The reactions of diazo compounds with lactones. Part 1. Cyclopropanespiro- β -lactones from diketene: synthesis and reactions

Paul V. Murphy,† Timothy J. O'Sullivan and Niall W. A. Geraghty*

Department of Chemistry, National University of Ireland, Galway, Republic of Ireland. E-mail: niall.geraghty@nuigalway.ie

Received (in Cambridge, UK) 21st February 2000, Accepted 19th April 2000 Published on the Web 8th June 2000

The cyclopropanespiro- β -lactones 3, 4 and 12 can be prepared by the metal catalysed, or photochemically promoted decomposition reactions of diazocompounds in the presence of diketene. The thermal reactions of these compounds give a variety of products depending on the nature of the spirolactone; these include a furan 9a, 1,4-dicarbonyl compounds 18a-c and 19b, a pyranone 20b, furanones 21a, 21f and 22a and the enol 16. The boron trifluoride promoted reaction of a mixture of 3b and 4b gives a β -ketoacid. Mechanisms are proposed for the formation of these products. The rearrangment of the cyclopropanespiro- β -lactones to furan-2(5H)-ones and furan-2-(3H)-ones 6-8, 21a, 21f, 22a and 24 is shown to be a general reaction that involves metal catalysis. A mechanism based on formation of a metallocycle by a novel insertion of the metal into the C–O bond of the β -lactone ring is proposed for this rearrangement. This accounts for the observed features of the reaction.

Introduction

The reactions of carbenes or carbenoids from diazocompounds with diketene¹ $\mathbf{1}$ (Scheme 1) gives in most cases the expected

products of addition to the exocyclic double bond. Diazoacetophenone 2a, for example, has been reported to give the expected mixture of diastereoisomeric 5-oxo-4-oxaspiro[2.3]-

† *Current address*: Department of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland.

hexanes (cyclopropanespiro- β -lactones) 3a and 4a under metal catalysis.² In some cases other products have been isolated: metal catalysed reaction of ethyl diazoacetate 2b with diketene is reported² to give a mixture of spirolactone 4b and furanones 6b-8b, whereas the photochemical reaction of ethyl diazoacetoacetate with diketene gives a levulinate (4-oxopentanoate).³ The formation of furanones in these reactions is particularly interesting and it has been suggested that this occurs by rearrangement of initially formed spiro-\beta-lactones. However this was not confirmed experimentally nor considered from a mechanistic point of view. In a preliminary communication⁴ we provided evidence that the spiro- β -lactone to furanone rearrangement is general and requires metal catalysis. We now give a full account of this work which describes the synthesis of a range of spiro- β -lactones and a study of their thermal, metal catalysed and Lewis acid catalysed rearrangements.

Results and discussion

Initial experiments focused on an investigation of how furanone formation occurred in the copper powder or copper(II) sulfate catalysed reactions of ethyl diazoacetate 2b and diketene.² The spiro- β -lactone **4b** (*trans* isomer) and the furanones 6b-8b were originally isolated by fractional distillation of the crude filtered product obtained from reactions carried out at 100 °C. When this reaction was repeated, ¹H-NMR showed that the crude product contained only a mixture of spiro- β -lactones **3b**² and **4b**⁵ (2:3) as well as the products of carbene dimerisation 5b; 3b and 4b could be isolated from this mixture by rapid distillation and chromatography. The fact that formation of the furanones 6b-8b could be avoided in this way clearly supports the contention that they are formed *via* the spiro- β -lactones and that this process is at least in part thermal. However, when pure samples of the spirolactones were heated for prolonged periods at 113 °C in toluene, the approximate pot temperature during distillation, no reaction occurred. Thermal reactions were also carried out at higher temperatures by heating 3b and 4b in sealed glass tubes at 180 °C. Analysis (¹H-NMR) of the crude product showed that although reactions occurred (see below), the furanones 6b-8b

DOI: 10.1039/b001393p

J. Chem. Soc., Perkin Trans. 1, 2000, 2109–2119 2109

Table 1 Synthesis of spiro- β -lactones from diazo compounds and diketene

Diazo compound	Conditions	Spiro-β-lactone (isolated yield, %)	Other products (isolated yield, %)
2a ⁶	Rh ₂ (OAc), Et ₂ O, 40 °C	3a (18), 4a (37)	9a (2), 10a (6)
	$Cu(acac)_2, C_6H_6, 60 \ ^{\circ}C$	3a (5), 4a (31)	5a (22), 6a (5), 8a (1), 9a (1), 10a (3)
2b ^{<i>a</i>}	Cu powder, 80 °C, rapid distillation and/or chromatography	3b (12), 4b (21)	5b (13)
2c ⁷	$Rh_2(OAc)_4$, rt	4c (32)	5c (27)
2d 8	hv, CH ₄ CN, Ph ₅ CO	3d (18), 4d (26)	
2e ⁸	hv, CH ₂ CN, Ph ₂ CO	3e (13), 4e (17)	_
2f ⁹	$Rh_2(OAc)_4$	3f (10), 4f (32)	_
11a ¹¹	$Rh_{2}(OAc)_{4}$, rt, Et ₂ O	12a (84)	_
	hv	12a(85)	
11b ¹²	Rh ₂ (OAc) ₄ , C ₆ H ₆ , rt	$12b(15-60)^{b}$	Anthraguinone (4)
11c ¹³	Rh ₂ (OAc) ₄ , C _c H _c , 80 °C	12c (31)	13c (37)
11e ¹⁵	$Rh_2(OAc)_4, C_6H_6, 80 ^{\circ}C$	12e (26)	$15(10)^{c}$
11f ¹⁰	hv. CH ₂ CN	12f (14)	14f(50)

^{*a*} Used as supplied (Aldrich). ^{*b*} The yield is reduced significantly on chromatography. However, the crude product can be used for further manipulation of the spiro-β-lactone. ^{*c*} Could not be obtained analytically pure.

were not formed. These results show that the conversion of spirolactones to furanones is not a simple thermal reaction. As the preparation of the spiro- β -lactones involved the reaction of ethyl diazoacetate with diketene in the presence of copper powder, the possibility existed that the rearrangement to furanones was catalysed by a metal species formed during the course of their preparation. Thus a mixture of the spirolactones $\mathbf{3b}$ and 4b was heated for 72 h in the presence of copper powder. This reaction gave a 3:1 mixture (¹H-NMR) of **6b** and **7b**, establishing unambigiously that the formation of furanones does involve spiro-β-lactones and is metal catalysed. It remained to explore the scope of the reaction and to identify the exact role played by the metal catalyst. The possibility that the metal was behaving as a Lewis acid was considered and as preliminary experiments had led to some unusual products, the basic thermal rearrangement of these highly strained lactones was investigated.

Cyclopropanespiro- β -lactones were prepared by metal catalysed or photochemical decomposition of α -diazocarbonyl compounds⁶⁻¹⁰ 2 (Scheme 1) and other diazocompounds¹¹⁻¹⁵ 11 (Scheme 2) in the presence of diketene (Table 1). Thus, spirolactones 3a and 4a can be prepared as previously described² by the copper powder catalysed decomposition of diazoacetophenone in the presence of diketene. Spirolactones 3a and 4a as well as alkenes 5a,² furanones 6a and 8a, and furans 9a¹⁶ and 10a were isolated when $Cu(acac)_2$ was used as catalyst in the reaction of diketene and diazoacetophenone. The Rh₂(OAc)₄ catalysed reactions gave spirolactones 3a and 4a as well as the furans 9a and 10a but no furanones (¹H-NMR). In common with all the spiro- β -lactones the IR spectra of both 3a and 4a contain a carbonyl band at 1830 cm⁻¹ characteristic of the β lactone group. The stereochemistry of 3a and 4a (and of the related 3b/4b and 3e/4e systems) was assigned on the basis of the pattern observed for the lactone methylene protons. Thus these protons appear as a pair of AB doublets for 4b in which they are cis to the ethoxycarbonyl group, and as a singlet for 3b, in which they have a *trans* relationship with this group. The Rh₂(OAc)₄ catalysed decomposition of ethyl diazopropionate 2c in the presence of diketene gave the spiro- β -lactone 4c as the only isolable product. The cyclopropane protons in this compound appear as a pair of AB doublets in the ¹H-NMR spectrum at δ 1.72 and 1.38, the lower signal being due to the proton cis to the oxetane oxygen atom. The trans stereochemistry of 4c was assigned on the basis of NOE difference spectra which showed that on irradiating the methyl signal at δ 1.44, a 3.2% enhancement of the doublet at δ 1.72 was obtained. This enhancement indicates that this proton and the methyl group

are *cis* to each other and thus also *cis* to the oxetane oxygen. In keeping with the pattern outlined above the lactone protons in **4c** which are *cis* to the ethoxycarbonyl group appear as AB doublets at δ 3.74 and δ 3.63. The benzophenone sensitized photolysis of ethyl diazobutyrate **2d** and ethyl diazoisovalerate **2e** was used to prepare **3d/4d**, and **3e/4e**, respectively, as metal catalysis led to very complex mixtures in these cases. Unlike the other compounds in the series the lactone protons in both **3d** and **4d** appear as pairs of doublets. However in one isomer the diastereotopic methylene protons of the cyclopropane ethyl group appear as multiplets at δ 1.76 and 1.48, and at δ 2.30 and 0.85 in the other. This indicates that the latter is **4d** in which these protons are *cis* to the oxetane oxygen.

The $Rh_2(OAc)_4$ catalysed reactions of 1-diazooctan-2-one 2f, diazofluorene 11a, diazoanthrone 11b and diazocyclopentadiene 11c with diketene gave, respectively, the expected spirocyclopropanes, 3f and 4f,¹⁷ 12a, 12b and 12c. It was also possible to prepare 12a by photolysis of diazofluorene in diketene. Diazocyclopentadiene 11c also gave some of the dimer 13c. The Rh(II) catalysed reaction of 3-diazo-2-phenyl3H-indole 11d in the presence of diketene led only to the isolation of 2,2'-diphenyl-3,3'-azinodi-3H-indole 14d.¹⁸ Only one of the two possible diastereoisomeric spiro-\beta-lactones was obtained from the Rh(II) catalysed reaction of diazoindene 11e and diketene; this product was assigned the structure 12e on the basis of the similarities between its ¹H-NMR spectrum and that of 12c. The chemical shifts of the lactone methylene protons (δ 3.84 and 3.62) and the cyclopropane proton trans to the oxetane oxygen (δ 2.09) in **12e** are essentially identical to those of the corresponding protons in 12c (δ 3.90, 3.67 and 2.09, respectively) suggesting that the environment of these protons is the same in both cases. The furanone 15 was also isolated from this reaction but this compound was unstable decomposing after 3 days at room temperature. Photolysis of diphenyldiazomethane 11f in acetonitrile solutions of diketene and benzophenone was used to prepare 12f, as the metal catalysed reaction of the diazocompound was again not successful in this case. The spectroscopic data used to assign the structures of these spiro- β -lactones are presented in Table 4.

Furans rather than spiro- β -lactones are formed when acyclic and cyclic 2-diazo-1,3-dicarbonyl compounds react with diketene under metal catalysis.¹⁹ A preliminary account of these reactions has been described and a full description will be appear in a subsequent paper.

The simple thermal rearrangement of these spiro- β -lactones led to the formation of a variety of products (Schemes 3–5;

Table 2). They were in general more thermally stable than might have been expected given the presence of a strained β -lactone ring and all were indefinitely stable at room temperature. Thus, the spiro- β -lactones **3a–c**, **4a–c**, **12a** and **12f**, were recovered unchanged after prolonged heating in refluxing toluene. However, the enol **16** (Scheme 3) was obtained by heating the anthrone derivative **12b** under these conditions for 72 h. The acid catalysed methylation of **16** using trimethyl orthoformate in methanol giving **17a** and its boron trifluoride catalysed reaction with diazomethane giving a mixture of ethers **17a** and **17b** confirmed its structure.

The sealed tube pyrolysis of spiro- β -lactones at higher temperatures resulted in reaction in all cases (Table 2, Schemes 4, 5). The 1,4-dicarbonyl derivatives **18a**,²⁰ **18b**, and **18c**²¹ were formed from the corresponding spirolactones, **3a/4a**, **3b/4b** and **4c**, respectively, and **3b/4b** produced a further 1,4-dicarbonyl compound **19b**. A furan **9a** was obtained in low yield from **3a** and **4a** and most unexpectedly **4b** gave a dimeric pyranone **20b**. Furan and pyranone formation was not observed for any other spiro- β -lactone studied during the course of this work. Although in general metal catalysis (see below) was required for their formation, furanones were obtained on pyrolysis of the spiro- β -lactones **12a** and **12f**. Thus **21a** and **22a** (77:13) were obtained from the fluorene derivative **12a** and **21f** was isolated in excellent yield from **12f** (Scheme 5).

The boron trifluoride catalysed rearrangement of **3b** and **4b** in the presence of catalytic amounts of boron trifluoride gave the β -ketoacid **23a** which was converted to its methyl ester **23b** on treatment with an ethereal solution of diazomethane (Scheme 6). The boron trifluoride catalysed reaction of **12b** gave **16**. Reaction of other spiro- β -lactones gave complex mixtures which did not contain any furanones (¹H-NMR). In all cases spectroscopic analysis (¹H-NMR) of the crude product provided no evidence for the formation of furanones ruling out the possibility that the metal catalyst is behaving simply as a Lewis acid.

Spiro-β-lac	ctone Conditions	Product (isolated yield, %)
3 a or 4 a	Sealed tube, 180 °C, 50 mi	n 9a (5), 18a (20)
3b	Sealed tube, 180 °C, 50 mi	n 18b (34), 19b (17)
4b	Sealed tube, 180 °C, 50 mi	n 20b (43), 18b (17), 19b (10)
4c	Sealed tube, 180 °C, 50 mi	n 18c (65)
12a	Sealed tube, 180 °C, 50 mi	n $21a(76), 22a^{a}(12)$
12b	Toluene, 113 °C	16 (66)
12f	Sealed tube, 180 °C, 50 mi	n 21f (85)
3b and 4b	(i) $BF_2 \cdot OEt_2$; (ii) CH_2N_2	23b (37)
12b	BF_3 ·OEt ₂ , ether	16 (67)
^a Isolated by crystallisation from chloro	oform.	

Table 3	Metal catalysed	rearrangement	of spiro-	β-lactones

Spiro-β-lactone	Conditions ^a	Time	Furanones (isolated yield, %)	
3a	Cu(acac) ₂ , toluene, 113 °C	6 h	6a (56), 8a (39)	
4 a	Cu(acac) ₂ , toluene, 113 °C	6 h	6a (65), 8a (29)	
3b	Cu(acac) ₂ , toluene, 113 °C	6 h	6b (52), 7b + 8b (42)	
4 b	Cu(acac) ₂ , toluene, 113 °C	6 h	6b (61), 7b + 8b (31)	
4 b	Cu powder, neat, 125 °C	24 h	6b (75), 7b (22)	
4c	Cu(acac) ₂ , toluene, 113 °C	5 h	7c (82)	
3d	Cu(acac) ₂ , toluene, 113 °C	5 h	7d (94)	
4 d	Cu(acac) ₂ , toluene, 113 °C	5 h	7d (92)	
3e	Cu(acac) ₂ , toluene, 113 °C	5 h	Recovered 3e	
3e	Cu powder, neat, 200 °C	24 h	Complex mixture	
4 e	Cu(acac) ₂ , toluene, 113 °C	5 h	Recovered 4e	
4 e	Cu powder, neat, 200 °C	24 h	Complex mixture	
4f	Cu(acac) ₂ , toluene, 113 °C	5 h	Complex mixture	
12a	Cu(acac) ₂ , toluene, 113 °C	15 min	21a (78), ^b 22a (18) ^c	
12b	Cu(acac) ₂ , toluene, 113 °C	10 min	24 (85)	
12c	Cu(acac) ₂ , toluene, 113 °C	5 h	Complex mixture	
12f	Cu(acac) ₂ , toluene, 113 °C	5 h	21f $(\overline{60})^{b}$	

^{*a*} Identical product mixtures were obtained when reactions were carried out with diazo compound present. ^{*b*} Obtained after chromatography or by heating crude product at 125 °C for 36 h. ^{*c*} Obtained from the crude product by recrystallisation from chloroform.

In general, the metal catalysed rearrangement of spiro- β lactones to furanones (Schemes 1 and 7, Table 3) can be effected in excellent yield by heating in refluxing toluene in the presence of a soluble metal catalyst such as Cu(acac)₂. Thus the spiro- β lactones **3a** and **4a** gave mixtures of **6a** and **8a** (56:39 from the *cis* isomer **3a** and 65:29 from the *trans* isomer **4a** (¹H-NMR)). Similar results were obtained for the rearrangement of **3b** and **4b**, the furan-2(5*H*)-one **6b** being the major product in both cases, although the selectivity is lower in the case of the *cis* isomer **3b**. Chromatography on silica resulted in the isomerization of **8b** to the furan-2(5*H*)-one **7b**. The corresponding furanone **8a** was stable to rapid chromatography; prolonged stirring in ether containing silica resulted in decomposition.

The regiochemistry of the metal catalysed rearrangement was reversed for the other compounds studied (Schemes 1, 7),

a furan-2(5*H*)-one being formed selectively or, in some cases, specifically. The ¹H-NMR of the crude product mixture obtained from rearrangement of **4c** indicated that **8c** was formed regiospecifically and was converted to its endocyclic isomer **7c** during chromatography. The rearrangements of **3d** and **4d** gave the furanone **7d** directly whereas **3e**, **4e** and **4f** gave complex mixtures containing no furanones. The furanone **25a**, formed initially from rearrangement of **12a** (¹H-NMR), was converted to **21a** on chromatography; the furanone **22a** was also isolated from this reaction. The rearrangement of **12f** gave

25f which isomerised to **21f** after chromatography. Reaction of **12b** gave **24** directly but the reaction of **12d** gave a complex mixture containing no furanones.

The principal objective of this work was to confirm that the spiro-β-lactones were indeed involved in the formation of the furanones and to establish the generality and nature of the reaction. The preliminary experiments indicated that furanones were formed directly from the spiro-\beta-lactones, but that the reaction was not a simple thermal rearrangement nor one in which a residual metal species from the preparation of the spiro- β -lactones acted as a Lewis acid. It has been shown previously⁴ that an induction period of varying length is a characteristic feature of this rearrangement and that it can be significantly reduced by the addition of a diazo compound (2 equiv., relative to the catalyst) without affecting the ultimate reaction kinetics nor the product ratio. This suggests that the diazo compound promotes the formation of the catalytically active species²² which is probably a metal carbenoid. Such a mechanistic framework accounts not only for the results presented here, but also for the earlier observation that the slow distillation of the crude filtered product from the copper promoted reaction of diazo compounds with diketene leads to the formation of furanones. The cyclopropanation reaction involves metal carbenoids and these are clearly stable and soluble enough to survive to the distillation stage of the process. We suggest that the thermal cracking of the metal carbenoid produces a coordinatively unsaturated metal species which forms a metallocycle²³ and initiates a catalytic cycle (Scheme 8). In the absence of a diazo compound the coordinatively unsaturated metal species or the metallocycle is formed in a slower process, accounting for the observation of an induction period. However once initiated the catalytic process in both cases gives the same product ratio and similar kinetics. Other features of the reaction that have emerged in investigating the behaviour of these spiro- β -lactones can also be rationalised using the proposed mechanism. Thus the higher selectivity observed for the formation of the furan-2(5H)-ones 6a and 6b (Path x) from the trans spiro-β-lactones 4a and 4b, respectively, can be interpreted

in terms of greater steric hindrance encountered in the key intermediate **26a** during the formation of furan-2(3H)-ones (Path y); the *cis* isomer displays no such selectivity, a fact which is entirely in keeping with the structure of the intermediate **26b** formed in this case.

The significant inversion of selectivity which is observed for the 1,1-disubstituted spiro- β -lactones 4c, 3d and 4d, 12a–b and 12e–f, all of which initially form furan-2(3*H*)-ones selectively or specifically, is understandable if cyclopropane ring cleavage occurs prior to furanone ring formation in these cases. This would produce intermediates 27 which involve a tertiary carbocation and can close to furan-2(3*H*)-ones without the steric problems associated with 25a. The stability of intermediates such as 27 explain why 12a and 12f rearrange thermally to furan-2(3*H*)-ones and hence to 21a and 21f, respectively, the process being regiospecific in the latter case (Scheme 9). Facile

cyclopropane cleavage due to the relative stability of the zwitterion thus formed may also explain why the spiroanthrone **16** is formed in good yield thermally or under BF_3 catalysis from the anthrone derived spiro- β -lactone **12b** (Scheme 10).

The formation of 1,4-dicarbonyl products (18a–c) in sealed tube reactions of 3a, 3b and 4a–c presumably involves the nucleophilic attack of adventitious water at the carbonyl of the lactone, with subsequent ring opening and proton transfer giving a β -ketoacid which then undergoes decarboxylation to the observed product (Scheme 11). The BF₃ promoted form-

ation of 23a from 3b and 4b can also be explained by nucleophilic attack of water at the oxetanone carbonyl group. Decarboxylation does not occur under these milder conditions and the β -ketoacid can be isolated as its methyl ester. The formation of 20b from 3b or 4b is surprising. However dehydroacetic acid 28 is formed thermally²⁴ from the dimerisation of diketene by a mechanism which presumably involves the nucleophilic attack of one diketene molecule on another. A similar mechanism can be used to explain the formation of the pyranone 20b from 4b (Scheme 12). The fact that the *cis* isomer **3b** does not give the pyranone may be due to a reduction in the nucelophilicity of the oxetane oxygen atom as a result of steric hindrance by the ethoxycarbonyl group. The formation of 19b can be rationalised, using a mechanism related to that described above for formation of 18a-c (Scheme 11), by the nucleophilic attack of adventitious ethanol, presumably formed by ethyl ester hydrolysis, at the carbonyl of the lactone. However levulinic acid, an expected by-product of such a process, could not be detected in the crude reaction product.

The furans **9a** and **10a** are formed in very low yield together with the spiro- β -lactones **3a** and **4a** in the reaction of diazoacetophenone with diketene. Furan **9a** is also formed in the sealed tube pyrolysis of **3a** and **4a**. Thus it would appear that furans are secondary products arising from initially formed spiro- β -lactones. Although thermal elimination of CO₂ is a characteristic reaction of β -lactones, there is no evidence to suggest that cyclopropanespiro- β -lactones undergo this reaction. Thus a mechanism involving an initial cyclopropane ring opening (Path b, Scheme 13) is preferred to one involving decarboxylation of the spiro- β -lactone (Path a, Scheme 13). Decarboxylation of the intermediate dioxaspiro[3,4]octenone is

however more probable as an electron releasing group at C-4 is known to accelerate this process.²⁵ The formation of **10a** is presumably due to cyclopropanation of the furan precursor **29** and subsequent ring cleavage.

In conclusion, the synthesis of a range of cyclopropanespiro- β -lactones by the reactions of diazo compounds with diketene has been described. The thermal, Lewis acid and metal catalysed reactions of these compounds have been studied and give a diverse range of products depending on the nature of the spirolactone. The rearrangment of cyclopropanespiro- β lactones to furanones has been shown to be a general reaction that involves metal catalysis and a novel mechanism involving insertion of the metal into C $_{\beta}$ –O bond of the lactone ring has been proposed. This accounts for the key features of the reaction including its regiochemistry. The synthetic potential of the metal catalysed ring opening reactions of other β - and γ -lactones and of small ring molecules is currently under investigation.

Experimental

Melting points were obtained using an Electrothermal melting point apparatus and are uncorrected. TLC analyses were carried out on pre-coated sheets of Merck Kieselgel 60 F₂₅₄. Spots were located by UV illumination using a portable Spectroline Hanovia lamp (λ 254 nm). Column chromatography was carried out with Merck Silica Gel 60 (70–230 mesh, 40–60 mesh). GC analyses were carried out using a Shimadzu GC 8A equipped with a flame ionisation detector and a glass column (2 m × 3 mm) containing 3% OV-17 on Chromosorb W AW-DCMS (100–120 mesh). IR spectra (Nujol mull and liquid film) were obtained using a Perkin-Elmer 1600 series (FT) or a Perkin-Elmer 983G spectrometer. ¹H-NMR spectra were obtained using a JEOL EX90 FT NMR or a JEOL EX270 FT NMR spectrometer at probe temperatures with CDCl₃ as solvent and using tetramethylsilane as internal standard, unless

Spira Blactona	Mn/°C	Found (%) [Requires (%)]		$u = lom^{-1}$		
(molecular formula)	(solvent)	C	Н	Lactone C=O	Other C=O	
3a	73–74 (petroleum ether) (lit. 74–75) ²	_		1830	1665	
4a	68-70 (petroleum ether) (lit. $73-74$) ²			1830	1662	
3b	Oil ⁵	_		1843	1728	
4b	Oil ²	_		1843	1728	
$4c (C_9 H_{12} O_4)$	Oil	58.7 [59.0]	6.5 [6.3]	1848	1724	
$3d(C_{10}H_{14}O_4)$	Oil	60.5 [60.6]	6.8 [7.1]	1844	1724	
4d $(C_{10}H_{14}O_4)$	Oil	60.3 [60.6]	7.0 [7.1]	1844	1724	
$3e(C_{11}H_{16}O_4)$	Oil	62.0 [62.3]	7.4 [7.6]	1852	1728	
$4e(C_{11}H_{16}O_4)$	Oil	62.1 [62.3]	7.5 [7.6]	1850	1726	
4f	66–68 (Et ₂ O) (lit. 64–65) ¹⁷			1867	1691	
$12a (C_{17}H_{12}O_{2})$	191–193 (Et ₂ O)	82.0 [82.2]	4.9 [4.9]	1841	_	
$12b(C_{18}H_{12}O_{3})$	125–127 (EtOH)	78.2 [78.3]	4.2 [4.4]	1839	1658	
$12c(C_{9}H_{8}O_{2})$	Oil	72.5 [73.0]	5.3 [5.4]	1832		
$12e(C_{13}H_{10}O_2)$	Oil	78.4 [78.8]	4.7 [5.0]	1843		
$12f(C_{17}H_{14}O_2)$	91–93 (Et ₂ O)	81.2 [81.6]	5.4 [5.6]	1821	—	

otherwise indicated; J values are given in Hz. ¹³C-NMR spectra were obtained on the same instruments with CDCl₃ or DMSO- d_6 or a mixture of both, as solvent and internal standard (CDCl₃, δ 77.0; DMSO- d_6 , δ 39.5). ¹³C-NMR signals were assigned by off-resonance, ¹³C-J-resolved or 135° DEPT spectra or by a combination of the above techniques. Elemental analyses were obtained using a Perkin-Elmer model 2400 CHN analyser. Photolyses were carried out in a Pyrex vessel using a Rayonet reactor model RPR-100 equipped with sixteen 254 nm lamps. Solvents were dried and distilled before use and petroleum ether is the fraction of light petroleum with bp 40–60 °C. All reactions were carried out under an atmosphere of N₂.

cis-1-(Phenylcarbonyl)-4-oxaspiro[2.3]hexan-5-one 3a and *trans*-1-(phenylcarbonyl)-4-oxaspiro[2.3]hexan-5-one 4a²

A solution of diazoacetophenone⁶ (2.5 g, 0.17 mol) in ether was added dropwise, over 2 h at 40 °C, to a suspension of Rh₂(OAc)₄ (20 mg, 4.5×10^{-5} mol) in diketene (7.2 g, 0.085 mol). After the addition was complete, the mixture was stirred for a further 2 h at this temperature to ensure complete decomposition of the diazocompound. The crude reaction mixture was eluted through a short column of silica with ether (300 cm³) and was concentrated to give a brown oil. Chromatography (ether–petroleum ether gradient) gave four products. The first product was 2-methyl-5-phenylfuran¹⁷ **9a** (0.05 g, 5%); $\delta_{\rm H}$ 7.64– 7.16 (5H, m, Ar H), 6.52 (1H, d, J 3.1, PhC=CH), 6.03 (1H, dq, J 3.1 and 0.9, CH=CCH₃), 2.35 (3H, d, J 0.9, CH₃); $\delta_{\rm C}$ 152.4, 152.0, 131.3 (s), 128.7, 126.8, 123.4, 107.7, 105.9 (d), 13.8 (q); $v_{\rm max}$ (film)/cm⁻¹ 1667 (C=C).

The second fraction was 1-phenyl-3-(5-phenyl-2-furyl)propan-1-one **10a** (0.15 g, 6%), which was further purified by recrystallisation from petroleum ether (Found C, 82.6; H, 5.8. $C_{19}H_{16}O_2$ requires C, 82.6; H, 5.8%); δ_H 7.99–7.17 (10H, m, Ar H), 6.52 (1H, d, J 2.7, PhC=CH), 6.12 (1H, d, J 2.7, CH=CCH₂), 3.37 (2H, t, J 7.3, CH₂COPh), 3.14 (2H, t, J 7.3, CH₂CH₂COPh); $\delta_{\rm C}$ 198.7 (C=O), 154.6, 152.6, 136.8 (s), 133.2 (d), 131.1 (s), 128.7, 128.1, 127.0, 123.5, 107.7, 105.8 (d), 37.1 and 22.9 (t); $v_{\rm max}$ (Nujol)/cm⁻¹ 1675 (C=O); mp 112–113 °C.

The third fraction was 4a (1.2 g, 37%), which was recrystallised from petroleum ether. The fourth fraction, 3a (0.6 g, 18%), was an oil and was crystallised from petroleum ether. Physical and spectroscopic data are given for 3a and 4a in Tables 4 and 5 and were in good agreement with those previously reported.²

Ethyl *cis*-5-oxo-4-oxaspiro[2.3]hexane-1-carboxylate 3b⁵ and ethyl *trans*-5-oxo-4-oxaspiro[2.3]hexane-1-carboxylate 4b²

Ethyl diazoacetate (11.4 g, 0.1 mol) was added dropwise over 1.5 h to a stirred suspension of copper powder (1 g, 0.02 mol) and freshly distilled diketene (40 g, 0.5 mol). The reaction was maintained at a temperature between 81 and 84 °C and after the addition was complete the mixture was stirred at this temperature until an IR spectrum of the mixture showed the absence of a diazo band. The mixture was cooled and filtered, and excess diketene was removed by distillation (15 mmHg). Rapid distillation (60-130 °C, 0.1 mmHg) of the crude residue followed by chromatography (ether-petroleum ether gradient) of the mixture gave three fractions. The first fraction was a mixture of diethyl maleate and diethyl fumarate (1.1 g), confirmed by comparison with authentic samples (GC and ¹H-NMR). The second fraction, after further purification by distillation (80 °C, 0.5 mmHg), gave 4b (3.75 g, 21%), The third fraction after further purification by distillation (80 °C, 0.5 mmHg) gave **3b** (2.0 g, 12%). The spectroscopic data for the title compounds (Tables 4 and 5) were in agreement with those previously reported.2,5

Spiro-	$\delta_{ m H}$	$\delta_{\rm c}$
3a	8.02–7.27 (5H, m, ArH), 3.82 (2H, s, CH ₂ COO), 3.14 (1H, dd, <i>J</i> 7.0 and 8.1, CHCH ₂), 2.44 (1H, t, <i>J</i> 7.0, CHCH(H)), 1.52 (1H, dd, <i>J</i> 7.0 and 8.1 CHCH(<i>H</i>))	Not determined
4a	8.04–7.51 (5H, m, ArH), 3.82 and 3.61 (2H, 2d, J 15.9, CH ₂ COO), 3.45 (1H, dd, J 7.0 and 8.4, CHCH ₂), 1.92 (2H, m, CHCH ₃)	Not determined
3b	4.21 (2H, q , J 7.1, CH ₂ CH ₃), 3.72 (2H, s, CH ₂ CO ₂), 2.11 (1H, dd, J 10.4 and 7.0, CHCH ₂), 2.05 (1H, t, J 7.0 CH(H)CH), 1.43 (1H, dd, J 10.4 and 7.0, CH(H)H), 1.29 (3H, t, J 7.1 CH ₂ CH ₂)	168.5 (C=O), 165.7 (C=O), 64.4 (s), 61.1, 43.3 (t), 22.1 (d), 14.8 (t), 14.0 (q)
4b	4.15 (2H, q, <i>J</i> 7.2, C <i>H</i> ₂ CH ₃), 3.74 and 3.65 (2H, 2d, <i>J</i> 17.0, CH ₂ CO ₂), 2.32 (1H, dd, <i>J</i> 10.5 and 6.9, CH(H)C <i>H</i>), 1.72 (1H, dd, <i>J</i> 10.5 and 6.9, C <i>H</i> (H)CH), 1.52 (1H, t, <i>J</i> 6.9, CH(H)CH), 1.25 (3H, t, <i>J</i> 7.2, CH ₂ CH ₄)	170.4 (C=O), 165.8 (C=O), 64.5 (s), 61.1, 41.8 (t), 21.2 (d), 14.8 (t), 14.0 (q)
4c	4.17 (2H, q, J 7.1, CH ₂ CH ₃), 3.74 and 3.63 (2H, 2d, J 17.2, CH ₂ CO ₂), 1.72 and 1.38 (2H, 2d, J 17.2, cyclopropyl CH ₂), 1.44 (3H, s, CH ₃), 1.27 (3H, t, J 7.1, CH ₂ CH ₃)	171.7 (C=O), 166.3 (C=O), 67.9 (s), 61.1, 42.2 (t), 25.3 (s), 21.4 (t), 14.0 and 13.6 (q)
3d	4.02 (2H, m, $CO_2CH_2CH_3$), 3.55 and 3.45 (2H, 2d, J 17.2, CH_2CO_2), 1.76 (1H, m, $CH(H)CCO_2$), 1.50 and 1.19 (2H, 2d, J 7.3 cyclopropyl H), 1.48 (1H, m, $CH(H)CCO_2$), 1.12 (3H, t, J 7.3, $CO_2CH_2CH_3$), 0.90 (3H, t, J 7.3, $CH_2CH(H)CCO_2$)	171.1 (C=O), 166.3 (C=O), 68.2 (s), 61.0, 42.5 (t), 31.1 (s), 21.5 (t), 20.0 (t), 14.0 and 11.5 (q)
4d	4.21 (2H, m, CO ₂ CH ₂ CH ₃), 3.64 and 3.54 (2H, 2d, J 17.1, CH ₂ CO ₂), 2.30 (1H, m, CH ₃ CH(H)CCO ₂), 2.19 and 1.05 (2H, 2d, J 7.0 cyclopropyl H), 1.26 (3H, t, J 7.3, CO ₂ CH ₂ CH ₃), 0.99 (3H, t, J 7.3, CH ₃ CH(H)CCO ₂), 0.85 (1H m, CH ₂ CH(H)CCO ₂)	169.1 (C=O), 165.8 (C=O), 67.1 (s), 61.2, 40.8 (t), 31.6 (s), 24.2, 17.9 (t), 14.0 and 10.5 (q)
3e	(11, iii, CH_2CH_3), 3.64 (2H, s, CH_2CO_2), 1.65–1.58 (2H, overlapping signals, <i>i</i> Pr H and cyclopropyl H), 1.30 (1H, d, <i>J</i> 6.7, cyclopropyl H), 1.29–1.09 (9H, overlapping signals, CH_3)	168.6 (C=O), 165.9 (C=O), 67.1 (s), 61.0, 40.9 (t), 35.0 (s), 31.9 (d), 19.5 and 18.9 (q), 18.3 (t) and 14.0 (q)
4e	4.14 (2H, m, CH ₂ CH ₃), 3.74 and 3.75 (2H, 2d, J 16.8, CH ₂ CO ₂), 2.07 (1H, d, J 7.4, cyclopropyl H), 1.36 (1H, m, <i>i</i> Pr H), 1.31–1.16 (7H, overlapping signals, <i>i</i> Pr H and cyclopropyl H), 0.99 (3H, t, J 7.4, CH ₂ CH ₃)	170.4 (C=O), 166.4 (C=O), 68.4 (s), 60.7, 42.9 (t), 34.4 (s), 30.2 (d), 20.9 (t), 19.6, 19.0 and 14.0 (q)
12a	7.88–6.80 (8H, m, Ar H), 3.92 and 3.64 (2H, 2d, <i>J</i> 16.4, CH ₂ CO ₂), 2.46 and 2.12 (2H, 2d, <i>J</i> 7.8, cyclopropyl H)	165.8 (C=O), 143.5, 142.2, 140.8, 139.5 (s), 126.7, 126.4, 121.9, 121.6, 120.1, 119.8 (d), 69.2 (s), 41.0 (t), 34.9 (s), 21.2 (t)
12b	8.48–6.71 (8H, m, Ar H), 3.82 and 3.33 (2H, 2d, J 16.7, CH ₂ CO ₂), 2.75 and 2.45 (2H, 2d, J 9.0, cyclopropyl H)	183.3 (C=O), 165.7 (C=O), 140.3, 138.2 (s), 133.7, 133.3, 133.0 (d), 132.6, 132.4 (s), 128.5, 128.0, 127.3, 125.2, 122.7 (d), 71.5 (s), 42.6 (t), 28.6 (s), 24.8 (t)
12c	6.61–6.50 (2H, m, cyclopentadienyl H), 6.34–6.24 (1H, m, cyclopentadienyl H), 3.90 and 3.67 (2H, 2d, <i>J</i> 17.2, CH ₂ CO ₂), 2.47 and 2.09 (2H, 2d, <i>J</i> 17.2, cyclopropyl H)	165.4 (C=O), 135.0–131.6 (d), 70.9, 44.2 (s), 43.5 (t), 19.6 (t)
12e	7.43–7.15 (4H, m, Ar H), 6.95 (1H, d, <i>J</i> 5.5, ArCH=CH), 6.02 (1H, d, <i>J</i> 5.5, ArCH=CH), 3.84 and 3.62 (2H, 2d, <i>J</i> 16.1, CH ₂ CO ₂), 2.29 and 2.09 (2H, 2d, <i>J</i> 16.1, cyclopropyl CH ₂)	165.4 (C=O), 143.6–120.8 (Ar), 69.3 (s), 43.3 (t), 39.1 (s), 20.5 (t)
12f	7.39–7.12 (10H, m, Ar H), 3.60 and 3.49 (2H, 2d, <i>J</i> 16.6, CH ₂ CO ₂), 2.02 and 1.93 (2H, 2d, <i>J</i> 7.7, cyclopropyl H)	166.5 (C=O), 140.6, 139.4 (s), 129.1, 128.8, 128.5, 127.7, 127.2, 127.0 (d), 68.0 (s), 42.2 (t), 35.8 (s), 21.7 (t)

Ethyl *trans*-1-methyl-5-oxo-4-oxaspiro[2.3]hexane-1-carboxylate 4c

Ethyl 2-diazopropionate⁷ **2c** (2.0 g, 15.6 mmol) in benzene was added dropwise to a stirred mixture of $Rh_2(OAc)_4$ (6 mg, 0.14 mmol) and diketene (15.0 g, 0.178 mol) over 2 h at 70 °C. The mixture was stirred for a further hour and then allowed to cool. After filtering through a short column of silica gel the excess diketene was removed (25 °C, 0.1 mmHg) to give a red oil. The title compound was obtained as a colourless oil after chromatography (0.32 g, 32%). Physical and spectroscopic data for **4c** are given in Tables 4 and 5.

Ethyl *cis*-1-ethyl-5-oxo-4-oxaspiro[2.3]hexanecarboxylate 3d and ethyl *trans*-1-ethyl-5-oxo-4-oxaspiro[2.3]hexanecarboxylate 4d

A solution of ethyl 2-diazobutyrate⁸ (2d, 1.4 g, 0.1 mol), diketene (10.0 g, 0.12 mol) and benzophenone (1.8 g, 0.1 mol) in acetonitrile (50 cm^3) was placed in a Rayonet reactor and was irradiated for 18 h. The acetonitrile and excess diketene was removed by distillation at room temperature under water and oil pump vacuum, respectively, to give a yellow oil. Chromato-

graphy of this oil (ether–petroleum ether, 3:7) gave in order of elution, **4d** (0.27 g, 13%) and **3d** (0.36 g, 17%). Physical and spectroscopic data for the title compounds are given in Tables 4 and 5.

Ethyl *cis*-1-(methylethyl)-5-oxo-4-oxaspiro[2.3]hexanecarboxylate 3e and ethyl *trans*-1-(methylethyl)-5-oxo-4-oxaspiro[2.3]hexanecarboxylate 4e

A solution of ethyl 2-diazoisovalerate⁸ (**2e**, 1.6 g, 0.1 mol), diketene (10.0 g, 0.12 mol) and benzophenone (1.8 g, 0.1 mol) in acetonitrile (50 cm³) was placed in a Rayonet reactor and was irradiated for 18 h. The acetonitrile and excess diketene was removed by distillation at room temperature under water and oil pump vacuum, respectively, to give a yellow oil. Chromatography of this oil (ether–petroleum ether, 3:7) gave in order of elution, **4e** (0.50 g, 26%) and **3e** (0.36 g, 18%). Physical and spectroscopic data for the title compounds are given in Tables 4 and 5.

trans-1-Heptanoyl-5-oxo-4-oxaspiro[2.3]hexane 4f¹⁷

A solution of 1-diazooctan-2-one⁹ 2f (2.3 g, 0.015 mol) in

benzene (10 cm³), was added dropwise over 2 h at 70 °C to a stirred mixture of $Rh_2(OAc)_4$ (6 mg, 0.14 mmol) and diketene (10.0 g, 0.12 mol). After cooling the mixture was filtered through a short bed of silica and the excess solvent and diketene were removed (25 °C, 0.1 mmHg). Chromatography of the residue (ether–petroleum ether, gradient) gave in order of elution, **4f** (0.88 g, 28%) and a 2:5 mixture of **4f** and **3f** (0.44 g, 14%).¹⁷ Physical and spectroscopic data were in excellent agreement with those previously reported.¹⁷

Dispiro[fluorene-9,1'-cyclopropane-2',2"-oxetan]-4"-one 12a

A solution of diazofluorene¹¹ **11a** (3 g, 0.016 mol) in ether was added dropwise over 2 h to a stirred solution of diketene (6.7 g, 0.08 mol) and $Rh_2(OAc)_4$ (2 mg, 6.5×10^{-5} mol) at room temperature. The formation of a white precipitate was observed as the addition progressed and on completion the mixture was cooled for 1 h in ice. Filtering, washing with cold petroleum ether (50 cm³) and drying under suction gave **12a** (Tables 4 and 5, 2.8 g, 71%) as a white solid. A further portion of the title compound was obtained (0.35 g, 14%) by concentration of the filtrate and chromatography (ether–petroleum ether gradient).

9,10-Dihydrodispiro[anthracene-10,1'-cyclopropane-2',2"oxetane]-4",10-dione 12b

Diazoanthrone¹² 11b (6.6 g, 0.03 mol) was dissolved in benzene (400 cm^3) and the mixture was degassed by bubbling N₂ through it for 1 h. A solution of diketene (25 g, 0.34 mol) in benzene (30 cm³) was similarly degassed. Rh₂(OAc)₄ (5 mg, 1×10^{-5} mol) was added to the stirred diketene solution and the diazoanthrone solution was then added dropwise over 4 h. Stirring was continued (1 h) until the red colour of diazoanthrone had completely disappeared. The reaction mixture was filtered and concentrated using a rotary evaporator without applying any heat. As the volume of the solution decreased, the crude spiro-β-lactone 12b (~90% pure) was obtained as a yellow solid (3.9 g) which was filtered off. Further concentration of the filtrate gave additional solid (1.0 g) and the combined solids were washed with cold petroleum ether to remove diketene. Silica gel chromatography (dichloromethane-petroleum ether gradient) of the solid (1.4 g) gave two fractions. The first compound was identified as anthraquinone (0.1 g, 4%). The second product was 12b (0.45 g, 15%) which was further purified by recrystallisation from ethanol; spectroscopic and physical data are given in Tables 4 and 5.

1-Oxadispiro[3.0.4.1]deca-6,8-dien-2-one 12c

Diazocyclopentadiene¹³ **11c** (1.0 g, 11 mmol) in benzene was added dropwise to a mixture of diketene (5.0 g, 60 mmol) and $Rh_2(OAc)_4$ (3 mg, 0.007 mmol) and benzene (2 cm³) at 80 °C for 3 h. Benzene was then removed on a rotary evaporator and excess diketene was removed using an oil pump vacuum at room temperature. Chromatography (petroleum ether elution) gave 1,1'-bi[cyclopentadienylidene]²⁶ **13c** (0.28 g, 41%). Further elution with ether–petroleum ether (1:10) gave **12c** (0.56 g, 37%) as a colourless oil. Physical and spectroscopic data for **12c** are given in Tables 4 and 5.

Dispiro[indene-1,1'-cyclopropane-2',2"-oxetan]-4"-one 12e

Diazoindene¹⁴ **11e** (2.0 g, 14 mmol) in benzene (10 cm³) was added to a mixture of diketene and $Rh_2(OAc)_4$ (3 mg, 0.007 mmol) in benzene (10 cm³) at 80 °C and the mixture was heated for 18 h. Benzene and diketene were removed as usual and the oil obtained was chromatographed (ether–petroleum ether gradient) and gave two fractions. The first fraction was the title compound (physical and spectroscopic data are given in Tables 4 and 5, 0.74 g, 26%). The second fraction was impure 3-methyl-2,5-dihydrospiro[furan-2,1'-indan]-5-one **15** (0.27 g,

10%) which decomposed on standing at room temperature; $\delta_{\rm H}$ 7.35–7.08 (4H, m, Ar H), 6.90 (1H, d, J 5.5, ArCH=CH), 6.58 (1H, br s, CH=CCH₃), 6.25 (1H, d, J 5.5, ArCH=CH), 2.41 (3H, br s, CH₃); $v_{\rm max}$ (film/cm⁻¹) 1793 (C=O).

The $Rh_2(OAc)_4$ catalysed reaction of 3-diazo-2-phenyl-3*H*-indole 11d with diketene

3-Diazo-2-phenyl-3*H*-indole¹⁵ **11d** (3.0 g, 0.015 mol) in benzene (10 cm³) was added dropwise to a stirred mixture of $Rh_2(OAc)_4$ (6 mg, 0.14 mmol) and diketene (10.0 g, 0.12 mol) over 2 h at room temperature. The excess solvent and diketene were removed (25 °C, 0.1 mmHg). Chromatography of the residue (ether–petroleum ether, gradient) gave 2,2'-diphenyl-3,3'-azinodi-3*H*-indole; mp 256–258 °C (lit.,¹⁸ 260 °C).

1,1-Diphenyl-4-oxaspiro[2.3]hexan-5-one 12f

A solution of diphenyldiazomethane ¹⁰ **11a** (2 g, 0.01 mol) and diketene (8.4 g, 0.1 mol) was irradiated in a Rayonet reactor in acetonitrile (50 cm³) for 40 h. The solution was cooled overnight and the white precipitate of benzophenone azine²⁷ **14f** (0.5 g) which formed was removed by filtration. The filtrate was concentrated giving a yellow oil (2.9 g) which was chromatographed. Elution with ether–petroleum ether (1:20) gave further benzophenone azine (0.4 g). Further elution with ether–petroleum ether (1:10) gave the title compound as an oil (0.36 g, 14%), which was crystallised from ether–petroleum ether giving a white solid (0.28 g, 11%). Physical and spectroscopic data for **12f** are given in Tables 4 and 5.

General procedure for sealed tube reactions

Borosilicate glass tubes were cleaned (water-detergent and acetone) and dried before use. The spiro- β -lactone (0.3–0.5 mmol) was added to a tube and this was then sealed. The tube was placed vertically in an oven at 170–190 °C for 50 min. The products were isolated from the reaction mixture by distillation, recrystallisation or chromatography. A summary of results is given in Table 2.

General procedure for metal catalysed rearrangement of spiro-βlactones to furanones

A typical procedure involved heating the spiro- β -lactone (1.0– 5.0 mmol) in refluxing toluene (5–20 cm³) in the presence of Cu(acac)₂ (20–100 mg, 0.008–0.04 mmol). The reactions were monitored by TLC, GC or IR. After completion, the product was dissolved in ether and was passed through a short column of silica (5 g) eluting with ether (100 cm³). The residue obtained after removal of ether was chromatographed (ether–petroleum ether gradient) to give the individual products. The physical and spectroscopic data of the products are given in Tables 6 and 7. A summary of the results is given in Table 3.

Sealed tube pyrolysis of ethyl *cis*-5-oxo-4-oxaspiro[2.3]hexane-1carboxylate 3b and ethyl *trans*-5-oxo-4-oxaspiro[2.3]hexane-1carboxylate 4b

The spirolactone **4b** was treated as described above and the crude products from a number of sealed tubes were combined (0.3 g). Rapid distillation (50 °C, 0.1 mmHg) gave an oil which was identified as ethyl 4-oxopentanoate (ethyl levulinate) **18b** (0.05 g, 17%) by comparison of its spectroscopic data with those of an authentic sample. The residue was chromatographed (chloroform–petroleum ether gradient) giving two fractions.

The first fraction was obtained as an oil (0.03 g, 10%), which was further purified by distillation (70–80 °C, 0.1 mmHg) and was identified as diethyl 3-oxohexane-1,6-dioate ⁵ **19b**; $\delta_{\rm H}$ 4.15 (2H, q, *J* 7.1, CH₂CH₃), 4.12 (2H, q, *J* 7.1, CH₂CH₃), 3.48 (2H, s, CO₂CH₂CO), 2.84 (2H, t, *J* 6.6, CH₂COCH₂CH₂), 2.59 (2H,

Furanone	Marka	Found (%) [Requires (%)]				
(molecular formula)	(solvent)	C	Н	Lactone C=O	Other C=O	C=C
6a (C ₁₂ H ₁₀ O ₃)	121-123 (petroleum ether)	71.3 [71.3]	5.0 [5.0]	1754	1680	1644
$8a(C_{12}H_{10}O_3)$	78-80 (Et ₂ O-petroleum ether)	71.5 [71.3]	5.2 [5.0]	1790	1684	1665
6b	Oil ²	_		1770	1730	
7b	Oil ²	_		1780	1730	
$7c (C_9H_{12}O_4)$	Oil	58.6 [59.0]	6.8 [6.5]	1782	1748	
$7d(C_{10}H_{14}O_4)$	Oil	60.3 [60.6]	7.0 [7.1]	1781	1748	
21a $(C_{17}H_{12}O_{2})$	133–134 (Et ₂ O–petroleum ether)	82.1 [82.2]	4.7 [4.9]	1756	_	1640
$22a (C_{17}H_{12}O_{2})$	>250 (CHCl ₃)	81.9 [82.2]	4.8 [4.9]	1778	_	1665
$21f(C_{17}H_{14}O_{2})$	91–93 (Et ₂ O)	81.2 [81.6]	5.4 [5.6]	1748	_	1640
$24(C_{18}H_{12}O_3)$	126–128 ($\tilde{E}t_2O$ –petroleum ether)	78.2 [78.3]	4.4 [4.4]	1754	1665	1643

 Table 7
 NMR spectroscopic data for furanones

Furanone	$\delta_{ m H}$	$\delta_{\rm C}$
6a	8.02-7.39 (5H, m, Ar H), 6.04 (1H, br s, C=CH), 4.96 (2H,	193.7 (C=O), 173.2 (C=O), 162.2, 135.7 (s), 134.1, 128.9, 128.3,
0	br s, CH ₂ O), 4.21 (2H, br s, CH ₂ Bz)	119.1 (d), 73.3 and 38.2 (t)
8a	(.95-/.46 (5H, m, Ar H), 6.25 (1H, br s, OCHBZ), 5.21 (1H, CHUL) = (.14) (1H, 1) (1H, 1) (2H, 1) (2H, 2) (2H	192.8 (C=O), $1/4.1$ (C=O), $13/.3$ (s), 134.4 (d), 133.5 (s), 129.2 (d),
	or s, $CH(H)=C$), 5.11 (1H, or s, $CH(H)=C$), 5.25 and 5.30	112.6 (t), 81.8 (d) and 33.3 (t)
a	$(2H, 2d, J, 21.3, CH_2CO_2)$	172.2 (C, Q) 1(7.8 (C, Q) 1(1 ((-) 118.2 (-) 72.0 (1.5.24.1 (-)
00	$0.00 (1H, DT S, C=CH), 4.91 (2H, DT S, CH_2O), 4.21 (2H, Q, U, T, 2) CH CH), 2.52 (2H, br c, O, CCH), 1.20 (2H, t, 1.7.2)$	1/3.3 (C=O), 10/.8 (C=O), 101.0 (S), 118.3 (d), 73.0, 01.3, 34.1 (l)
	$J / .2, CH_2 CH_3), 5.52 (2H, 018, O_2 CCH_2), 1.50 (5H, 1, J / .2, CH CH)$	and 15.8 (q)
7h	5.91(1H) hrs C-CH) 5.26(1H) hrs CHOCO) 4.28(2H) a	170.2 (C-O) 167.2 (C-O) 160.8 (c) 117.6 02.1 (d) 61.5 (t) and
70	J.72 CH CH) 216 (3H br s CH C-C) 1 32 (3H t $J.72$	170.2 (C=O), 107.2 (C=O), 100.8 (S), 117.0 , 92.1 (d), 01.5 (t) and 13.7 (a)
	$(J 7.2, CH_2CH_3), 2.10 (5H, 01 s, CH_3C=C), 1.52 (5H, t, J 7.2, CH CH)$	15.7 (q)
76	5.88 (1H br s C=CH) 4.23 (2H a 1.71 CH.CH.) 2.12	171.0 (C=O) 167.5 (C=O) 167.4 (s) 116.7 (d) 87.6 (s) 62.0 (t)
10	(3H br s CH.C=C) 170 (3H CH.) 129 (3H t 171	$20.3 \ 13.5 \ and \ 12.6 \ (a)$
	CH ₂ CH ₂)	20.5, 15.5 and 12.0 (q)
7d	5.86 (1H, br s, C=CH), 4.25 (2H, m, OCH ₂ CH ₂), 2.26 and	171.8 (C=O), 167.9 (C=O), 166.2 (s), 118.1 (d), 91.3 (s), 62.4, 27.1
	1.91 (each m, CH ₂ CCO ₂), 2.06 (3H, br s, CH ₂ C=C), 1.32	(t), 13.9, 13.2 and 7.1 (g)
	(3H, t, J7.3, OCH ₂ CH ₂), 0.91 (3H, t, J7.0, CH ₂ CH ₂ CCO ₂)	
21f	7.37–7.25 (10H, m, Ar H), 5.95 (1H, q, J 1.4, CH), 2.09 (3H,	171.9 (C=O), 170.8 (s), 138.46 (s), 128.7, 128.5, 127.5, 117.6 (d),
	d, J 1.4, CH ₃)	94.1 (s), 15.1 (q)
21a	7.79–7.19 (8H, m, Ar H), 6.12 (1H, q, J 1.4, CH), 1.55 (3H,	173.2 (C=O), 169.2, 140.6, 140.0 (s), 130.7, 128.8, 123.7, 121.2,
	d, J 1.4, CH ₃)	115.0 (d), 94.1 (s), 12.0 (q)
22a	7.78–7.32 (8H, m, Ar H), 5.55 (2H, br s, CH ₂ O), 3.84 (2H, br	a
	s, CH ₂ C=O)	
24	8.41–7.35 (8H, m, Ar H), 6.02 (1H, q, J 1.5, CH), 1.52 (3H,	182.9 (C=O), 173.4 (C=O), 172.6, 137.2 (s), 134.2 (d), 131.4 (s),
	d, J 1.5, CH ₃)	129.8, 127.9, 125.3, 115.0 (d), 85.9 (s), 12.8 (q)
^a Not suffic	iently soluble in CDCL or DMSO-d to obtain the 13 C spectrum	
	ientry soluble in CDC13 of D1000-46 to obtain the C spectrum.	

t, J 6.6, CH₂CH₂CO₂Et), 1.26 (3H, t, J 7.1, CH₂CH₃), 1.24 (3H, t, J 7.1, CH₂CH₃); $\delta_{\rm C}$ 201.0 (C=O), 172.4, 167.0 (s), 61.4, 60.7, 49.3, 37.4, 28.0 (t), 14.1 (q); $v_{\rm max}$ (film)/cm⁻¹ 1732 (C=O).

Evaporation of solvent gave ethyl 4-{6-[2-(ethoxycarbonyl)ethyl]-4-hydroxy-2-oxo-2*H*-pyran-3-yl}-4-oxobutanoate **20b** (0.13 g, 43%) as an oil (0.13 g, 43%) which solidified on cooling. Recrystallisation from petroleum ether gave **20b** as a white solid (0.05 g) (Found C, 56.7, H, 5.9. C₁₆H₂₀O₈ requires C, 56.5, H, 5.9%); $\delta_{\rm H}$ 16.20 (1, s, O*H*), 6.00 (1H, s, C=C*H*), 4.17 (2H, q, *J* 7.1, C*H*₂CH₃), 4.15 (2H, q, *J* 7.1, C*H*₂CH₃), 3.41 (2H, t, *J* 6.1, HC=CC*H*₂), 2.68 (6H, overlapping multiplets, CH₂), 1.28 (6H, overlapping triplets, *J* 7.1, CH₂CH₃); $\delta_{\rm C}$ 205.3 (C=O), 180.5 (s), 172.5 (C=O), 171.2 (C=O), 170.2 (C=O), 160.7 (s), 101.2 (d), 99.8 (s), 61.0, 60.6, 36.9, 30.4, 29.4, 27.8 (t), 14.1 (q); $v_{\rm max}$ (Nujol)/cm⁻¹ 1728 (C=O), 1712 (C=O), 1643 (C=C), 1615 (C=C); mp 46–47 °C. The spirolactone **3b** was pyrolysed in the same way giving only **18b** and **19b** (Table 2).

4'-Hydroxy-9,10-dihydrospiro[anthracene-9,1'-cyclopent[3]ene)-2',10-dione 16

The spiro- β -lactone **12b** (0.18 g, 0.65 mmol) was heated in refluxing toluene (20 cm³) for 72 h. A precipitate formed which was filtered off and identified as the title compound (0.12 g, 66%) (Found: C, 78.5; H, 4.3. C₁₈H₁₂O₃ requires C, 78.3; H,

4.4%); $\delta_{\rm H}$ (DMSO- d_6) 8.26–7.20 (8H, m, Ar H), 5.42 (1H, s, C=CH), 3.36 (2H, s, CH₂); $\delta_{\rm C}$ (DMSO- d_6) 199.5 (C=O), 193.5 (s), 182.7 (C=O), 143.6 (s), 134.0 (d), 130.7 (s), 127.5, 126.5, 125.7, 103.1 (d), 54.6 (s) and 48.1 (t); $v_{\rm max}$ (Nujol)/cm⁻¹ 2600 (OH, broad), 1662 (C=O), 1621 (C=O), 1600 (C=C) and 1529 (C=C); mp (decomp.) 210–240 °C. The spiroanthrone **16** was also obtained (¹H-NMR) when **12b** was stirred in ether (20 cm³) containing BF₃·OEt₂ (0.1 cm³) at room temperature.

4'-Methoxy-9,10-dihydrospiro[anthracene-9,1'-cyclopent[3]ene]-2',10-dione 17a and 2'-methoxy-9,10-dihydrospiro-[anthracene-9,1'-cyclopent[2]ene]-4',10-dione 17b

The spiroanthrone **16** (0.34 g, 1.2 mmol) was dissolved in methanol (3 cm³) and trimethyl orthoformate (1 cm³) and sulfuric acid (0.2 cm³) were added; the mixture was stirred under reflux for 3 h. The crude product was concentrated, sodium bicarbonate was added and the product was extracted with ether (4 × 40 cm³) and chloroform (1 × 20 cm³). The organic layers were combined and dried over anhydrous sodium sulfate. Filtration, concentration and chromatography gave **17a** (0.08 g, 24%) which was purified further by recrystallisation from an ether–methanol mixture (Found: C, 78.2; H, 4.9. C₁₉H₁₄O₃ requires C, 78.6; H, 4.9%); $\delta_{\rm H}$ 8.40–7.34 (8H, m, Ar H), 5.65 (1H, t, *J* 1.0, C=CH), 4.07 (3H, s, OCH₃), 3.38 (2H, d,

J 1.0, C*H*₂); $\delta_{\rm C}$ (DMSO-*d*₆) 202.5 (C=O), 191.5 (s), 183.3 (C=O), 143.3 (s), 134.0 (d), 131.5 (s), 127.9, 125.3, 103.7 (d), 59.7 (q), 55.1 (s) and 48.1 (t); $\nu_{\rm max}$ (Nujol)/cm⁻¹ 1696 (C=O), 1661 (C=O), 1627 (C=C) and 1593 (C=C); mp (decomp.) 197–200 °C.

Treatment of **16** (0.25 g, 0.9 mmol) in ether with an ethereal solution of diazomethane (0.7 g in 50 cm³) in the presence of BF₃·OEt₂ (1 drop) gave, after removal of solvent and chromatography a mixture of **17a** and **17b** (0.14 g, 56%) and recovered **16** (0.08 g, 33%). The presence of **17b** the mixture was supported by signals in the ¹H-NMR spectrum of the mixture at $\delta_{\rm H}$ 5.79 (1H, s, CH), 3.70 (3H, s, CH₃O), 3.03 (2H, s, CH₂).

Ethyl methyl 3-oxohexane-1,6-dioate 23b

A 6:5 mixture of **3b** and **4b** (0.5 g) and boron trifluoride– diethyl ether (2–3 drops) was stirred in dichloromethane (10 cm³), the reaction being monitored by GC. After 30 min complete consumption of the starting material had occurred and some ethyl 4-oxopentanoate had formed (GC). The reaction mixture was concentrated and was shown by ¹H-NMR and IR to contain, in addition to ethyl 4-oxopentanoate (**18b**), 6-ethyl hydrogen 3-oxoheptanoate **23a** and its enol tautomer; $\delta_{\rm H}$ 10.20 (br s, OH), 5.45 (s, CH=COH), 4.16 (q, J 7.2, CH₂CH₃), 3.66 (s, HO₂CCH₂CO), 2.80–2.20 (m, CH₂CH₂), 1.22 (3H, t, J 7.2, CH₂CH₃); $v_{\rm max}$ (film)/cm⁻¹ 3430 (OH), 1734 (C=O) and 1645 (C=C).

The product was dissolved in ether and was extracted with 5% sodium carbonate (100 cm³). The aqueous layer was then acidified with 5% hydrochloric acid and extracted with ether. The ether layer thus obtained was dried over anhydrous sodium sulfate. Filtration and concentration gave the β -ketoacid in the keto form exclusively. The product was dissolved in ether and after an ethereal solution of diazomethane (0.7 g, 0.017 mol) was added the solution was allowed to stand for 24 h. Concentration gave 23b (0.23g) which was further purified by distillation (70-80 °C, 0.1 mmHg, 0.18 g, 37%) (Found C, 53.9; H, 7.1. C₉H₁₄O₅ requires C, 53.5; H, 7.0%); δ_H 4.12 (2H, q, J 7.2, CH₂CH₃), 3.74 (3H, s, OCH₃), 3.52 (2H, s, CH₃O₂CCH₂), 2.87 (2H, t, J 6.2, O2CCH2CH2), 2.58 (2H, t, J 6.2, O2CCH2CH2), 1.22 (3H, t, J 7.2, CH₂CH₃); δ_C 220.8 (C=O), 172.3, 167.3 (s), 61.3 (t), 52.2 (q), 48.9, 37.3, 27.8 (t), 14.0 (q); v_{max} (film)/cm⁻¹ 1729 (C=O).

Acknowledgements

The financial support provided by the Irish science and technology agency, Enterprise Ireland, is gratefully acknowledged.

References

- 1 R. J. Clemens, Chem. Rev., 1986, 86, 241.
- 2 T. Kato and N. Katagiri, Chem. Pharm. Bull., 1973, 21, 729.
- 3 T. Kato, N. Katagiri and R. Sato, *Chem. Pharm. Bull.*, 1979, **27**, 1176.
- 4 N. W. A. Geraghty and P. V. Murphy, *Tetrahedron Lett.*, 1994, **35**, 6737.
- 5 T. Kato, N. Katagiri and R. Sato, J. Chem. Soc., Perkin Trans. 1, 1979, 525.
- 6 M. S. Newman and P. Beul, J. Am. Chem. Soc., 1949, 71, 1506.
- 7 J. Hendrickson and W. Wolf, J. Org. Chem., 1968, 33, 3610.
- 8 M. Regitz and F. Menz, Chem. Ber., 1968, 101, 2622.
- 9 E. Wenkert, J. Am. Chem. Soc., 1970, 92, 7428-7436.
- 10 D. D. Keith, J. Tengi, P. Rossman, L. Todaro and M. Weigele, *Tetrahedron*, 1983, **39**, 2445.
- 11 R. A. Moss and M. A. Joyce, J. Am. Chem. Soc., 1978, 100, 4475.
- 12 M. Regitz, Chem. Ber., 1964, 97, 2742.
- 13 W. Von, E. Doering and C. H. Dupuy, J. Am. Chem. Soc., 1953, 75, 5400.
- 14 J. E. Baldwin and K. A. Black, J. Am. Chem. Soc., 1984, 106, 1029.
- 15 A. Gonzalez and C. Galvez, Synthesis, 1981, 741.
- 16 G. Dana, O. Convert, J. P. Girault and E. Mulliez, Can. J. Chem., 1976, 54, 1827.
- 17 S. Takano, T. Sugahara, M. Ishiguro and K. Ogasawara, *Heterocycles*, 1977, 6, 1141.
- 18 C. Galvez, A. Gonzalez and A. Serra, J. Chem. Res. (S), 1985, 402.
- 19 P. D. Cunningham, N. W. A. Geraghty, P. J. McArdle, P. V. Murphy and T. J. O'Sullivan, J. Chem. Soc., Perkin Trans. 1, 1997, 1.
- 20 H. Stetter and M. Schreckenberg, Chem. Ber. 1974, 107, 2453.
- 21 P. Dowd and S.-C. Choi, Tetrahedron, 1989, 45, 1, 77.
- 22 J. Adams and D. M. Spero, Tetrahedron, 1991, 47, 1765.
- 23 M. P. Doyle and D. Van Leusen, J. Org. Chem., 1982, 47, 5326.
- 24 A. B. Steele, A. B. Boese and M. F. Dull, J. Org. Chem., 1949, 14, 460.
- 25 S. Searles, in *Comprehensive Heterocyclic Chemistry*, ed. A. R. Katritzky and C. W. Rees, Pergamon, Oxford, 1994, vol. 7, p. 363.
- 26 A. G. Davies, J. R. M. Giles and J. Lusztyk, J. Chem. Soc., Perkin Trans. 2, 1981, 747.
- 27 M. P. Doyle, R. L. Dorow, W. H. Tamblyn and W. E. Buhro, *Tetrahedron Lett.*, 1982, 23, 2261.