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PNA-Directed Triple-Helix Formation by N’-Xanthine

Robert H. E. Hudson,* Mykhaylo Goncharenko, Andrew P. Wallman, Filip Wojciechowski

Department of Chemistry, The University of Western Ontario, London, Ont&AcSB7, Canada
Fax +1(519)6613022; E-mail: rhhudson@uwo.ca

Received 16 August 2004

the distance and orientation of the site of attachment of the

Abstract: We report the first example of alkylation of underiva-y 7 1 - .
tized xanthine with chloroacetic acid to yield a separable mixture gf _ or N -methyleneparbonyl group is different relative to
e purine target (Figure 1).

N’- and N°-(methylenecarboxyl)xanthine and its conversion to
peptide nucleic acid monomer compatible with Fmoc-based oligBased on examination of molecular models, we reasoned
merization chemistry. Additionally, we have simultaneously Prethat N7-linked xanthine would be an excellent candidate

pared theN’- andN°-PNA monomers of guanine by alkylation of 2- o . .
N-isobutyrylguanine which were subsequently separated. Molectﬁ)-r recognition of adenine and is isomorphous with

lar modeling of the nucleobase base triplets indicates\hean-  duanine (Figure 1, ¢)In addition, the purine base may
thine andN’-guanine form isomorphous triplets with adenine anél€liver a stabilizing effect based on stacking interactions

guanine, respectively. We also show that polyamides contaifiing within the Hoogsteen strand.

xanthine are compatible with triple-helix formation. Due to the number of potentially nucleophilic sites of xan-
Key words: xanthine, peptide nucleic acid, isomorphous, triplex thine, direct alkylation usually shows poor regioselective-
ly. Regioselective monoalkylation has been described
when protecting groups were uséd: via trimethylsily-
PNA is a synthetic mimic of DNA in which the sugarated intermediate¥, or by use of a (tri+butylphos-
phosphate backbone of the natural nucleic acid has bg#tine)cobalt(lll) complexe¥ As well, there are limited
replaced with a polyamide backbone but maintains tlexamples of regioselective alkylation to produce Nfe
natural nucleobasés?ossessing an uncharged polyamidsomer!* Finally, the reported reference to PNA contain-
backbone, PNA avidly binds to complementary nucleitig N°-xanthine should rather indicate hypoxanthine
acids and may form PNA:DNA:PNA triple helices depenginosine)!®
dent on the sequence contékt.order to favor triplex for-

mation for amenable sequences, bisPNAs that contain t V/N
; N H
PNA domains covalently connected are commonly dsec A N/ YN H
Thus, one domain is responsible for Watson—Cric ﬁ)\/ N H _H,N'
recognitiort of a polypurine sequence, while the other i, © o ,\7‘//\
involved in Hoogsteen bindiry. «Nf\N—H“" N
Various modified nucleobases have been incorporat NS SN—HTO o%
into both DNA and PNA oligomers to investigate and og Kﬁ? H v
timize recognition of natural nucleic acids by triplex for-
mation. The most studied triplex, the pyrimidine motif
has the requirement for protonation of cytosine residues N/§§
the Hoogsteen strand. Consequently, such triple-stranc %‘\(— ) . 07/%
complexes are most stable in an environment that is ge © 0 WY L h
erally below physiological pH. In order to overcome thi(b) <,N | SN-HT YN
pH dependence of triplex stability, nucleobase analogs N N/) © O%
protonated cytosine suchld&guanine have been utilized R_0 v
in DNA chemistry and more recently in PNAAs well,
the synthetic pyrimidine pseudoisocytosine, which is als N
a protonated cytosine analog, has been successft o © S—nH
o ; ; N— )
utilized in PNA oligomers. )\\, N)—o\
The use of the synthetically more accesdiblguaninein * O H, P H Oﬁ/g
conjunction with thymine in the Hoogsteen strand is nc N \N.-‘H/NyN
optimal because thN’-G*G:C and T*A:T base triplets </N | 0 %
are not isomorphous. This will presumably cause a distc r{? N © v
tion in the backbone of the third strand polymer becau:
Figure 1 Proposed nucleobase interactions for a (PNDWNA
SYNLETT 2005, No. 9, pp 1442-1446 triple helix. (a) Base triplet wittN’-guanine; (b) nonisomorphe
Advanced online publication: 29.04.2005 base triplet witiN*-thymine; (c) base triplet witN’-xanthine.
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For this work, the xanthine-7-acetic acid derivatiwveas o) o
required (Scheme 1). Our attempt to adapt the procedt . TR 0 oH HN N
of Mdller et al*°to produceN’-xanthine led exclusively to 1y 15 N>78 e HN&N A | N\D
the N°N'-bis(carboxymethylene) product. = Although A PN Ly = oo
simple alkylated derivatives of xanthine are well knowr °H H

no direct monoalkylation method to form xanthine-7-ace

. R . X X . xanthine 1, 38% 2.21%
tic acid has been described. In fact, this relatively simp ’
compound has not been previously reported.

We have developed a technically simple alkylation of ur N H\N "
modified xanthine by using chloroacetic acid in aqueot d, 57% ’N
base. The reaction afforded a mixture of the monoalkyle e60% [~ o S
edN’- andN°-regioisomerd and2 where requiretN’-de- *[) o
rivative 1 prevailed in the ratio 38:21, respectively. Fmoc N> OH
Fractional recrystallization from water was used to sep A 5

rate these isomers on a 5 g scale resulting in ca. 98% | b, 98% o

rity (N’-isomer). The overall chemical yield of H o ¢, 60% HC' y o
approximately 60% is likely due to hydrolysis of chloro-, N/\/’{I\)I\OH . FmOC_N/\/‘g'\)'\O/\/
acetic acid, which is employed at a 1:1 stoichiometry wit H

xanthine. This moderate yield is acceptable in view tha: 3 N

xanthine may be recovered from the reaction mixture astheme1l Reagents and condition&) CICHCO,H, NaOH, HO,
the other starting materials are inexpensive. Since the preflux 5 h, key HMBC correlations shown by double-headed arrows;
cedure is very simple and inexpensive, no further attemjg allyl alcohol, HCI (g), reflux 2.5 h; (c) i. Fmoc-NHS, DIEA,

at optimization of the reaction yield were considereﬁl\HAZFC'z'lg_ﬁQ Zg)"i‘hlgg'[('g%fol\hggﬁ; %FD%CC':SB;'S&"'\?S‘
’ ' . 4 - s M 3614 ’

necessary. 20 °C, 17 h; ii. HCI, HO.
Assignment ofN’- andN°®-isomersl and2 was made by

use of 2D NMR (gHMBC) spectroscopy. This experimenthe monomer synthesis was next advanced by DCC/
clearly showed a difference between Me andN*-iso-  HOBt-mediated condensation between atidnd back-
mers with respect to the coupling of methylene protons ghne submonomet. However, due to poor solubility of
the -CH-COOH fragment with C4 and C5 positionsyanthine-7-acetic acid a 1:1 DMSO-DMF solvent system
Methylene protons dfi’-derivativel (singlet ats = 4.99  \as employed. Once the nucleobase derivative was con-
ppm) are coupled to both C5 and C8 carbons and notdgnsed with the backbone submonomer, the solubility im-
C4. The analogous methylene protonbldfsomer2 (sin-  proved substantially. The Fmoc-protected monomer allyl
glet atd = 4.44 ppm) showed coupling to C8 and C4 bister was transformed into target abithy cleavage of
not C5. Although xanthine may be alkylated at tR@dt  4jly] ester with palladium triphenylphosphine complex in
sition, this possibility was discounted by comparison tghe presence of sodiumtoluenesulfinate, as previously
the available data fd¥*-xanthine acetic acitf. reported® The sodium salt o6 was surprisingly well

Initially, we chose to condense compoundith methyl ~ soluble in watef?

N-(2-Fmoc-aminoethyl)glycinate1lQ, Scheme 2) based Next we turned our attention to the preparation of the gua-
upon ongoing work in our laboratory. However, the pogiine PNA monomers. The alkylation of guanine is known
solubility of xanthine derivatives led to poor selectivity ing give a mixture oN¥N’-regioisomers wher®-isomer

the saponification of the methyl ester versus eliminatiog the main product. With respect to formatiomNeglyco-

of the Fmoc-protecting group. Thus, we changed to the gfgjes, the\®-isomer may be favored by use of a bullé O

lyl ester ¢, Scheme 1), which affords orthogonal removaprotecting group such as the diphenylcarbamoy! deriva-
condition to Fmoc-deprotection and also increases the s@le 21 put this effect can be less reliable for alkyiation re-
ubility of the backbone submonomer in organic solventgctions?2 Alternatively, 6-chloro-2-aminopurine is often

While this compound has been previously synthesized R¥ed to access th-guanine derivatives selectively.

transesterification fromert-butyl este,” we have em- _. , . 9
ployed a convenient 2-step method starting from-2- Since we would find botN'- andN"-carboxymethylgua-
nine useful, we pursued the synthesis starting with un-

aminoethylglycin (3) followed by carbamylation with o ) ) X

FmocN-hydroxysuccimide (Fmoc-NHS). We have foun hodzlfled.guanln.(:.. Ar_1 |sgc(>)t;/uty'rylldgbroup W?S |n§§ﬁl[edbon
he 2-amino position in % yield by reaction with isobu-

compound3 to be a very useful precursor that may be pr yl anhydride in DMF at 150 °C (Scheme?Reaction

duced and esterified easily on large scale (ca. 20 g) . . ;
synthesis of Boc-, Mmt- and Fmoc- backbone submon8! 2-N-isobutyrylguanine withert-butyl bromoacetate at

mers. When possible, we prefer to use the methyl esterazggbiem temperature in the presence of sodium hydride af-

. /N .
it is less susceptible than the allyl ester to 2-oxopiperazi gled' a mixture _ON /N. |somer36'and7 with overall .
formation during the carbamylation reaction as observ % yield and 62:32 ratio, respectively, whereas reaction
by Seitz and coworkef€ at elevated temperatures favored the formation oiNthe

regioisomer. Compounddand7 were separated by ex-
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ploiting their differential solubility and column chroma-protons ofN°-derivative6 with singlet ats = 4.86 ppm
tography and were subsequently identified by 2D-NMRave mutual coupling signals with carbonyl of CcED
experimentg# fragment, C4 and C8 carbons. However, while analogous

Regiochemical assignment &C signals in substituted Methylene protons ofi’-isomer7 (singlet ats = 5.06
purines is known from INEPT experimeRtsThus, the PPM) showed similar coupling with C@®Bu carbonyl

signal for C5 was identified as the lone upfield peak %nd C8 g:arbon, they did not show interaction with C4 car-
§ = 120.3 ppmN-isomer6) ands = 112.4 ppm (foN'- on but instead showed coupling to C5.1In summary, these
isomer7). Signals ab = 141.0 ppm@) ands = 145.5 ppm compounds were found to be consistent with those recent-

(7) in carbon spectra were assigned to C8 on the basisYfePorted?

the residual signal from attached protons. The same eff@ce purifiedN°- andN’-isomerss and7 were used sep-
was used for assignment of signals in carbon spectra &oately in further transformations. Cleavagéeotbutoxy
methylenetert-butoxy and isobutyryl groups in the highgroup was made by the treatment in TFA-CH fol-
field area of spectra. Interaction of attached protons of isewed by DCC/HOBt-mediated coupling of carboxy-
butyryl andtert-butoxy groups gave the ground for asmethyl guanines8 and 9 with methyl N-(2-Fmoc-
signment of signals & = 180.9 ppm &) ands = 180.7 aminoethyl)glycinate10). This reaction afforded esters
ppm (7) as the carbonyl carbon 6PrCONH-fragment 11 and12, which were purified chromatographically. Sa-
andsé = 167.4 ppm &) andd = 167.5 {) as for carbonyl ponificaton of Fmoc-protected monomer methyl esters re-
carbon of CO®Bu groups. Given that signals of C2 andrealed the monomer acid$ and 14.2° The hydrolysis

C6 in the purine rinfgare expected in the range &= was completed by using eight-fold excess of NaOH in
150-160 ppm, we assigned to these atoms the peak$lgd-THF medium at 0 °C for five minutes. Prolonged
6 =149.6 ppm and = 155.5 ppm®&) and the peaks &t= reaction time or poorly solublmonomer esters led to an
153.3 ppm an@d = 157.5 ppm7) accordingly. Thus, the unacceptable degree of Fmoc removal, in which case the
signals ab = 148.8 ppm&) andd = 147.8 ppm were as- allyl ester was employed.

signed for C4 atoms in accordgnce with Iitgrature data f@fnce the use df’-guanine derivatives in triplex forma-
purines’ As done for the substituted xanthines, gHMBG;o, is well established, we have first tested the ability of
NMR spectroscopy was used to assign the regioiSomeys anthine to form triple helices. We synthesized Ae-T
based on coupling of the GEOQ-Bu fragment methyl- | s-NH, (15) and Ac-%-lys-NH, (16) by standard
ene protons with the C4 and C5 atoms. Thus, methylefthodd’ and investigated their hybridization with

(o) Cc
OH
0 a, 90% N o Y 8, 84% i o
LEPNENT b, 96% o HNTITY, o Qg 9,71% O HN N, O QS
[ %o ——= ~ A AN A ALY N
PN N™ N N N N O HN
HNT IN74 No H o 1M T» NN A 2
)\\ 4 H > N
NN TN o N° N
_ H
guanine t-BuO H OH
6 (64%) 7 (32%) 8 9

o N N
. LIX
o}
N
11, 52% N
)ﬁ[N : ]

H O
O HN N ! 12, 38% N=
PN q " Fmoc—N/\/N\/U\O/ —
N o
NTON H 0
© OH Fmoc—N/\/N\/u\O/
8,9 10 11, 12
e
13, 64%
14, 56%

(@]
O uN J\[(
Ak I Ty
H N N + N
(0] Kfo
oo s
N
Fmoc—”/\/N OH Fmoc H o
13 14

Scheme 2 N°/N’-Guanine Fmoc/acyl monomerReagents and conditionga) (-PrCO}O, DMF, 150 °C, 7 h, 90%; (b) NaH, D
BrCH,COQt-Bu, 0-20 °C, 17 h; (c) GEOOH, CHCl,, (C,Hs);SiH, 18 h; (d) DCC, HOBt, DMF, 18 h; (€) THF,®, NaOH, 0 °C, 5 min
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poly(rA).28 Thermal melting analysis (= 62.0 °C) and
determination of the stoichiometry of binding confirmed
the expected triplex formation fod%) with poly(rA).
Xanthine oligomerl6 also showed a single cooperative
transition (Tm =59.5 °C, pH 7.0) that was slightly stabi—(ll)
lized at acidic pH (Tm =66.0 °C, pH 5.5). A Job plot re-
vealed that oligomel6 binds in a 2:1 fashion with
poly(rA), consistent with the supposition tiN{txanthine

is a suitable mimic of thymine (Figure 2).

(10)

(12)
(13)

(14)
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0.25
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(1
Fig_urez qu plot for Ac-%-lys-NH, indicating (PNA):DNA triple (18)
helix formation.

Currently, we are investigating the use of monomdrs (19

and 5 in the Hoogsteen strand of clamp-PNAs for the

recognition of mixed pyrimidine sequence DNA. (20)
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calcd for sodium adduct,gH,NsO,Na: 595.1917; found:
595.1912.

Compoundb: off-white solid, mp 162—164 °C (change in
appearance), 205-208 °C (dei¢).NMR (400 MHz,
DMSO0):5 =12.81 (br s, 1 H), 11.58 major and 11.56 minor
(1 H), 10.86 major and 10.84 minor (1 H), 7.88-7.28 (m, 10
H), 5.27 major and 5.07 minor (s, 2 H), 4.34-4.20 (m)and
3.98 major (s, 5 H), 3.43 major (m, minor rotamer
overlapping with HO), 3.10 minor (m, major rotamer
overlapping with HO). HRMS (ESI-TOF)m/zcalcd for
sodium adduct &H,,NsO,Na: 555.1604; found: 555.1602.
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1996, 61, 9207.
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For PNA: Dueholm, K. L.; Egholm, M.; Behrens, C.;
Christensen, L.; Hansen, H. F.; Vulpius, T.; Petersen, K. H.;
Berg, R. H.; Nielsen, P. E.; Buchardt,JOOrg. Chem1994,

59, 5767.

Data for6 and?.

Compounds (N°-isomer): white solid, mp 310-331 °&
NMR (400 MHz, DMSO)3 =12.10 (s, 1 H), 11.66 (s, 1 H),
7.94 (s, 1 H), 4.87 (s, 2 H), 2.76 (s€ptz 6.8 Hz, 1 H) 1.40
(s, 9 H), 1.09 (¥ = 6.9 Hz, 6 H)*C NMR (100 MHz,
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(25)

(26)

DMSO0):8 =180.9, 167.4, 155.5, 149.6, 148.8, 141.0, 120.3,
83.0, 45.5, 35.3, 28.4, 19.6. HRMS (Et)/zcalcd for
C15H,:Ns0,: 335.15937; found: 335.15937.

Compound? (N'-isomer): white solid, mp 202-204 °&{
NMR (400 MHz, DMS0)3% =12.13 (s, 1 H), 11.56 (s, 1 H),
8.10 (s, 1 H), 5.06 (s, 2 H), 2.72 (s€pts 6.8 Hz, 1 H), 1.40

(s, 9 H), 1.10 (d?J = 6.8 Hz, 6 H)1*C NMR (100 MHz,
DMSO0):6=180.7, 167.6, 157.5, 153.3, 147, 9, 145.5, 112.4,
82.7, 48.6, 35.4, 28.3, 19.6. HRMS (Ht)/zcalcd for
C15H,:Ns0,: 335.15937; found: 335.15937.

Osterman, R. M.; McKittrick, B. A.; Chan, T. M.
Tetrahedron Lett1992, 33, 4867.

Data forl3 and14.

CompoundL3 (N®-isomer): white solid, mp 234-235 °&{
NMR as reported in reéf; HRMS (ESI-TOF)m/zcalcd for
sodium adduct $H5,N,O,Na: 624.2183; found: 624.2213.
Compoundl4 (N’-isomer): white solid, mp 188-190 °C
(dec).!H NMR (400 MHz, DMS0)3 = 12.13 (br s, 1 H),
11.59 major and 11.56 minor (s, 1 H), 8.18 minor and 8.15
major (s, 1 H), 7.87—717 (m, 10 H), 5.38 major and 5.20
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(27)

(28)

minor (s, 2 H), 3.46-3.12 (m, 4 H), 2.71 (m, 1 H), 1.10 major
and 1.05 minor (d3J = 6.8 Hz, 6 H). HRMS (ESI-TOF):
m/zcalcd for sodium adduct,gH,;N,O,Na: 624.2183,;

found: 624.2165.

Oligomers were synthesized on Rink amide resin by an ABI
433a peptide synthesizer at theBol scale according to the
manufacturer-supplied cycles and purified by RP-HPLC.
Data for -T-lys-NH, (15) HRMS (MALDI-TOF): m/zcalcd

for C;H0:N»7Oy6: 1783.7411; found: 1784.6012.

Data for Ac-X;-lys-NH, (16) HRMS (ESI-TOF)m/zcalcd

for C;HggN34O56: 1940.76; found: 1940.55 [MH

Thermal denaturation was measured at strand concentration
of 1.3uM in base pairs with 150 mM NaCl, 10 mM
Na,HPO,, 1 MM ETDA, pH 7.0 ata 2:1 PNA:RNA ratio. All
transitions were well-behaved and monophasic. The first
derivative method was used to estimate the Tm. The
stoichiometry of binding was determined by the method of
continuous variations: Job, Ran. Chim. (Paris1928, 9,

113.
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