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ABSTRACT: An approach for direct synthesis of biologically Me QMe
significant 2-deoxy-f-glycosides has been developed via O-alkylation Bnom m . PMBO%&"&;&#
of a variety of 2-deoxy-sugar-derived anomeric alkoxides using otf O)<O
challenging secondary triflates as electrophiles. It was found a free 3eq. NaH, 1.5 eq. 15-C-5, 195% ponly

hydroxyl group at C3 of the 2-deoxy-sugar-derived lactols is required in 14-dioxane, RT, 24 h

order to achieve synthetically efficient yields. This method has also been

applied to the convergent synthesis of a 2-deoxy-f-tetrasaccharide. Bnom wm&/ \M

BnO o
MeX
B INTRODUCTION Scheme 1. Synthesis of Complex Glycosides via Anomeric O-
yn p !
2-Deoxy-f-glycosides, especially 2,6-dideoxy-$-glycosides, are Allylation
biologically important carbohydrates existing in numerous i ©0® 0
>/OQ o —OM = O o@ E o
natural products/clinical agents' and play critical roles 1n (PO} Voo™ po =0 PO o H(po)n%/oe
their biological activity as well as stability and solubility.” 1 " 2 ¥ 3 4
Despite the development of numerous glycosylation methods Il Il a)Y = OR, NHR, refs 14 and 15
and technologies,3 the efficient stereoselective synthesis of v Q- \ b)Y=H
complex oligosaccharides and glycoconjugates remains a "‘3 € = 19RX, A, ref 16
¢
nontrivial problem. Among various types of glycosidic linkages, / 0® £” = 20 RX, this work
the stereocontrolled synthesis of 2-deoxy-f-glycosides is , ‘ doubleelectroneleqtroq repulsion,
single electron-electron repulsion more nucleophilic (kinetic anomeric effect)

notoriously challenging due to the absence of a directing
group at C2.* A most common indirect approach for
stereoselective synthesis of 2-deoxy-p-glycosides involves
preinstallation of a dlrectlng group at C2 followed by its
removal after glycosylation.” Other indirect strategles, such as
the use of alkoxy-substituted anomeric radicals,® and de novo
synthesis via palladium-catalyzed stereoselective glycosylation”
were also reported. Alternatively, in order to improve overall
synthetic efficiency, direct methods for the synthesis of 2-
deoxy-f- glycos1des involving the use of glycosyl phosphites,®
glycosyl halides,” glycosyl imidates, conformatlonally re-
stricted 4,6-O- benzylldene 2-deoxyglucosyl donors,""'* and
glycosyl tosylates "> have also been developed.

Anomeric O-alkylation, an alternative to the traditional
glycosylation, has been successfully developed by Schmidt'*
and others'® for stereoselective synthesis of p-linked
oligosaccharides and glycoconjugates (a, Scheme 1). It was
postulated that a rapid equilibrium occurs between axial
anomeric alkoxide 1 and its equatorial isomer 3 via an open
intermediate 2. The equatorial alkoxide should be more reactive
than its axial isomer due to enhanced nucleophilicity by double
electron—electron repulsion in 3 compared to a single gauche
interaction in 1, which was referred to as a kinetic anomeric
effect.'* Subsequent selective O-alkylation of the more reactive
equatorial anomeric alkoxide 3 by suitable electrophiles should Received: November 16, 2013
lead to the selective production of p-glycosides 4. Thus, Published: January 29, 2014

stereoselective synthesis of f-glycosides via anomeric O-
alkylation does not demand the participation of C2 substituent,
which would be an ideal approach for the synthesis of 2-deoxy-
P-glycosides. Early in 2009, Shair and co-workers reported
stereoselective synthesis of 2-deoxy-f-glycosides (4, Y = H) via
anomeric O-alkylation/arylation using primary or aromatic
electrophiles (b, E* = 1° RX or ArX, Scheme 1).'S However,
the use of more challenging secondary electrophiles failed i in O-
alkylation of 2-deoxy-sugar-derived anomeric alkoxides.'® In
view of the fact that a vast majority of naturally occurring 2-
deoxy-f-glycosides, especially 2,6-dideoxy-f-sugars, contain 1—
3 or 1-4 linkages, it would be appealing to develop
stereoselective anomeric O-alkylation protocols tolerating
secondary electrophiles. On the basis of our previous success
in umpolung S-glycosylation for stereoselective synthesis of 2-
deoxy-thioglycosides,"” we describe herein a direct stereo-
specific synthesis of 2-deoxy-f-(1—3) and (1—4)-linked
glycosides via anomeric O-alkylation using secondary electro-
philes (b, E* = 2° RX, Scheme 1).
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B RESULTS AND DISCUSSION

Initially, L-oliose-derived lactol Sa was chosen to react with p-
olivose-derived C4-triflate 6a for the formation of disaccharide
7 via anomeric O-alkylation (Table 1). Not surprisingly,

Table 1. Optimization of Synthesis of 2,6-Dideoxy-f-
glycosides”

Me O PMBO: Me
Bnog NaH; then on don Bno%gg&‘
5aR=Bn 1,4-dioxane, RT, 24 h 7R=Bn sen
5bR=H 8R=H
NS 0@ N% @
Bngw == Bngwo L Bno—z\;_0
BnO A BnO B - BnONa
® side products
" ONaQG‘i Ve Nao;@ _—0 base-mediated elimination
Bnga® Al an\;@%@ —_— X e A
entry reaction condition yield®, (8/a)
1 5a, NaH (2 equiv) 7, <1%, ND*
24 Sa, NaH (2 equiv), 15-C-5 (1.5 equiv) 7, 51%, /3 only
3 Sa, NaH (2 equiv), 15-C-S (1.5 equiv) 7, 41%, f3 only
5b, NaH (3 equiv), 15-C-S (1.5 equiv) 8, 81%, S only
5¢ Sb, NaH (3 equiv), 15-C-S (1.5 equiv) 8, 70%, f3 only
6 5b, NaH (3 equiv), 15-C-S (1.5 equiv) 8, 45%, [ only
7 5b, NaH (3 equiv), 15-C-5 (30 mol %) 8, 22%, f3 only
8 Sb, NaH (3 equiv), 15-C-5 (1.0 equiv) 8, 48%, f only
9 5b, KO'Bu (2 equiv), 18-C-6 (1.5 equiv) 8, <1%, ND¢

“General conditions: lactol Sa or Sb (1.0 equiv), sodium hydride, 1,4-

dloxane, RT 10 min; then triflate 6a (20 equiv), 15-C-5, RT, 24 h.
bIsolated yield. “ND = not detected. “Toluene was used as solvent.
“THF was used as solvent. "Lactol 5b is not well soluble in toluene.

applying the same condition reported previously (sodium
hydride, 1,4-dioxane, RT) did not provide detectable product 7
(entry 1, Table 1)."® Gratifyingly, addition of 15-crown-5,"*>
known to chelate with sodium ion and increase the reactivity of
the corresponding anion,'® afforded the desired disaccharide 7
in 51% yield in toluene (f only) (entry 2). Switching the
solvent to 1,4-dioxane slightly dropped the yield to 41% (f
only) (entry 3). Examination of the "H NMR spectra of the
crude reaction mixture indicated that a number of side products
bearing aldehyde functionality were formed, probably due to
the decomposition of anomeric alkoxides A (e.g., base-mediated
elimination of the open intermediate B to form a mixture of E-
and Z-isomers of C, Table 1). Thus, we speculated that
suppressing the decomposition of anomeric alkoxides would
lead to the desired disaccharide in improved yield. Such a
problem may be circumvented by the use of modified lactols
(cf. 5b) bearing a free hydroxyl group at C3."” Accordingly,
upon deprotonation of both hydroxyl groups at C-1 and C-3 of
Sb with excess sodium hydride, the corresponding anomeric
alkoxides, dianions D, may be reversibly opened to form the
open intermediate, aldehyde E. However, due to less acidity of
the a-H of the aldehyde E (as compared to B) and the poor
leaving ability of the sodium oxide anion (NaO~), subsequent
enolization—elimination of the aldehyde E should be sup-
pressed, which would hopefully improve the yield of the desired
disaccharide 8 (Table 1). It should be noted that the CI-
anomeric alkoxide of D was reported to be more nucleophilic
than the C3-alkoxide due to the aforementioned double
electron—electron repulsion.'*'¢

To our delight, treatment of a solution of lactol Sb in 1,4
dioxane with 3 equiv of sodium hydride followed by addition of
triflate 6a and 1.5 equiv of 15-crown-5, produced desired
product 8, isolated in 81% yield after 24 h at room temperature

,b

Table 2. Synthesis of Various 2,6- Dldeoxy p-glycosides”
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Me
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OMe

SPh
OPMB

BnO OMe

BnO
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0
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Me)<
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16, 96%, B only

17,6 74%, Blo. (12/1) Me\(go

BnO e O M Ve (o]

n e O (o]

nO o SPh E\ﬁ,noﬁ\\
BnO Bno OH SPh

11, 88%, B only

Me Me
pMBSm%ﬁ&/sph
BnO

SPh 15, 90%, f only

12,°65%, B only

PMBO‘ ﬁ

Q
" (o}
e
BnO O

BnO OMe
18,°66%, B only

General conditions: lactol § (1.0 equiv), sodium hydride (3 equiv), 1,4-dioxane, RT 10 min; then triflate 6 (2.0 equiv), 15-C-S (1.5 equiv), RT, 24

h. Isolated yield. “Sodium hydride (2 equiv) was used.
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(p only, entry 4). The yields dropped when THF or toluene
was used as solvent (entries 5 and 6). The use of less 15-crown-
S also led to the lower yields (entries 7 and 8). Furthermore,
the use of mild base, KO'Bu, and 18-C-6"** did not afford
noticeable product (entry 9). To the best of our knowledge,
this is the first time that a 2-deoxy-sugar-derived lactol bearing a
C3-hydroxyl group has been successfully used in the anomeric
O-alkylation to form (1—4)-f-linked 2-deoxy-disaccharide in
good yield and excellent anomeric selectivity. In addition, the
C3-free OH in the disaccharide product 8 may be directly
employed in the subsequent glycosylation if needed.

Given this encouraging result, we have investigated the
reaction scope for preparation of various 2,6-dideoxy-f-
oligosaccharides (Table 2). Accordingly, three additional 2,6-
deoxy sugar-derived lactols Sc—e bearing a C3-hydroxyl group,
four additional sugar-derived secondary triflates 6b—e, and a
disaccharide-derived C3-triflate 6f were prepared.”® As shown
in Table 2, under optimal conditions these lactols (Sb—e)
reacted with secondary triflates (6a—f) via anomeric O-
alkylation to afford a number of desired f-linked oligosacchar-
ides (9—16) in good-to-excellent yields and excellent anomeric
selectivity. Notably, this method has demonstrated its
application in efficient preparation of synthetically challenging
p-oliosides' ! (e.g, 12 and 14). In addition, we carried out
anomeric O-alkylation of lactol 5d using primary triflates 6g—h
which afforded desired disaccharides 17 and 18 in com(?arable
yields and anomeric selectivity as reported previously."

This anomeric O-alkylation was next applied to the synthesis
of 2-deoxy-f-glycosides (Scheme 2). Treatment of 2-deoxy-p-

Scheme 2. Synthesis of 2-Deoxy-f-glycosides

OBn

HO

5f
OH

3 eq. NaH, 6d
1.5 eq. 15-C-5, 62%, § only
1,4-dioxane,

OBn

Q
(o]
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68%, Bonly
RT, 24 h
N " §103=
OPMB SPh

20
19

glucose-derived lactol 5 with sodium hydride followed by
addition of secondary triflates, 6b and 6d, afforded desired 2-
deoxy-p-glycosides 19 and 20 in 68% and 62% yield,
respectively. In general, these reactions involving 2-deoxy-
sugar-derived lactols (cf. 5f) afforded the desired disaccharides
in slightly lower yield than those involving 2,6-dideoxy sugar-
derived lactols (cf. Sb—e), probably due to the relatively lower
reactivity of 2-deoxy-sugar-derived anomeric alkoxide as
compared with 2,6-dideoxy-sugar-derived anomeric alkoxide.

We also sought to prepare synthetically demanding 2,3,6-
trideoxy and 2,4,6-trideoxy-4-amino-f-glycosides via anomeric
O-alkylation with secondary triflates (Table 3). Accordingly, we
have prepared three 2,3,6-trideoxy-sugar-derived lactols Sg—i
and a 2,4,6-trideoxy-4-azidosugar-derived lactol 5j. As shown in
Table 3, under optimal conditions these lactols (5g—j) reacted
with secondary triflates 6 via anomeric O-alkylation to afford a
number of desired f-linked oligosaccharides (21—25) in good
yields and excellent anomeric selectivity.

In order to further demonstrate the utilization of this method
in the synthesis of complex 2-deoxy-oligosaccharides, we
initiated the synthesis of 2,6-dideoxy-trisaccharide 27 and
tetrasaccharide 28 containing all f-linkages (Scheme 3).

3174

Table 3. Synthesis of 2,3,6-Trideoxy-f-glycosides and 2,4,6-
Trideoxy-4-azido-f-glycosides®™

& Ve %Me:o
Base; then triflate 6
PO (PO) -0
reaction conditions (OP)q
50+ 2125
OH OH Me o
Yo7 s o=,
RO 5gR=Bn H OH
5hR=TIPS BnO 5i 5§

SPh

Me Me
Me 2 Me7—~07~0 O Me7~0
Bno-w;ﬁ’o TIF'SOM"O Mewo
OPMB
SPh
SPh BnO

21,°83%, p only 22,°75%, B only 23,6 75%, B only

M OMe
Me e o M
0 PMBO e7~0
Nﬁ&/o&o\'@\\z

Me
o) Me
Nﬁmo O
BnO
SPh y ©
e
Me

24,70%,  only 25, 95%, B only

“General conditions: lactol § (1.0 equiv), sodium hydride (3 equiv),
1,4-dioxane, RT 10 min; then triflate 6 (2.0 equiv), 15-C-5S (1.5 equiv),
RT, 24 h. “Isolated yield. “Sodium hydride (2 equiv) was used.

Scheme 3. Synthesis of f-Linked 2,6-Dideoxy-Tri- and
-Tetra- saccharides Using Iterative Anomeric O-Alkylation
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Me7~0 Jo) Q
Bnomsoﬁﬁ
HO 8 SPh

1. BnBr, NaH, DMF, 82%;
2. NBS, acetone/H,0, 94%;

3.DDQ, CH,Cly,
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BHOWHO O O 1,4-dioxane,
BnO BnO RT,24h
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Accordingly, disaccharide 8, obtained via anomeric O-alkylation
of 5b with triflate 6a, underwent a sequential benzyl protection
(82%), NBS-mediated oxidation of the anomeric phenylsulfide
(94%),"° and DDQ-mediated PMB deprotection (89%) to
afford disaccharide lactol 26 bearing a C3-free OH. As
expected, this lactol 26 reacted with C-4 triflate 6d and
disaccharide-derived C3-triflate 6f via anomeric O-alkylation
under optimal conditions to afford 2-deoxy-trisaccharide 27 and
tetrasaccharide 28 in 76% and 95% yield (f§ only), respectively.

B CONCLUSION

In summary, an efficient approach for stereospecific synthesis of
2-deoxy-f-(1—3) and (1—4)-linked glycosides via anomeric
O-alkylation using secondary electrophiles has been described.
It is believed that this excellent anomeric stereochemical
outcome is controlled by a kinetic anomeric effect. This type of
glycosylation (anomeric O-alkylation) performed in basic
reaction conditions is beneficial for the synthesis of acid-labile
2-deoxy-glycosides. Application of this methodology to the
synthesis of naturally occurring bioactive molecules bearing 2-
deoxy-sugar subunits is currently underway.
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Experimental procedures and analytical data and NMR spectra
of the products. This material is available free of charge via the
Internet at http://pubs.acs.org.
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