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A palladium-catalyzed oxidative allylation of 

bis[(pinacolato)boryl]methane to afford the corresponding 

homoallylic organoboronic esters with moderate to excellent 

yields is reported. This novel transformation provides an 10 

efficient strategy for the construction of homoallylic 

organoboronic esters in one-step with a broad substrate scope. 

It is proposed that palladium-catalyzed oxidative allylic C-H 

bond activation process may be involved in the catalytic cycle. 

1,1-Bisborylalkanes have emerged as a valuable synthon in 15 

contemporary organic synthesis due to its easy access to highly 

functionalized, complicated organoboron molecules.1-3 Shibata 

and co-workers reported the pioneering work on the allylation of 

bis[(pinacolato)boryl]methane with allyl halides under mild 

conditions, giving highly valuable homoallyicboronic esters.4 20 

Hoveyda et al. reported the Cu-catalyzed enantioselective allylic 

substitution (EAS) of allylic electrophiles with 1,1-

bisborylalkanes.5 Niu’s group developed the iridium-catalyzed 

asymmetric allylation strategy to prepare β-substituted chiral 

homoallyl boronic esters.6 Despite the significant progress that 25 

has been achieved along this line, all of these elegant 

developments employed the unique and high reactivity of 1,1-

bisborylalkanes toward electrophiles. However, the application of 

1,1-bisborylalkanes as soft nucleophiles in the allylic C-H 

activation process has not been investigated, and is still highly 30 

desirable. 

Transition metal-catalyzed oxidative functionalization of 

allylic C-H bonds has been recognized as a powerful method 

toward the construction of carbon-carbon or carbon-heteroatom 

bonds in a concise manner.7, 8 Most notably, palladium-catalyzed 35 

oxidative allylic C-H bond activation has been defined as an 

expedient and atom-economic strategy for the synthesis of 

complex molecules.9 As a class of high activity electrophiles, the 

key allylpalladium intermediate could undergo cross-coupling 

reactions with various nucleophiles.10-13 Recently, our group has 40 

realized the palladium-catalyzed direct coupling of terminal 

alkenes with water11c, amines12h and alcohols10a, 11g. On the basis 

of the previous endeavours, we envision that the allyl-Pd 

intermediate could be captured by the 1,1-bisborylalkanes to 

afford the organoboron compounds by introducing an α-boroalkyl 45 

group. Herein, we disclose a strategically distinct approach to 

synthesize homoallylicboronic esters through palladium-

catalyzed oxidative allylic C-H functionalization of terminal 

olefins. 

50 

Scheme 1. Strategies for the synthesis of homoallyicboronic 

esters 

Inspired by these advances and our previous work6, 11g, 12h, we 

investigated the oxidative α-boroalkylation reaction of 

allylbenzene (1a) and bisborylmethane (2a). At first, the reaction 55 

was initially carried out with the combination of Pd(OAc)2, 

AgOTf and tBuOK in 1,4-dioxane at 50 oC for 24 h under 1 atm 

of oxygen. Unfortunately, no desired product 3a was detected 

(Table 1, entry 1). Subsequently, a series of silver salts were 

screened, such as AgTFA, AgOAc and AgBF4 (Table 1, entries 60 

2-4), among which AgBF4 was the optimal one and afforded the 

desired product 3a in trace yield (entry 4). Next, various bases 

were surveyed, and KH2PO4 was found to be the most effective 

base for this reaction (Table 1, entry 8). Further examination of 

oxidants revealed that NQ (1,4-naphthoquinone) increased the 65 

yield of 3a distinctly (Table 1, entry 15). After screening of 

different ligands (Table 1, entries 16-20), 1,2-

bis(phenylsulfinyl)ethane was identified as the optimal ligand for 

the present transformation (Table 1, entry 20). Screening of 

various solvents indicated that 1,4-dioxane giving the best result 70 

for this reaction (see the Supporting Information for details). 

Thus, the standard condition was obtained as Pd(OAc)2 (10 

mol %), AgBF4 (20 mol %), KH2PO4 (2.0 equiv), NQ (2 equiv) 

and 1,2-bis(phenylsulfinyl)ethane (15 mol %) in 1,4-dioxane (2.0 

mL) at 50 oC with stirring for 24 h. 75 
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Table 1. Screening for optimal reaction conditionsa 

 
Entry Additive Ligand Base Oxidant Yield (%) b 

1 AgOTf - tBuOK O2 N.D. 

2 AgTFA - tBuOK O2 N.D. 

3 AgOAc - tBuOK O2 N.D. 

4 AgBF4 - tBuOK O2 Trace 

5 AgBF4 - Cs2CO3 O2 Trace 

6 AgBF4 - CF3COONa O2 12 

7 AgBF4 - KPF6 O2 23 

8 AgBF4 - KH2PO4 O2 30 

9 AgBF4 - KH2PO4 PhI(OAc)2 N.D. 

10 AgBF4 - KH2PO4 BQ Trace 

11 AgBF4 - KH2PO4 DDQ Trace 

12 AgBF4 - KH2PO4 DMBQ Trace 

13 AgBF4 - KH2PO4 BQ/DDQ 35 

14 AgBF4 - KH2PO4 BQ/DDQ 55 

15 AgBF4 - KH2PO4 NQ 60 

16 AgBF4 L1 KH2PO4 NQ N.D. 

17 AgBF4 L2 KH2PO4 NQ N.D. 

18 AgBF4 L3 KH2PO4 NQ N.D. 

19 AgBF4 L4 KH2PO4 NQ 43 

20 AgBF4 L5 KH2PO4 NQ 83 

a A mixture of 1a (0.25 mmol, 2.5 equiv), 2a (0.1 mmol), base (0.2 mmol, 

2 equiv), Pd(OAc)2 (10 mol %), additive (20 mol %), ligand (15 mol %), 
oxidant (2 equiv) and anhydrous 1,4-dioxane (2 mL) was sealed in a 25 5 

mL Schlenk tube at 50 oC for 24 h. N.D. = not detected. L1: PPh3. L2: 

dppf. L3: 4,4'-bipyridine. L4: 1,2-bis(phenylsulphonyl)ethane. L5: 1,2-
bis(phenylsulfinyl)ethane. b Isolated yield based on 2a. c BQ: DDQ = 2: 

1; d BQ: DDQ = 4: 1. 

The generality of the new protocol was next tested as the 10 

optimized conditions established. Several structurally diverse 

allylbenzenes were initially explored, and the representative 

results are summarized in Table 2. Generally, both electron-

donating (Me, Et, OMe) and electron-withdrawing groups (F, Cl, 

CF3) were compatible with this method (3a-3k). In addition, 15 

when (2-methylallyl)benzene (1l) was treated with 2a under the 

optimized condition, two regioisomeric products 3l and 3l’ were 

obtained (dr = 1.2: 1, determined by NMR spectrum). 

Disubstituted allylbenzenes could also undergo this 

transformation, furnishing the corresponding boronic ester 20 

derivatives in good yields (3m-3q). Notably, functionalized 

allylbenzene derivatives, such as 1-allyl-2,3,4,5,6-

pentafluorobenzene (3r) transferred to the desired products with 

excellent yields. Only a trace amount of the desired product was 

detected by GC-MS when but-3-en-1-ylbenzene (1u) was 25 

surveyed. 

Table 2. Substrate scope of various allylbenzenes.a, b 

a Reaction conditions: 1 (0.25 mmol, 2.5 equiv), 2a (0.1 mmol), 

Pd(OAc)2 (10 mol %), AgBF4 (20 mol %), L5 (15 mol %), KH2PO4 (0.2 30 

mmol, 2 equiv), NQ (0.2 mmol, 2 equiv) and anhydrous 1,4-dioxane (2 

mL) was sealed in a 25 mL Schlenk tube at 50 oC for 24 h. b Isolated 

yields based on 2a. 

 

Table 3. Substrate Scope of α-Methylstyrenes.a b 35 

 
a Reaction conditions: 4 (0.25 mmol, 2.5 equiv), 2a (0.1 mmol), Pd(OAc)2 

(10 mol %), AgBF4 (20 mol %), L5 (15 mol %), KH2PO4 (0.2 mmol, 2 

equiv), NQ (0.2 mmol, 2 equiv) and anhydrous 1,4-dioxane (2 mL) was 
sealed in a 25 mL Schlenk tube at 50 oC for 24 h. b Isolated yields based 40 

on 2a. 
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In view of the further applications of this transformation, the 

substrate scope was expanded to different substituted α-

methylstyrenes (Table 3). α-Methylstyrene was first surveyed, 

which delivered a good yield of product 5a under our optimized 

conditions. Moreover, α-methylstyrenes bearing different 5 

functional groups such as F, Cl and Br at the para or ortho 

positions of the phenyl ring could also react smoothly to give the 

corresponding products 5c-5e in good yields ranging from 62% to 

83%. Pleasingly, the reactions of 1-(prop-1-en-2-yl)naphthalene 

and 2-(prop-1-en-2-yl)naphthalene proceeded efficiently to give 10 

the corresponding products 5g and 5h in 82% and 78% yields, 

respectively. 

trans-β-Methylstyrene derivatives could be recognized as a 

precursor of allylic electrophile. Thus, 6a and 6b were applied in 

this process and converted into the organoboronic esters in 15 

moderate yields (Scheme 2). 

 
Scheme 2. Substrate Scope of trans-β-Methylstyrenes. Reaction 

conditions: 6 (0.25 mmol, 2.5 equiv), 2a (0.1 mmol), Pd(OAc)2 (10 
mol %), AgBF4 (20 mol %), L5 (15 mol %), KH2PO4 (0.2 mmol, 2 20 

equiv), NQ (0.2 mmol, 2 equiv) and 1,4-dioxane (2 mL) was sealed in a 

25 mL Schlenk tube at 50 oC for 24 h. b Isolated yields based on 2a. 

To demonstrate the synthetic utility of this protocol further, the 

homoallylic boronic esters were transferred into other desired 

synthons using the established chemistry (Scheme 3). For 25 

example, compound 3a could be oxidized by NaBO3
.4H2O to 

homoallylic alcohol 8, which has been engaged in a wide range of 

chemical reactions to synthesize structurally complex products. 

Moreover, 3a could undergo amination to form homoallylic 

amine 9 in 78% yield. 30 

 

Scheme 3. Elaboration of Homoallyl Boronates. Conditions: (a) 3a (0.2 
mmol), NaBO3

.4H2O (6.0 equiv) in THF/H2O (2 mL/2 mL) at room 

temperature for 12 h. (b) 3a (0.2 mmol), N-ethylaniline (0.1 mL), 35 

Cu(OAc)2 (10 mol %), Ag2CO3 (2.0 equiv) in toluene at 100 oC stirred for 
20 h. 

In light of the previous literature, a plausible mechanism is 

outlined in Scheme 4. Initially, the catalytic cycle would begin 

with the coordination of palladium with olefins to generate the 40 

intermediate I. Next, the corresponding π-allylpalladium species 

II is formed by the electrophilic allylic C-H cleavage in the 

presence of ligand L5.10b, 11a, 14 With the addition of silver salt, 

1,1-bis[(pinacolato)boryl]methane undergoes a deborylative 

transmetallation process to form an alkyl silver species III.6, 15 45 

Then, π-allylpalladium intermediate II reacts with intermediate 

III by transmetallation to give a Pd-(α-boroalkyl) complex IV. 

The product homoallylic organoboronic ester would be obtained 

through the reductive elimination process. Finally, the reactive 

Pd(II) species is regenerated by the oxidation of NQ.16 (see the 50 

Supporting Information for details) 

 
Scheme 4. Possible Reaction Mechanism. 

In summary, a practical Pd-catalyzed oxidative α-

boroalkylation reaction of simple olefins with 1,1-55 

bis[(pinacolato)boryl]methane is presented. This novel procedure 

provides an efficient and attractive protocol for the construction 

of functionalized homoallylicboronic esters in good to excellent 

yields from readily available olefins with broad substrate scope 

and excellent functional group compatibility. Remarkably, an 60 

efficient construction of Csp3-Csp3 bond has been realized via the 

Pd-catalyzed oxidative functionalization of allylic C-H bond. 
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