Organic & Biomolecular Chemistry

COMMUNICATION

Check for updates

Cite this: Org. Biomol. Chem., 2018, 16, 7811

Received 21st September 2018, Accepted 11th October 2018 DOI: 10.1039/c8ob02352b

rsc.li/obc

Regioselective [3 + 2]-annulation of hydrazonyl chlorides with 1,3-dicarbonyl compounds for assembling of polysubstituted pyrazoles[†]

A facile approach to polysubstituted pyrazoles from hydrazonyl chlorides and 1,3-dicarbonyl compounds has been developed. In the presence of DMAP combined with Et_3N , hydrazonyl chlorides reacted with *N*-phenyl-3-oxobutanamides smoothly to afford a series of polysubstituted pyrazoles in 67–98% yields *via* the [3 + 2]-cycloaddition.

Pyrazoles are fascinating and versatile examples of five-membered heterocycles prevalently found in a wide variety of compounds known to exhibit a broad spectrum of pharmaceutical and agrochemical activities.¹ Moreover, they have also been successfully utilized as units in supramolecular architectures² and as ligands in coordination compounds.³ Owing to the functional diversity of pyrazoles, advanced methodologies for such aza-heterocycles is highly desirable.

Among the methods developed over the past decades for the construction of the pyrazole skeleton,⁴ the construction of two C-N bonds by condensation of hydrazines with 1,3-dicarbonyl compounds or their 1,3-dielectrophilic equivalents is one of the conventional approaches, wherein 1,3-dicarbonyl employed were compounds as three-carbon units (Scheme 1A).⁵ Another conventional approach involved the generation of one C-N bond and one C-C bond by intermolecular [3 + 2]-cycloadditions of nitrogen-based 1,3-dipoles with alkynes (Scheme 1B)⁶ or alkenes (Scheme 1C).⁷ Whereas the aforementioned methodologies have realized high efficiency, such procedures often suffer from regioselectivity issues, which greatly reduces their attractiveness. With the aim of increasing the regioselectivity in the preparation of substi-

^bDepartment of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China. tuted pyrazoles, developing additional methodologies are currently in demand.

We V_{ϕ}^{0} have successfully developed an organocatalyzed 1,3dipolar cycloaddition of 3-oxobutanamides with nitrile oxides⁸ and azides⁹ for the construction of 3,4,5-trisubstituted isoxazoles and 1,4,5-trisubstituted 1,2,3-triazoles in high yields with high regioselectivities. It's no doubt that 1,3-dipolar cycloaddition provides an efficient and facile access to five-membered heterocycles.¹⁰ Based on the applications of 3-oxobutanamides as two-carbon units in the 1,3-dipolar cycloaddition and as a continuation of our efforts in the development of cycloaddition reaction,¹¹ we here report the 1,3-dipolar cycloaddition reactions of hydrazonyl chlorides and 1,3-dicarbonyl compounds for the regioselective construction of polysubstituted pyrazoles (Scheme 1D).

As we all known, hydrazonyl chlorides could easily generate reactive intermediate 1,3-dipolar in the presence of base to

Scheme 1 Conventional approaches for the construction of pyrazole skeletons.

View Article Online

^aDepartment of Medicinal Chemistry, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266021, China. E-mail: liwj@qdu.edu.cn

E-mail: lipf@sustc.edu.cn, flyli1980@gmail.com

[†]Electronic supplementary information (ESI) available. CCDC 1867201. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/ c8ob02352b

react with partners to furnish the desired product. Accordingly, we started our investigations by screening a series of catalyst combined with triethylamine (Et₃N) as base for the model [3 + 2]-annulation reaction of hydrazonyl chloride (2a) with 3-oxo-N-phenylbutanamide (1a) in CHCl₃ at room temperature for 12 h and the representative results were listed in Table 1. To our delight, all the tested organocatalysts combined with Et₃N could accelerate the annulation to generate the desired 5-methyl-N,1,3-triphenyl-1H-pyrazole-4-carboxamide 3aa in the moderate yield, respectively (entries 1-6). In particular, 3aa with 60% yield was obtained in the presence of DMAP combined with Et₃N (entry 6). Further screening of reaction media indicated that solvent affected the yield significantly (entries 7-10) and the yield was improved to 64% when the reaction was carried out in CH_2Cl_2 (entry 7). An enhancement of yield was achieved when the reaction time was prolonged (entries 11-13) and 3aa with 92% yield was obtained after 48 h (entry 13). In consideration of cost, replacing DMAP with Et₃N was surveyed and product 3aa was obtained in 80% yield when the reaction was carried out in CH₂Cl₂ after 48 h (entry 14). Importantly, a yield of 87% was still obtained with a catalyst loading of 10 mol% after 72 h (entry 15).

Under the optimal reaction conditions, the 1,3-dipolar cycloadditions of hydrazonyl chlorides and 1,3-dicarbonyl compounds were explored. The results of these reactions were shown in Table 2. The scope of hydrazonyl chlorides 2 was examined. The 1,3-dipolar cycloaddition of **1a** and **2a** furnished pyrazole **3aa** in 87% yield (entry 1). Pleasingly, various substituted hydrazonyl chlorides, regardless of the electronic

Table 1 Optimization of reaction conditions

Table 1 Optimization of reaction conditions									
1	D O N NHPh + Ph Ia 2a	NHPh `Cl	catalyst, Et ₃ N solvent, RT, tin	ne	Ph—N 3aa	N Ph O NHPh			
ر py	rrrolidine Et ₃ N								
Entry	Catalyst	Time	(h) Sol	vent	Isolate	ed yield (%)			
1	Pyrrolidine	12	CH	$[Cl_3]$	3aa , 5	7			
2	Et ₃ N	12	CH	$[Cl_3]$	3aa, 5	7			
3	DBU	12	CH	ICl ₃	3aa, 5	7			
4	DABCO	12	CH	$[Cl_3]$	3aa, 5	1			
5	TMG	12	CH	[Cl ₃	3aa, 4	5			
6	DMAP	12	CH	ICl ₃	3aa, 6	0			
7	DMAP	12	CH	$_2Cl_2$	3aa, 64	4			
8	DMAP	12	CH	I ₃ CN	3aa, 5	5			
9	DMAP	12	EtC	DΗ	3aa, 34	4			
10	DMAP	12	DN	ISO	3aa, 14	4			
11	DMAP	24	CH	$_2Cl_2$	3aa, 7	2			
12	DMAP	36	CH	l_2Cl_2	3aa, 8	1			
13	DMAP	48	CH	$_2Cl_2$	3aa, 9	2			
14	Et_3N	48	CH	$_2Cl_2$	3aa, 8	0			
15	DMAP (10 mol%)	72	CH	L.CL.	344 8	7			

^{*a*} Unless noted, a mixture of **1a** (0.05 mmol), **2a** (0.10 mmol), Et_3N (0.10 mmol), catalyst (20 mol%) in the solvent (0.30 mL) was stirred at room temperature for the time given.

Table 2 Substrate scope of hydrazonyl chlorides^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Entry R^1 R^2 Isolated1PhPh 3aa, 8724-MeC_6H_4Ph 3ab, 9534-MeOC_6H_4Ph 3ac, 9844-FC_6H_4Ph 3ad, 9253-MeC_6H_4Ph 3ae, 9062-BrC_6H_4Ph 3af, 8372-NaphthylPh 3af, 679Ph3-FC_6H_4 3ah, 679Ph3-FC_6H_4 3ai, 7210Ph2-ClC_6H_4 3aj, 7711 ^b Phi-Pr 3ak, 5612MePh-	NHPh
1 Ph Ph 3aa, 87 2 $4 \cdot MeC_6H_4$ Ph 3ab, 95 3 $4 \cdot MeOC_6H_4$ Ph 3ac, 98 4 $4 \cdot FC_6H_4$ Ph 3ad, 92 5 $3 \cdot MeC_6H_4$ Ph 3ae, 90 6 $2 \cdot BrC_6H_4$ Ph 3af, 83 7 $2 \cdot Naphthyl$ Ph 3af, 67 9 Ph $3 \cdot FC_6H_4$ 3ai, 72 10 Ph $2 \cdot CIC_6H_4$ 3aj, 77 11^b Ph i-Pr 3ak, 56 12 Me Ph -	d yield (%)
2 $4 \cdot MeC_6H_4$ Ph $3ab, 95$ 3 $4 \cdot MeOC_6H_4$ Ph $3ac, 98$ 4 $4 \cdot FC_6H_4$ Ph $3ad, 92$ 5 $3 \cdot MeC_6H_4$ Ph $3ae, 90$ 6 $2 \cdot BrC_6H_4$ Ph $3af, 83$ 7 $2 \cdot Naphthyl$ Ph $3ag, 90$ 8 $2 \cdot Furanyl$ Ph $3ah, 67$ 9Ph $3 \cdot FC_6H_4$ $3ai, 72$ 10Ph $2 \cdot ClC_6H_4$ $3aj, 77$ 11^b Ph $i \cdot Pr$ $3ak, 56$ 12MePh $-$	
3 4-MeOC ₆ H ₄ Ph 3ac , 98 4 4-FC ₆ H ₄ Ph 3ad , 92 5 3-MeC ₆ H ₄ Ph 3ae , 90 6 2-BrC ₆ H ₄ Ph 3af , 83 7 2-Naphthyl Ph 3af , 67 9 Ph 3-FC ₆ H ₄ 3ai , 72 10 Ph 2-FC ₆ H ₄ 3ai , 77 11 ^b Ph i -Pr 3ak , 56 12 Me Ph	i -
4 4-FC ₆ H ₄ Ph 3ad, 92 5 3-MeC ₆ H ₄ Ph 3ae, 90 6 2-BrC ₆ H ₄ Ph 3af, 83 7 2-Naphthyl Ph 3af, 90 8 2-Furanyl Ph 3ah, 67 9 Ph 3-FC ₆ H ₄ 3ai, 72 10 Ph 2-ClC ₆ H ₄ 3aj, 77 11 ^b Ph i-Pr 3ak, 56 12 Me Ph -	
5 $3-MeC_6H_4$ Ph $3ae, 90$ 6 $2-BrC_6H_4$ Ph $3af, 83$ 7 $2-Naphthyl$ Ph $3ag, 90$ 8 $2-Furanyl$ Ph $3ah, 67$ 9 Ph $3-FC_6H_4$ $3ai, 72$ 10 Ph $2-ClC_6H_4$ $3aj, 77$ 11^b Ph $i-Pr$ $3ak, 56$ 12 Me Ph $-$	
6 $2 \cdot BrC_6H_4$ Ph 3af , 83 7 $2 \cdot Naphthyl$ Ph 3ag , 90 8 $2 \cdot Furanyl$ Ph 3ah , 67 9 Ph $3 \cdot FC_6H_4$ 3ai , 72 10 Ph $2 \cdot ClC_6H_4$ 3aj , 77 11 ^b Ph $i \cdot Pr$ 3ak , 56 12 Me Ph $-$	
7 2-Naphthyl Ph $3ag, 90$ 8 2-Furanyl Ph $3ah, 67$ 9 Ph 3-FC ₆ H ₄ $3ai, 72$ 10 Ph 2-ClC ₆ H ₄ $3aj, 77$ 11 ^b Ph i-Pr $3ak, 56$ 12 Me Ph -	
8 2-Furanyl Ph $3ah, 67$ 9 Ph $3-FC_6H_4$ $3ai, 72$ 10 Ph $2-ClC_6H_4$ $3aj, 77$ 11^b Ph $i-Pr$ $3ak, 56$ 12 Me Ph $-$	L. C.
9 Ph $3 \cdot FC_6H_4$ $3ai, 72$ 10 Ph $2 \cdot ClC_6H_4$ $3aj, 77$ 11^b Ph $i \cdot Pr$ $3ak, 56$ 12 Me Ph $-$,
10Ph $2 \cdot \text{ClC}_6\text{H}_4$ $3aj$, 77 11^b Ph $i \cdot \text{Pr}$ $3ak$, 5612MePh $-$	
11 ^b Ph i-Pr $3ak, 56$ 12 Me Ph —	
12 Me Ph —	i.

^{*a*} Unless noted, reactions were performed with **1a** (0.05 mmol), **2a–l** (0.10 mmol), Et₃N (0.10 mmol), **DMAP** (10 mol%) in CH₂Cl₂ (0.30 mL) at room temperature for 72 h. ^{*b*} The reaction was performed in CHCl₃ at 80 °C for 48 h.

properties, steric hindrances, and substitution positions on the aromatic ring, were broadly tolerated, furnishing pyrazoles **3ab–af** in 83–98% yields (entries 2–6). Notably, the reaction of 1-(chloro(naphthalen-2-yl)methylene)-2-phenylhydrazine also afforded the desired pyrazole **3ag** in 90% yield (entry 7). The hetero hydrazonyl chloride was also compatible to furnish product **3ah** in 67% yield (entry 8). The using of 1-(chloro (phenyl)methylene)-2-(3-fluorophenyl)hydrazine and 1-(chloro (phenyl)methylene)-2-(2-chlorophenyl)hydrazine also resulted in the formation of **3ai** and **3aj** in good yields (entries 9 and 10). To our delight, if we changed R² as i-Pr, the desired product **3ak** was obtained with 56% yield (entry 11). It was found that no reaction occurred between 1-(1-chloroethylidene)-2-phenylhydrazine and **1a** (entry 12).

To further explore the 1,3-dipolar cycloaddition of hydrazonyl chlorides and 1,3-dicarbonyl compounds, the scope of 1,3dicarbonyl compounds was then surveyed (Table 3). Pleasingly, a variety of 3-oxo-N-arylbutanamide substrates with different substitution patterns on their aromatic ring were tolerated, affording the corresponding pyrazoles 3ba-ga in 74-86% yields (entries 1-6). Importantly, we did not observe any discernible electronic effects or steric hindrance effects on the aromatic moiety. It should be noted that 4-methyl-3-oxo-N-phenylpentanamide was found to be compatible to afford the desired product 3ha in 92% yield (entry 7). Furthermore, 3-oxo-N,3-diphenylpropanamide was also compatible to furnish the corresponding pyrazole 3ia in 90% yield (entry 8). In particular, the reaction partner could extend to 1,3-diketones. The 1,3-dipolar cycloaddition of 1,3-diphenylpropane-1,3-dione furnished the corresponding product 3ja in 97% yield (entry 9). The reaction of pentane-2,4-dione also furnished the desired product 3ka in good yield (79%, entry 10). However, no reaction occurred if R⁴ was replaced with ester group (entry 11).

Table 3 Substrate scope of 1,3-dicarbonyl compounds^a

R ³ Ib-I	+	Ph 2a	DMAP, Et ₃ N CH ₂ Cl ₂ , RT, 72 h	$\begin{array}{c} \begin{array}{c} & \\ Ph - N \\ 3 \\ R^3 \\ R^4 \end{array} \begin{array}{c} Ph \\ Ph \\ 0 \\ R^4 \end{array}$
Entry	R ³	R^4		Isolated yield (%)
1	Ме	4-MeC ₆	H ₄ NH	3ba , 80
2	Me	4-MeOC	C_6H_4NH	3ca , 74
3	Me	$2,4-Me_2$	C ₆ H ₃ NH	3da , 78
4	Me	2-MeC ₆	H_4NH	3ea , 86
5	Me	2-MeOC	C_6H_4NH	3fa , 77
6	Me	$2-ClC_6H$	I_4NH	3ga, 74
7	i-Pr	PhNH		3ha , 92
8	Ph	PhNH		3ia , 90
9	Ph	Ph		3ja, 97
10	Me	Me		3ka , 79
11	Me	OMe		_

^{*a*} Unless noted, reactions were performed with **1b–l** (0.05 mmol), **2a** (0.10 mmol), Et_3N (0.10 mmol), **DMAP** (10 mol%) in CH_2Cl_2 (0.30 mL) at room temperature for 72 h.

The configuration of the polysubstituted pyrazole was unambiguously determined based on the X-ray crystal structure of **3ka** (Scheme 2).¹² Accordingly, a possible reaction pathway was suggested as shown in Scheme 3. Catalyzed by DMAP, **1**,3-dicarbonyl compounds **1** generated the nucleophile to react with the nitrilimines **2**' formed *in situ* from hydrazonyl

Scheme 3 Reaction mechanism.

chlorides 2 in the presence of Et_3N to give the desired products 3 *via* cascade reactions.

To highlight the synthetic potential of this methodology, we evaluated the gram-scale synthesis of **3aa**. Under the standard conditions, 3.5 mmol of **1a** reacted smoothly with 7.0 mmol of **2a** to afford **3aa** in 87% yield (1.10 g, Scheme 4A). Furthermore, we also tried the 1,3-dipolar cycloadditions of hydrazonyl chloride **2a** with 1,3-cyclohexanedione (Scheme 4B) and 2-pentanone (Scheme 4C) under the standard conditions, respectively. However, the reactions were sluggish and almost no desire product was obtained.

Conclusions

In conclusion, we have developed a regioselective 1,3-dipolar cycloaddition between hydrazonyl chlorides and 1,3-dicarbonyl compounds for the construction of polysubstituted pyrazoles. In the presence of DMAP combined with Et_3N , the reactions between hydrazonyl chlorides and 1,3-dicarbonyl compounds proceeded smoothly to furnish a wide range of pyrazoles in 67–98% yields *via* a 1,3-dipolar cycloaddition. Practically, synthesis of pyrazoles compounds was achieved through the 1,3-dipolar cycloaddition with high regioselectivity.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors acknowledge the financial support from National Natural Science Foundation of China (21502043, 21871128), the Natural Science Foundation of Shandong Province (No. ZR2017JL011), Special Funds for the Development of Strategic Emerging Industries in Shenzhen (JCYJ20170817110526264), and the Shenzhen Nobel Prize Scientists Laboratory Project (C17213101).

Notes and references

1 (a) C. Lamberth, *Heterocycles*, 2007, 71, 1467; (b) C. S. Kramer, in *Privileged Scaffolds in Medicinal* *Chemistry: Design, Synthesis, Evaluation*, ed. S. Bräse, Royal Society of Chemistry (RSC), Cambridge, U.K., 2015, pp. 115–131; (*c*) M. F. Khan, M. M. Alam, G. Verma, W. Akhtar, M. Akhter and M. Shaquiquzzaman, *Eur. J. Med. Chem.*, 2016, **120**, 170.

- 2 (a) M. A. Halcrow, *Dalton Trans.*, 2009, 2059; (b) J. Pérez and L. Riera, *Eur. J. Inorg. Chem.*, 2009, 4913.
- 3 (*a*) M. Viciano-Chumillas, S. Tanase, L. Jos de Jongh and J. Reedijk, *Eur. J. Inorg. Chem.*, 2010, 3403; (*b*) J. Olguiń and S. Brooker, *Coord. Chem. Rev.*, 2011, **255**, 203.
- 4 (a) S. Fustero, A. Simón-Fuentes and J. F. Sanz-Cervera, Org. Prep. Proced. Int., 2009, 41, 253; (b) S. Fustero, M. Sánchez-Roselló, P. Barrio and A. Simón-Fuentes, Chem. Rev., 2011, 111, 6984; (c) S. Dadiboyena and A. Nefzi, Eur. J. Med. Chem., 2011, 46, 5258.
- 5 For selected examples, see: (a) R. Lan, Q. Liu, P. Fan, S. Lin,
 S. R. Fernando, D. McCallion, R. Pertwee and
 A. Makriyannis, J. Med. Chem., 1999, 42, 769;
 (b) M. V. Patel, R. Bell, S. Majest, R. Henry and T. Kolasa,
 J. Org. Chem., 2004, 69, 7058; (c) Z.-X. Wang and H.-L. Qin,
 Green Chem., 2004, 6, 90; (d) S. T. Heller and
 S. R. Natarajan, Org. Lett., 2006, 8, 2675.
- 6 For selected examples, see: (a) P. Conti, A. Pinto, L. Tamborini, V. Rizzob and C. De Micheli, *Tetrahedron*, 2007,
 63, 5554; (b) D. Vuluga, J. Legros, B. Crousse and D. Bonnet-Delpon, *Green Chem.*, 2009, 11, 156; (c) B. F. Bonini, M. C. Franchini, D. Gentili, E. Locatelli and A. Ricci, *Synlett*, 2009, 2328; (d) M. C. Pérez-Aguilar and C. Valdés, *Angew. Chem., Int. Ed.*, 2013, 52, 7219; (e) V. V. Voronin, M. S. Ledovskaya, E. G. Gordeev, K. S. Rodygin and V. P. Ananikov, *J. Org. Chem.*, 2018, 83, 3819.
- 7 For selected examples, see: (*a*) G. Palazzino, L. Cecchi, F. Melani, V. Colotta, G. Filacchioni, C. Martini and

A. Lucacchini, *J. Med. Chem.*, 1987, **30**, 1737; (*b*) H. Zou, H. Zhu, J. Shao, J. Wu, W. Chen, M. A. Giulianotti and Y. Yu, *Tetrahedron*, 2011, **67**, 4887; (*c*) I. Yavari, Z. Taheri, M. Naeimabadi, S. Bahemmat and M. R. Halvagar, *Synlett*, 2018, **29**, 918.

- 8 X. Zhou, X. Xu, Z. Shi, K. Liu, H. Gao and W. Li, Org. Biomol. Chem., 2016, 14, 5246.
- 9 X. Zhou, X. Xu, K. Liu, H. Gao, W. Wang and W. Li, *Eur. J. Org. Chem.*, 2016, 1886.
- 10 For selected reviews, see: (a) J. Adrio and J. C. Carretero, Chem. Commun., 2011, 47, 6784; (b) R. Narayan, M. Potowski, Z.-J. Jia, A. P. Antonchick and H. Waldmann, Acc. Chem. Res., 2014, 47, 1296; (c) T. Hashimoto and K. Maruoka, Chem. Rev., 2015, 115, 5366. For selected examples, see: (d) Q.-H. Li, L. Wei and C.-J. Wang, J. Am. Chem. Soc., 2014, 136, 8685; (e) W. Dai, X.-L. Jiang, Q. Wu, F. Shi and S.-J. Tu, J. Org. Chem., 2015, 80, 5737; (f) Z.-L. He, F. K. Sheong, Q.-H. Li, Z. Lin and C.-J. Wang, Org. Lett., 2015, 17, 1365; (g) C.-S. Wang, R.-Y. Zhu, J. Zheng, F. Shi and S.-J. Tu, J. Org. Chem., 2015, 80, 512; (h) W.-L. Yang, C.-Y. Li, W.-J. Qin, F.-F. Tang, X. Yu and W.-P. Deng, ACS Catal., 2016, 6, 5685; (i) Y.-M. Wang, H.-H. Zhang, C. Li, T. Fan and F. Shi, Chem. Commun., 2016, 52, 1804.
- 11 (a) J. Duan, J. Cheng, Y. Cheng and P. Li, Asian J. Org. Chem., 2016, 5, 477; (b) Y. Cheng, Y. Han and P. Li, Org. Lett., 2017, 19, 4774; (c) Y. Han, Y. Zhu, P. Zhang, W. Li and P. Li, ChemistrySelect, 2017, 2, 11380; (d) W. Li, H. Yuan, Z. Liu, Z. Zhang, Y. Cheng and P. Li, Adv. Synth. Catal., 2018, 360, 2460; (e) Y. Cheng, Z. Fang, W. Li and P. Li, Org. Chem. Front., 2018, 5, 2728.
- 12 CCDC 1867201[†] for 3ka.