Contents lists available at ScienceDirect

Journal of Molecular Structure

journal homepage: www.elsevier.com/locate/molstruc

Synthesis, spectral and thermal characterization of nano-sized, oxo-centered, trinuclear carboxylate-bridged chromium(III) complexes of hydroxycarboxylic acids

B.P. Baranwal^{*}, Talat Fatma, Anand Varma

Department of Chemistry, DDU Gorakhpur University, Gorakhpur, Uttar Pradesh 273 009, India

ARTICLE INFO

Article history Received 29 September 2008 Received in revised form 8 December 2008 Accepted 8 December 2008 Available online 24 December 2008

Keywords: Chromium(III) Oxo-centered Carboxylate Hydroxycarboxylate Nano-sized

ABSTRACT

Complexes of the type $[Cr_{3}O(OOCR^{*})_{3}(OOCR)_{3}]^{+}$ $[R^{*} = C_{6}H_{4}OH, (R'); C_{6}H_{5}CH(OH), (R'') \text{ or } (C_{6}H_{5})_{2}C(OH),$ (R''') and $R = C_{15}H_{31}$ or $C_{17}H_{35}$] were synthesized by substitutions of acetate ions from their respective acetato complexes, in toluene under reflux. The characterization of the complexes were carried out by spectral (infrared, electronic, FAB mass and powder XRD) studies, elemental analyses, molar conductance and magnetic susceptibility measurements. Their thermal decompositions have been studied by using dynamic, nonisothermal thermogravimetry (TG) and differential scanning calorimetry (DSC). Infrared spectra suggested bidentate and bridging nature of both the carboxylate and hydroxycarboxylate anions along with v_{asym}(Cr₃O) vibrations in the complexes. FAB mass spectrometry showed trinuclear nature of the complexes. Molar conductance value of the complexes showed the complexes were 1:1 electrolyte. Magnetic moment values and electronic spectra of these complexes were in support of an octahedral environment around the chromium(III) ion. X-ray diffraction data indicated the nano-sized powder.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Trinuclear, oxo-centered, carboxylate-bridged complexes of the general composition $[M_3O(OOCR)_6(L)_3]^+$ (M = 3-d metal atom, RCOOH = carboxylic acid. L = terminal ligand like water. methanol. pyridine, etc.) represents one of the most intensely studied class of polynuclear compounds [1]. These species have been of continual interest for several reasons: they serve as a suitable models to study electronic and magnetic metal-metal interactions in clusters [2–7], they display properties of homogeneous catalysts in various oxidation reactions [8]. They behave as precursors for clusters of higher nuclearity whose unusual structural design and physical properties open new opportunities for experimental modeling of biocatalysis and their structural variations allow a close examination of parameters affecting the metal-ligand aggregates [9,10]. In recent years, these multinuclear carboxylate assemblies of chromium(III) have been increasingly used as functional biomimetic models to study insulin related functions of the unique low-molecular-weight chromium-binding-oligopeptide (LMWCr) [11–13] which have been proposed as possible nutritional supplements and therapeutics for adult-onset diabetes [14].

Perusal of the literature reveals that a number of transition metals form complexes with hydroxycarboxylic ligands [15-17], but studies on chromium(III) complexes with such ligands are very limited. It has also been found that the mixed-ligand complexes

* Corresponding author. Tel.: +91 551 2203459.

E-mail address: drbpbaranwal@yahoo.com (B.P. Baranwal).

of chromium(III) with higher fatty acids and hydroxycarboxylic acids are not reported so far. In view of these objectives, we report here synthesis of some µ3-oxo-tri(carboxylato)tri(hydroxycarboxylato) chromium(III)acetate complexes following substitutions of acetate ions of the u₃-oxo-tri(acetato)tri(carboxylato)chromium(III)acetate. Coordination behaviour of the ligands has been discussed to arrive at their structure on the basis of spectral, thermal and magnetic studies.

2. Experimental

2.1. Materials and physico-chemical measurements

All the reactions were carried out under anhydrous conditions. Organic solvents (Qualigens) were dried and distilled before use by standard methods [18]. Carboxylic acids were used after distillation under reduced pressure (mp of palmitic acid: 63 °C and stearic acid: 70 °C). Hydroxycarboxylic (salicylic, mandelic and benzilic) acids (BDH) were used after purification. Chromium was estimated gravimetrically as lead chromate [19]. Acetic acid in the collected azeotrope was estimated with standard sodium hydroxide using phenolphthalein indicator.

Electronic spectra were recorded on a Cary 2390 spectrophotometer in Nujol, infrared spectra were recorded on a Perkin-Elmer model 125 FTIR spectrophotometer in KBr discs in the range 4000-400 cm⁻¹. FAB mass data were obtained on a JEOL SX 102/ DA-6000 mass spectrometer using *m*-nitrobenzyl alcohol (NBA) as a matrix from CDRI Lucknow. Powder X-ray diffraction data were

^{0022-2860/\$ -} see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.molstruc.2008.12.029

collected on a MiniFlex2 goniometer from MANIT Bhopal, India. Molar conductances were measured on century CC-601 digital conductivity meter at 10^{-2} – 10^{-3} molar solutions in nitrobenzene. Elemental analyses (C, H) were done on a Haraleus 1108 analyzer. TG-DSC curves were obtained by using a NETZSCH STA 409 PG/PC instrument under a nitrogen atmosphere (flow rate of 100 ml min⁻¹) with a heating rate $10 \,^{\circ}$ C min⁻¹. Magnetic susceptibility data were obtained from polycrystalline samples on a Gouy balance using Hg[Co(SCN)₄] as a calibrant.

2.2. Synthesis of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃)·3CH₃OH

A solution of salicylic acid (0.82 g; 5.91 mmol) in toluene was added to a toluene solution of $[Cr_3O(OOCCH_3)_3(OOC-C_{15}H_{31})_3](OOCCH_3)\cdot 3CH_3OH$ (2.50 g; 1.97 mmol) [5]. The reaction mixture was refluxed for 13 h with slow and continuous fractionation of acetic acid-toluene azeotrope (bp 106 °C). The progress of the reaction was followed by estimating the CH₃COOH content in the collected azeotrope. Excess solvent was removed under reduced pressure (1.5 mm/60 °C) to yield a yellowish-green solid. This was purified by reprecipitation from benzene–methanol mixture (1:4 ratio). Other mixed-ligand complexes were synthesized following the same procedure and the analytical results are summarized in Table 1.

3. Results and discussion

A number of trinuclear, oxo-centered, mixed carboxylato complexes of chromium(III) of the general formula [Cr₃O(OOC-CH₃)₃(OOCR)₃](OOCCH₃) were synthesized by the substitutions of acetate ions from [Cr₃(OOCCH₃)₇(OH)₂] (μ_3 -oxo-(aqua)heptakis(acetato)chromium(III)) with long chain carboxylic acids in 1:3 molar ratios using toluene as a solvent, and the product obtained were reprecipitated with benzene–methanol mixture (1:4 ratio).

$$[Cr_{3}(OOCCH_{3})_{7}(OH)_{2}] + 3RCOOH \xrightarrow[Reflux]{Toluene} \\ [Cr_{3}O(OOCCH_{3})_{3}(OOCR)_{3}](OOCCH_{3}) + H_{2}O\uparrow + 3CH_{3}COOH\uparrow (1) \\ A$$

where $R = C_{15}H_{31}$ or $C_{17}H_{35}$.

Table 1

Analytical and conductance results for the chromium(III) complexes.

Reactants ^a (g; mmol)	Product ^b (Colour) (% yield)	Found (Calculated)				Conductance
		CH ₃ COOH in azeotrope (g)	Cr	С	Н	$(\Omega^{-1} \operatorname{cm}^2 \operatorname{mol}^{-1})$
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)⋅3CH ₃ OH (2.50; 1.97) + R'COOH (0.82; 5.91)	$\label{eq:cr_3O(OOCR')_3(OOCC_{15}H_{31})_3](OOCCH_3)\cdot 3CH_3OH \\ (Yellowish green) \ (76) \ (\textbf{1})$	0.31 (0.36)	10.40 (10.36)	59.10 (59.07)	8.19 (8.24)	41
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH (2.32; 1.71) + R'COOH (0.71; 5.14)	[Cr ₃ O(OOCR') ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH (Green) (78) (2)	0.34 (0.31)	9.85 (9.82)	60.52 (60.48)	8.61 (8.57)	37
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH (3.00; 2.36) + R"COOH (1.08; 7.09)	[Cr ₃ O(OOCR") ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH (Dark green) (84) (3)	0.40 (0.43)	10.15 (10.09)	59.87 (59.80)	8.41 (8.40)	32
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH (3.20; 2.36) + R"COOH (1.08; 7.10)	[Cr ₃ O(OOCR") ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH (Dark green) (84) (4)	0.38 (0.43)	9.55 (9.56)	61.04 (61.12)	8.65 (8.72)	45
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH (2.63; 2.07) + R'"COOH (1.42; 6.22)	$\label{eq:cr30} \begin{array}{l} [Cr_{3}O(OOCR''')_{3}(OOCC_{15}H_{31})_{3}](OOCCH_{3})\cdot 3CH_{3}OH \\ (Green) \ (79) \ (\textbf{5}) \end{array}$	0.35 (0.37)	8.76 (8.80)	64.31 (64.28)	8.10 (8.00)	39
[Cr ₃ O(OOCCH ₃) ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH (2.50; 1.85) + R'"COOH (1.27; 5.26)	$\label{eq:cr30} \begin{array}{l} [Cr_{3}O(OOCR''')_{3}(OOCC_{17}H_{35})_{3}](OOCCH_{3})\cdot 3CH_{3}OH \\ (Dark \ green) \ (83) \ (\textbf{6}) \end{array}$	0.31 (0.33)	8.45 (8.40)	65.24 (65.25)	8.27 (8.30)	33

^a Reflux about 13–16 h, C₆H₄OH; (R'), C₆H₅CH(OH); (R") and (C₆H₅)₂C(OH); (R"').

^b Reprecipitated product in benzene-methanol mixture (1:4).

Fig. 1. Room-temperature electronic spectrum of [Cr₃O(OOCR")₃(OOCC₁₇H₃₅)₃](OOCCH₃)·3CH₃OH.

Table 2

Electronic spectral transitions (cm⁻¹) and magnetic moment values for the complexes.

Complexes ^a	Observed transitions from	ansitions from ${}^{4}A_{2g}(F)$ to			β	μ_{eff} (B.M.)
	⁴ T _{2g} (F) (v ₁ , 10 Dq)	${}^{4}T_{1g}(F)(v_{2})$	${}^{4}T_{1g}(P)(v_{3})$			
[Cr ₃ O(OOCR') ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH	17110	22882	36715	551	0.60	3.40
[Cr ₃ O(OOCR') ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH	16880	23215	36743	621	0.66	3.36
[Cr ₃ O(OOCR") ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH	16695	23105	36471	633	0.68	3.39
[Cr ₃ O(OOCR") ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH	17271	22728	36797	514	0.55	3.33
[Cr ₃ O(OOCR''') ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·3CH ₃ OH	16630	23015	36329	630	0.67	3.38
[Cr ₃ O(OOCR''') ₃ (OOCC ₁₇ H ₃₅) ₃](OOCCH ₃)·3CH ₃ OH	16770	22780	36262	582	0.62	3.34

^a $R' = C_6H_4OH$; $R'' = C_6H_5CH(OH)$; and $R''' = (C_6H_5)_2C(OH)$.

Table 3

Thermoanalytical results for the chromium(III) complexes.

Complex	Step	Decomp.	TG weight l	TG weight loss (%)			Inference	
		Temp. (°C)	Found	Cacld.	Temp. (°C)	Peak		
1	1st 2nd 3rd	184–334 334–452 452–528 >528	10.95 53.29 26.13	10.30 50.92 27.33	312 425 507	Exo ^a Endo ^b Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of salicylic acid Cr ₂ O ₃ as residue	
2	1st 2nd 3rd	192–340 340–462 462–530 >530	10.63 55.04 23.47	9.76 53.52 25.88	318 452 518	Exo ^a Exo ^a Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of salicylic acid Cr ₂ O ₃ as residue	
3	1st 2nd 3rd	172–328 328–435 435–530 >530	12.37 47.23 29.91	10.02 49.53 29.31	315 419 522	Exo ^a Endo ^b Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of mandelic acid Cr ₂ O ₃ as residue	
4	1st 2nd 3rd	185–340 340–425 425–535 >535	12.01 51.22 28.15	9.51 52.14 27.80	325 418 515	Endo ^b Endo ^b Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of mandelic acid Cr ₂ O ₃ as residue	
5	1st 2nd 3rd	172–318 318–436 436–520 >520	7.13 48.50 35.44	8.74 43.16 38.40	290 405 512	Exo ^a Endo ^b Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of benzilic acid Cr ₂ O ₃ as residue	
6	1st 2nd 3rd	175-320 320-445 445-530 >530	10.23 48.39 32.65	8.34 45.74 36.66	302 418 510	Exo ^a Exo ^a Exo ^a	Liberation of 3CH ₃ OH and CH ₃ COO ⁻ moieties Liberation of all fatty acid groups Liberation of benzilic acid Cr ₂ O ₃ as residue	

Note. (+) a, exo (exothermic); (-) b, endo (endothermic); Calcd. calculated ; Temp, temperature ; Decomp., decomposition.

Fig. 2. Thermogram of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃)·3CH₃OH.

 $\mathbf{A} + CH_3OH = [Cr_3O(OOCCH_3)_3(OOCR)_3](OOCCH_3) \cdot 3CH_3OH$

The acetate ions of these products were further substituted with hydroxycarboxylic (salicylic, mandelic or benzilic) acids in refluxing toluene and products were finally reprecipitated from their benzene solution by adding an excess of methanol:

where $R^* = C_6H_4OH(R')$, $C_6H_5CH(OH)(R'')$ or $(C_6H_5)_2C(OH)(R'')$.

$$\begin{split} & [Cr_3O(OOCR^*)_3(OOCR)_3](OOCCH_3) + CH_3OH_{(Excess)} \\ & \rightarrow [Cr_3O(OOCR^*)_3(OOCR)_3](OOCCH_3) \cdot 3CH_3OH \end{split}$$

All the above reactions were carried out in toluene because of the advantage that it forms an azeotrope with acetic acid (bp 106 °C) liberated during the course of reactions which could be fractionated out to push the reaction in the forward direction. The reactions were facile and their progress could be followed by estimating the acetic acid content in the collected azeotrope. All the complexes isolated during the present investigations are non-volatile coloured solids. The complexes were soluble in non-polar organic solvents including benzene, toluene, chloroform, dichloromethane, etc. The values of molar conductances in nitrobenzene were found in the range 33- $45 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$ which clearly indicated that all the complexes were 1:1 electrolyte [20]. The complexes did not have sharp melting point and all of them were decomposed at around 425-535 °C temperature.

Table 4

FAB mass data of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃).3CH₃OH.

Peak position	Expected fragmentation species	Calcd. mol. wt.
1472	[Cr ₃ O(OOCR') ₃ (OOCC ₁₅ H ₃₁) ₃](OOCCH ₃)·2CH ₃ OH	1473
1413	$[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3](OOCCH_3)$	1409
1347	$[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3]^+$	1350
1095	$[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_2]^{2+}$	1094
842	$[Cr_3O(OOCR')_3(OOCC_{15}H_{31})]^{3+}$	839
578	$[Cr_3O(OOCR')_3]^{4+}$	583

3.1. Infrared spectra

In FTIR spectra of the synthesized complexes, the characteristic v (C=O) and δ (O-H) of free carboxylic acids at 1710 and 935 cm⁻¹, respectively, were found absent. The O-H stretching vibration of free hydroxyl group of hydroxycarboxylic acid was noticed at \sim 3400 cm⁻¹ in the IR spectra of the complexes, which indicated that the hydroxyl group of hydroxycarboxylic acid was not bound to chromium and it was remained in free state. Two strong bands were found in the range 1640–1585 and 1436–1400 cm^{-1} which could be assigned due to (vasymOCO) (antisymmetric) and (vsymO-CO) (symmetric) vibrations of the carboxylate ions, respectively [21]. The differences between the symmetric and antisymmetric stretches, $\Delta[v_{asym}(OCO) - v_{sym}(OCO)]$ were in the range 150-160 cm⁻¹, which were less than that for monodentate NaOOCCH₃ (184 cm^{-1}) [22]. This indicated the carboxylate groups of both carboxylic acids and hydroxycarboxylic acids were coordinated to chromium in a bidentate and bridging mode involving coordination of both the oxygen atoms of the ligands [22]. A medium band observed at ~680 cm⁻¹ was attributed to δ (CO₂) of bridging carboxylate anion [22]. The broad band observed at \sim 3150 cm⁻¹ was assigned to the O-H stretching of coordinated methanol [6,7]. An absorption near 540 cm^{-1} could be assigned to asymmetric stretching of the Cr_3O core [23]. The bands below 500 cm⁻¹ may be ascribed to Cr-O vibrations [22].

3.2. Electronic spectra and magnetic moments

The electronic spectrum of a representative complex $[Cr_3O(OOCR'')_3(OOCC_{17}H_{35})_3](OOCCH_3)\cdot 3CH_3OH$ is given in (Fig. 1 and Table 2). The spectra of the complexes exhibited two spin–allowed bands at 16,630–17,271 and 22,728–23,215 cm⁻¹ which could be assigned to ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}$ (F) (v_1) and ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}$ (F) (v_2), respectively. These bands suggested an octahedral environment around chromium(III) in the complexes and the lowest energy band (v_1) is equal to the crystal field splitting i.e. 10 Dq [24]. The position of the third band ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{1g}(P)$ (v_3), the Racah parameter (B) and the nephelauxetic ratio (β) have been calculated using Eqs. (4)–(6) given by Underhill and Billing [25]

$340 \mathrm{Dq} + 18(v_2 + v_3)\mathrm{Dq} + v_2 \cdot v_3 = 0$	(4)
--	-----

$$B = v_3 + v_2 - 30 \text{ Dq}/15 \tag{5}$$

$$B = B_{\text{complex}}/B_{\text{free ion}}$$
 (6)

Fig. 3. FAB mass spectrum of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃)·3CH₃OH.

Table 5

Powder XRD data of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃)·3CH₃OH.

Peak No.	2 Theta (°)	Flex width	d-Value	Intensity	I/Io
1	19.400	1.176	4.5717	169	22
2	21.400	0.941	4.1487	798	100
3	24.000	0.941	3.7048	323	41
4	59.000	1.176	1.5643	21	3

The values of *B* and β were found 514–633 cm⁻¹ and 0.62 ± 0.07, respectively (Table 2). The reduction of Racah parameter from the free Cr³⁺ value (933 cm⁻¹) [24] suggested considerable covalent character of metal–ligand bonds in these complexes.

The magnetic moment of oxo-centered trinuclear chromium carboxylate complexes have been explained in detail by earlier workers [26,27]. The magnetic moment of these complexes were found in the range 3.37 ± 0.03 B.M. at room temperature (T = 298 K) and the values are given in Table 2. These values are lower than the calculated $\mu_{s.o.}$ value for Cr^{3+} (d^3 system, 3.87 B.M.) which could be interpreted due to the presence of superexchange interactions [26] between Cr^{3+} ions. In these complexes Cr—O—Cr bridge shows weak antiferromagnetic interactions and the oxygen atom provides π -pathways for antiferromagnetic behaviour. In other words, Cr^{3+} ions of trinuclear oxo-centered chromium(III) (S = +3/2) assemblies are antiferromagnetically coupled resulting in an S = +1/2 ground state [23]. This is similar to the trinuclear carboxylates of chromium(III) containing a central μ_3 —O core [28].

3.3. Thermal studies

The details of TG and DSC data for the complexes are given in Table 3 and a thermogram of complex $[Cr_3O(OOCR')_3 (OOCC_{15}H_{31})_3](OOCCH_3)\cdot 3CH_3OH$ is given in Fig. 2. The complexes were decomposed in three steps and the pattern of decomposition is given below:

- $\begin{array}{l} 1. \ [Cr_{3}O(OOCR')_{3}(OOCC_{15}H_{31})_{3}](OOCCH_{3}) \cdot 3CH_{3}OH \xrightarrow{Temp.range}_{184-334 \stackrel{\circ}{\rightarrow} C} \\ Cr_{3}O(OOCR')_{3}(OOCC_{15}H_{31})_{3} + CH_{3}COOH + 3CH_{3}OH \end{array}$
- 2. $Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3 \xrightarrow{\text{Temp.range}} [Cr_3O(OOCR')_3]^{4+} + gaseous product$
- 3. $[Cr_3O(OOCR')_3]^{4+} \xrightarrow{\text{Temp.range}}_{452-528 \circ C} Cr_2O_3 + \text{gaseous product}$

The end product in all the cases was Cr_2O_3 which was confirmed by estimation of chromium gravimetrically.

3.4. FAB mass, powder XRD and structural elucidation

FAB mass spectrum of a representative complex $[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3](OOCCH_3)$ ·3CH₃OH has been recorded (Fig. 3) and positions of the peaks are given in Table 4. The peaks revealed a distinctive set of ions with masses corresponding to the cation and fragments of parent ions derived by loss of the ligands [29].

Single crystals of the complexes could not be prepared to get the XRD and hence the powder diffraction data were obtained for structural characterization. The powder X-ray diffraction spectrum for $[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3](OOCCH_3)$ ·3CH₃OH was recorded (Fig. 4) and the peaks have been indexed by the crystal system (Table 5). The lattice parameters (*d*, 2 θ , height and area) indicated the pattern of the sample matched well with those of other trinuclear chromium(III) oxo-carboxylate assemblies reported earlier [11,26,27]. With the help of the data obtained from the powder XRD, the particle size of the complexes has been calculated using the standard equation given by Scherrer [30].

$$D = K\lambda/(\beta\cos\theta) \tag{7}$$

where, *D* is the average size of the crystal gain; *K* is constant (=0.94); λ is X-ray wavelength (=1.5406 Å); θ is Bragg diffraction angle; β is integral peak width of the diffraction peak.

Fig. 4. Powder XRD spectrum of [Cr₃O(OOCR')₃(OOCC₁₅H₃₁)₃](OOCCH₃)·3CH₃OH.

Fig. 5. Proposed structure for $[Cr_3O(OOCR^*)_3(OOCR)_3(L)_3]^*$ (where: $R^* = C_6H_4OH$; (R'), $C_6H_5CH(OH)$; (R'') or $(C_6H_5)_2C(OH)$; (R'''); $R = C_{15}H_{31}$ or $C_{17}H_{35}$ and $L = CH_3OH$).

The size for the representative complex was obtained 15.0 nm and on this basis it could be concluded that the complex $[Cr_3O(OOCR')_3(OOCC_{15}H_{31})_3](OOCCH_3)\cdot 3CH_3OH$ is a nano-sized oxo-bridged complex of chromium(III) with an octahedral structure. On the basis of spectral, thermal and magnetic studies, a plausible structure for the complexes is established (Fig. 5) in which chromium(III) is situated in an octahedral environment and one carboxylate and one hydroxycarboxylate ligands are bridged between two chromium atoms.

Acknowledgements

Authors are thankful to the UGC, New Delhi [DSA and No. F.31-126/ 2005 (SR)] for financial supports. They also thank CDRI, Lucknow for doing microanalysis and FAB mass of the samples and MANIT Bhopal for recording powder XRD data.

References

- A. Figuerola, V. Tangoulis, J. Ribas, H. Harti, I. Brudgam, M. Maestro, C. Diaz, Inorg. Chem. 16 (2007) 18004841.
- [2] B.P. Baranwal, T. Fatma, R.D. Gupta, T. Gupta, Trans. Met. Chem. 32 (2007) 501.
- [3] B.P. Baranwal, T. Fatma, J. Mol. Struct. 750 (2005) 72.
- [4] D.M. D'Alessandro, F.R. Keene, Chem. Rev. 2270 (2006) 106.
- [5] B.P. Baranwal, T. Fatma, Russian J. Coord. Chem. 32 (2006) 824.
- [6] A.K. Pandey, T. Gupta, B.P. Baranwal, Trans. Met. Chem. 29 (2004) 370.
- [7] B.P. Baranwal, T. Gupta, Spectrochim. Acta 59A (2003) 859.
- [8] J.Y. Liu, Y.S. Li, J.Y. Liu, Z.S. Li, J. Mol. Cat. A: Chem. 244 (2006) 99.
- [9] Th.C. Stamatatos, D. Foguet-Albiol, C.C. Stoumpos, C.P. Raptopoulou, A. Terzis, W. Wernsdorfer, S.P. Perepes, G. Christou, J. Am. Chem. Soc. 127 (2005) 15380.
 [10] D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42 (2003) 268.
- [10] D. Galteschi, K. Sesson, Angew. Chem. Int. Ed. 42 (2005) 268.
 [11] V.W.L. Ng, S.L. Kuan, W.K. Leong, L.L. Koh, G.K. Tan, L.Y. Goh, Inorg. Chem. 44 (2005) 5229.
- [12] Y. Sun, K. Mallya, J. Ramirez, J.B. Vincent, J. Biol. Inorg. Chem. 4 (1999) 838.
- [13] J.B. Vincent, Acc. Chem. Res. 33 (2000) 503.
- [14] G.I. Rvan, N.S. Wanko, A.R. Redman, C.B. Cook, Ann. Pharm. 37 (2003) 876.
- [14] G.J. Ryan, R.S. Wanko, F.R. Reuman, C.B. Cook, J.M. Fhalm, J. (2007).
 [15] R.A. Lal, A. Lemtur, S. Choukhury, M. Chakrabarty, D. Basumatary, M.K. Singh, S. Pukuwaka, Phys. Rev. A 10, 1212 (2007).
- Bhaumik, A.K. De, A.K. Kumar, Trans. Met. Chem. 31 (4) (2006) 423. [16] A.H. Ahmed, A.A. Omran, G.M. El-Sherbiny, J. Appl. Sci. Res. 2 (1) (2006) 44.
- [17] R.A. Lal, S. Bhaumik, A. Lemtur, M.K. Singh, D. Basumatari, S. Choudhury, A.K. De, A. Kumar, Inorg. Chim. Acta 359 (10) (2006) 3105.
- [18] W.L.F. Armarego, D.D. Perrin, Purification of Laboratory Chemicals, fourth ed., Butterworth-Heinemann, London, 1997.
- [19] G.H. Jeffery, J. Bassett, J. Mendham, R.C. Denney, Vogel's Textbook of Quantitative Inorganic Analysis, fifth ed., ELBS, England, 1997.
- [20] W.J. Geary, Coord. Chem. Rev. 7 (1) (1971) 81.
- [21] A.K. Boudalis, N. Lalioti, G.A. Spyroulias, C.P. Raptopoulou, A. Terzis, A. Bousseksou, V. Tangoulis, J.-P. Tuchagues, S.P. Perepes, Inorg. Chem. 41 (2002) 6474.
- [22] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, fifth ed., Wiley, New York, 1997.
- [23] R.D. Cannon, R.P. White, Progr. Inorg. Chem. 36 (1988) 195.
- [24] B.N. Figgis, M.A. Hitchman, Ligand Field Theory and its Applications, Wiley, New York, 2000.
- [25] A.E. Underhill, D.E. Billing, Nature 210 (1966) 834.
- [26] S.P. Pali, D.E. Richardson, M.L. Hansen, B.B. Iversen, F.K. Larsen, L. Singerean, G.A. Timco, N.V. Gerbeleu, K.R. Jennings, J.R. Eyler, Inorg. Chim. Acta 319 (2001) 23.
- [27] A. Vlachos, V. Psycharis, C.P. Raptopoulou, N. Lalioti, Y. Sanakis, G. Diamantopoulos, M. Fardis, M. Karayanni, G. Papavassiliou, A. Terzis, Inorg. Chim. Acta 357 (2004) 3162.
- [28] R.E.P. Winpenny, Adv. Inorg. Chem. 52 (2001) 1.
- [29] N. Yoshida, K. Ichikawa, M. Shiro, J. Chem. Soc. Perkin Trans. 2 (2000) 17.
- [30] C.X. Quan, L.H. Bin, G.G. Bang, Mater. Chem. Phys. 91 (2005) 317.