q, ¹J = 148 Hz, CH₃); 141.4 (d, ²J = 34 Hz, C-5); 154.0 (q, ³J = 4 Hz, C-4); 183.8 (d, ¹J = 194 Hz, CHO); 189.0 (s, C-3).

4-Chloro-5-oxo-5H-1,2-dithiole-3-carbaldehyde 2f

Compound **2f** was obtained from **1f**¹ with a yield of 70%. m.p. 89°C (hexane); IR: $\nu = 1676$, 1604 cm⁻¹; MS: m/z: 181.9070 (calc. for C₄HClO₂S₂: 181.9077); ¹H $\delta = 10.26$ (s, 1H, CHO); ¹³C NMR $\delta = 130.9$ (s, C-4); 153.1 (d, ²J = 34 Hz, C-5); 182.9 (d, ¹J = 197 Hz, CHO); 187.7 (s, C-3).

5-Acetyl-1,2-dithiole-3-one 2g

Compound **2g** was obtained from **1g**² with a yield of 50%. m.p. 119°C (methanol); IR: $\nu = 1684$, 1642 cm⁻¹; MS: m/z: 159.9652 (calc. for C₅H₄O₂S₂: 159.9653); ¹H $\delta = 2.65$ (s, 3H, CH₃); 7.18 (s, 1H, H-4); ¹³C NMR $\delta = 27.6$ (q, ¹J=129 Hz, CH₃); 125.2 (d, ¹J=175 Hz, C-4); 165.4 (d, ²J=7 Hz, C-5); 190.6 (m, CH₃C=O); 194.7 (d, ²J=5.4 Hz, C-3).

5-Acetyl-4-methyl-1,2-dithiole-3-one 2h

Compound **2h** was obtained from **1h**² with a yield of 40%. m.p. 44°C (methanol); IR: $\nu = 1671$, 1646 cm⁻¹; MS: m/z: 173.9809 (calc. for C₆H₆O₂S₂: 173.9809); ¹H $\delta = 2.31$ (s, 3H, CH₃-4); 2.65 (s, 3H, COCH₃); ¹³C NMR $\delta = 14.7$ (q, CH₃-4); 30.0 (q, ¹J = 129 Hz, CH₃CO); 134 (q, C-4); 157.3 (m, C-5); 192.0 (m, CH₃C=O); 195.9 (q, C-3).

5-Acetyl-4-ethyl-1,2-dithiole-3-one 2i

Compound **2i** was obtained from **1i**² with a yield of 63%. m.p. 38°C (methanol); IR: $\nu = 1704$, 1652 cm⁻¹; MS: m/z: 187.9956 (calc. for C₇H₈O₂S₂: 187.9956); ¹H $\delta = 1.14$ (t, 3H, CH₂CH₃); 2.64 (s, 3H, COCH₃); 2.76 (q, 2H, CH₂); ¹³C NMR $\delta = 13.2$ (qt, ¹J=128 Hz, ²J=6.5 Hz,

CH₂CH₃); 22.1 (tq, ¹*J* = 132 Hz, ²*J* = 4.5 Hz, CH₂); 29.6 (q, ¹*J* = 129 Hz, COCH₃); 139.6 (m, C-4); 157.1 (q, ³*J* = 4.4 Hz, C-5); 191.9 (q, $, {}^{2}J = 6.5$ Hz, COCH₃); 195.6 (t, ³*J* = 6 Hz, C-3).

5-Acetyl-4-phenyl-1,2-dithiole-3-one 2j

Compound **2j** was obtained from **1j**¹ with a yield of 70%. m.p. 69°C (hexane); IR: $\nu = 1664$, 1646 cm⁻¹; MS: m/z: 235.9954 (calc. for C₁₁H₈O₂S₂: 235.9966); ¹H $\delta = 2.02$ (s, 3H, CH₃); 7.29 (m, 2H, C₆H₅-m); 7.48 (m, 3H, C₆H₅-o, p); ¹³C NMR $\delta = 29.5$ (q, ¹J = 130 Hz, CH₃); 129.1 (d, ¹J = 160 Hz, C₆H₅-m); 129.7 (d, ¹J = 161 Hz, C₆H₅-o); 129.9 (m, C₆H₅-p); 131.8 (m, C₆H₅-4); 136.1 (t, ³J = 3.5 Hz, C-4); 161.8 (s, C-5); 194.1 (s, C-3); 194.4 (q, ²J = 6.5 Hz, COCH₃).

5-Propionyl-1,2-dithiole-3-one 2k

Compound **2k** was obtained from **1k**¹ with a yield of 80%. m.p. 99–100°C (methanol); IR: $\nu = 1686$, 1630 cm⁻¹; MS: m/z: 173.9809 (calc. for C₆H₆O₂S₂: 173.9809); ¹H $\delta = 1.24$ (t, 3H, CH₃); 2.98 (q, 2H, CH₂); 7.16 (s, 1H, H-4); ¹³C NMR $\delta = 7.6$ (qt, ¹J=129 Hz, ²J=4.5 Hz, CH₃); 38.7 (tq, ¹J=126 Hz, ²J=4.5 Hz, CH₂); 124.3 (d, ¹J=175 Hz, C-4); 165.3 (d, ²J=8 Hz, C-5); 193.7 (m, COEt); 194.9 (d, ²J=5.4 Hz, C-3).

4-Methyl-5-propionyl-1,2-dithiole-3-one 2l

Compound **21** was obtained from **11** with a yield of 82%. m.p. 98– 99°C (methanol); IR: $\nu = 1668$, 1630 cm⁻¹; MS: m/z: 187.9975 (calc. for C₇H₈O₂S₂: 187.9966); ¹H $\delta = 1.24$ (t, 3H, CH₃-CH₂); 2.29 (s, 3H, CH₃-4); 2.93 (q, 2H, CH₂); ¹³C NMR $\delta = 7.6$ (qt, ¹J = 129 Hz, ²J = 4.4 Hz, CH₃-CH₂); 14.6 (q, ¹J = 131 Hz, CH₃-4); 35.9 (tq, ¹J = 126 Hz, ²J = 4.4 Hz, CH₂); 133.7 (q, ²J = 6.5 Hz, C-4); 157.2 (m, C-5); 195.2 (m, COEt); 195.9 (m, C-3).

4-Ethyl-5-propionyl-1,2-dithiole-3-one 2m

Compound **2m** was obtained from **1m** with a yield of 40%. m.p. 49– 50°C (methanol); IR: $\nu = 1666$, 1625 cm⁻¹; MS: m/z: 202.0132 (calc. for C₈H₁₀O₂S₂: 202.0122); ¹H $\delta = 1.14$ (t, 3H, CH₃CH₂-4); 1.24 (t, 3H, CH₃CH₂CO); 2.76 (q, 2H, CH₂-4); 2.95 (q, 2H, CH₂-CO); ¹³C NMR $\delta = 7.6$ (qt, ¹J = 129 Hz, ²J = 4.5 Hz, CH₃CH₂CO); 13.2 (qt, ¹J = 128 Hz, ²J = 5 Hz, CH₃CH₂-4); 22.1 (tq, ¹J = 131 Hz, ²J = 4.5 Hz, CH₂-4); 35.6 (tq, ¹J = 125 Hz, ²J = 4.5 Hz, CH₂CO); 139.3 (q, ³J = 5.5 Hz, C-4); 157.0 (t, ³J = 5 Hz, C-5); 195.2 (q, ³J = 5.5 Hz, COEt); 195.9 (t, ³J = 6 Hz, C-3).

4,5,6,7-Tetrahydro-4H-benzo–1,2-dithiole-3,7-dione 2n

Compound **2n** was obtained from $1n^1$ with a yield of 45%. m.p. 52–53°C (hexane); IR: $\nu = 1684$, 1654 cm⁻¹; MS: m/z: 185.9805 (calc.

for C₇H₆O₂S₂: 185.9809); ¹H δ = 2.22 (m, 2H, CH₂-CH₂-CH₂); 2.69 (t, 2H, CH₂-4); 2.74 (t, 2H, CH₂CO); ¹³C NMR δ = 22.9 (t, ¹J = 131 Hz, CH₂-CH₂-CH₂); 24.8 (t, ¹J = 132 Hz, CH₂-4); 38.8 (t, ¹J = 130 Hz, CH₂CO); 141.9 (m, C-4); 154.8 (t, ³J = 4.5 Hz, C-5); 193.1 (m, CH₂CO); 195.1 (s, C-3).

REFERENCES

- M. Abazid, H.-O. Bertrand, M.-O. Christen, and J.-L. Burgot, *Phosphorus, Sulfur, and Silicon*, 88, 195 (1994).
- [2] H.-O. Bertrand, M.-O. Christen, and J.-L. Burgot, Sulfur Letters, 17, 231 (1994).
- [3] M.-O. Christen and J.-L. Burgot, French Patent Appl., Fr 2676057; Chem. Abstr., 124522 (1993).
- [4] M. Bona, P. Boudeville, O. Zekri, M.-O. Christen, and J.-L. Burgot, J. Pharm. Sci., 84, 1107 (1995).
- [5] M. Chollet, B. Legouin, and J.-L. Burgot, J. Chem. Soc. Perkin Trans. 2, 2227 (1998).
- [6] G. Burgot, M. Bona, M.-O. Christen, and J.-L. Burgot, Int. J. Pharm., 129, 295 (1996).
- [7] B. Böttcher, Chem. Ber., 81, 376 (1948).
- [8] L. Legrand and N. Lozac'h, Bull. Soc. Chim. Fr., 79 (1955).
- [9] A. Thuillier and J. Vialle, Bull. Soc. Chim. Fr., 2187 (1962).