Journal of Organometallic Chemistry 762 (2014) 9-18

Contents lists available at ScienceDirect

Journal of Organometallic Chemistry

journal homepage: www.elsevier.com/locate/jorganchem

Approaches toward (η^2 -HX) (X = H, SiR (R = Me_3 or Me_2Ph), CH₃) sigma-complexes of ruthenium

K.S. Naidu, Balaji R. Jagirdar*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India

ARTICLE INFO

Article history: Received 11 February 2014 Received in revised form 25 March 2014 Accepted 26 March 2014

Keywords: Lithium tris(pyrazolyl)methane sulfonate $\sigma-Dihydrogen$ $\sigma-Silane$ $\sigma-Methane$

Introduction

Coordination of an H–X bond (X = H, C, Si) to a transition metal center in an η^2 -fashion, in the so-called σ -complexes has immense importance in the field of catalysis [1–3]. Generally, these σ -complexes are defined as metal complexes containing a ligand in which a σ -bond, H–X (X = H, C, Si, and B) acts as a two-electron donor to the metal center, resulting in a 3 center-2-electron bond [1]. Particularly, the σ –H₂ complexes form the best-known group of σ -complexes in which the H–H bond is bound to the metal center in an η^2 -fashion. In addition, several well characterized examples of η^2 -silane and η^2 -borane complexes have also been reported [4]. In recent years, the carbon analogs of these complexes in which alkanes are coordinated through η^2 -C–H bonds to a metal center have been attracting immense attention from the standpoint of organometallic catalysis [5–8].

These σ -complexes are key intermediates in catalytic processes such as hydrogenation, hydrosilylation, hydroboration and alkane functionalization etc. Understanding the nature of the σ -complexes provides an insight into the activation of H–X bonds by transition metal centers. It is also important for fine catalyst design.

Hydrotris(1-pyrazolyl)borate [HB(pz)₃, Tp] and its derivative hydrotris(3,5-dimethyl-1-pyrazolyl)borate [HB(3,5Me₂pz), Tp'] have been widely explored, however, in comparison, the chemistry of tris(pyrazolyl)methane sulfonate (Tpms)-transition metal complexes has been far less developed [9]. The Tpms bears a methanesulfonate anionic moiety, which imparts very good stability

* Corresponding author. E-mail address: jagirdar@ipc.iisc.ernet.in (B.R. Jagirdar).

ABSTRACT

Two new Ru(II)-complexes [RuH(Tpms)(PPh₃)₂] **1** (Tpms = $(C_3H_3N_2)_3CSO_3$, tris-(pyrazolyl)methane sulfonate) and [Ru(OTf)(Tpms)(PPh₃)₂] **2** (OTf = CF₃SO₃) have been synthesized and characterized wherein Ru–H and Ru–OTf are the key reactive centers. Reaction of **1** with HOTf results in the [Ru(η^2 -H₂)(Tpms)(PPh₃)₂][OTf] complex **3**, whereas reaction of **1** with Me₃SiOTf affords the dihydrogen complex **3** and complex **1** through an unobserved σ -silane intermediate. In addition, an attempt to characterize the sigma methane complex via reaction of complex **1** with CH₃OTf yields complex **2** and free methane. On the other hand, reaction of [Ru(OTf)(Tpms)(PPh₃)₂] **2** with H₂ and PhMe₂SiH at low temperature resulted in σ -H₂, **3** and a probable σ -silane complexes, respectively. However, no σ -methane complex was observed for the reaction of complex **2** with methane even at low temperature.

© 2014 Elsevier B.V. All rights reserved.

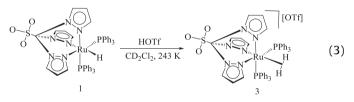
toward hydrolysis and an increased solubility in polar solvents [10]. It is a very good chelating tripodal ligand and shows dynamic κ^2 and κ^3 modes of coordination. In addition, it behaves as a flexidentate NNN and NNO donor, depending on the nature of the complex [11]. This versatile behavior of the Tpms ligand, motivated us to explore the chemistry of ruthenium complexes for σ -bond activation; to our knowledge, very few results on C–H bond activation of benzene by metal complexes bearing the Tpms ligand are reported [12,13].

Several synthetic methods are available to obtain σ -complexes. For example, coordinatively unsaturated complexes or complexes having highly labile groups react with H–X (X = H, C, Si, and B) σ –donor ligand resulting in the formation of σ -complexes. Another approach involves reaction of metal-hydride ([M]-H) complexes with electrophiles such as HOTf, CH₃OTf, and Me₃SiOTf to lead to formation of σ -complexes. In addition, metal-alkyl (or silyl) complexes also react with H^+ to form σ -complexes [14,15]. However, limited examples of metal complexes that can stabilize all three σ -donor ligands (H–H, Si-H, and C-H) have been reported; e.g., Kubas and co-workers reported a metal complex wherein Si-H, H-H, and agostic C-H bonds are bound to the same metal fragment in an η^2 fashion [16]. In order to widen the scope of these studies and to gain more insight into the bonding nature and reactivity behavior of σ -H₂, silane and methane complexes, we employed two strategies to obtain these complexes in solution. In the first, reactions of [RuH(Tpms)(PPh₃)₂], **1** (Tpms = tris(pyrazolyl))methane sulfonate) with electrophilic reagents such as HOTf, Me₃SiOTf, and CH₃OTf and in the second strategy, reactions of $[Ru(OTf)(Tpms)(PPh_3)_2]$ (OTf = CF₃SO₃), **2** with H₂, PhMe₂SiH, and CH₄ (at 7 bar) at low temperature were carried out. Herein, we describe these reactions in detail.

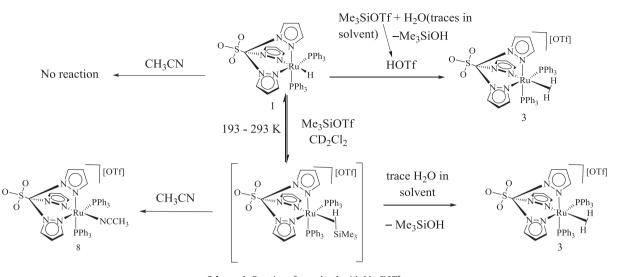
Results and discussion

Synthesis and characterization of [RuH(Tpms)(PPh₃)₂], **1** and [Ru(OTf)(Tpms)(PPh₃)₂], **2** complexes

Reaction of [RuH₂(PPh₃)₄] with LiTpms produced the yellow monohydride complex [RuH(Tpms)(PPh₃)₂] (eq (1)). Upon workup and crystallization in CH₂Cl₂—n-hexane solutions, yellow crystals of the complex were obtained in 50% yield. The ¹H NMR spectrum of **1** shows a triplet for the hydride at δ – 13.35 due to coupling with 2 equivalent cis phosphorus nuclei with a *J*(H,P_{cis}) of 27.7 Hz. The Tp analog [RuH(Tp)(PPh₃)₂], reported by Lau and Jia exhibits very similar NMR spectral features [17]. The ³¹P{¹H} NMR spectrum is composed of only one singlet at δ 65.8, indicating the *cis* disposition of the two phosphines.


We also found that in dichloromethane, complex 1 slowly undergoes hydride chloride exchange in days. In an attempt to prepare a five coordinate [Ru(Tpms)(PPh₃)₂][OTf] complex from [Ru(Cl)(Tpms)(PPh₃)₂], we used AgOTf for the abstraction of chloride. Because of the high instability of the putative five coordinate species upon chloride abstraction, it immediately reacts with the triflate anion and affords [Ru(OTf)(Tpms)(PPh₃)₂], complex 2 (eq (2)). Formation of complex **2** was evidenced by NMR spectroscopy and X-ray crystallography. This product was crystallized from a dichloromethane solution via slow diffusion of petroleum ether at room temperature over a period of 2 days; yellow crystals were obtained in 80% yield. Complex 2 is moderately soluble in toluene, THF and completely soluble in chlorinated solvents. ¹⁹F NMR spectrum confirmed the presence of a coordinated triflate ligand. In particular, ¹⁹F NMR spectrum of **2** exhibits a singlet for CF₃ at δ –76.6 ppm, downfield from free triflate ion (δ –79.0 ppm). The ³¹P 1 H NMR spectrum displays a single peak at δ 36.6 ppm indicating the cis disposition of the two equivalent phosphines.

Protonation of [RuH(Tpms)(PPh₃)₂]


We carried out protonation of the monohydride complex, $[RuH(Tpms)(PPh_3)_2]$ with HOTf in dichloromethane which resulted in the molecular hydrogen complex $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$, **3** at low temperature (243 K) (eq (3)). The existence of the η^2-H_2 moiety in **3** was confirmed by

variable-temperature spin-lattice relaxation time measurements T_1 and the observation of a large ${}^1J(H,D)$ for the corresponding isotopomer [Ru(HD)(Tpms)(PPh₃)₂][OTf], **3-d₁**. The ¹H NMR spectrum of **3** in CD₂Cl₂ showed a broad signal at δ –7.63 ppm integrating to two hydrogen atoms. A T_1 (min) value of 15.8 ms (400 MHz) was obtained for the broad signal at -7.63 ppm at 243 K. The H–H distances $d_{\rm HH}$ can be calculated from the T_1 (min) value [18] and are 1.08 and 0.85 Å for slow and fast rotation regimes of the bound H_2 in **3**. More definitive evidence for the intact nature of the H-H bond in these derivatives was obtained from the J(H,D) coupling for the HD isotopomer. We purged the CD_2Cl_2 solution containing the $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$ complex with HD gas (generated from NaH and D₂O) at 243 K, which gave the η^2 -HD isotopomer [Ru(η^2 -HD)(Tpms)(PPh₃)₂] [OTf]; it showed a 1:1:1 triplet $({}^{1}J(HD) = 31.6 \text{ Hz})$ of a 1:2:1 triplet (${}^{2}J(HP) = 6.6 \text{ Hz}$) centered at δ –7.63 ppm in the ${}^{1}H$ NMR spectrum, after nullifying the η^2 -H₂ peak at δ –7.63 ppm by using the inversion-recovery method with a delay time of 11 ms. The H–H distance $(d_{\rm HH})$ calculated from the inverse relationship between $d_{\rm HH}$ and $J(\rm H,D)$ of the HD isotopomer [19,20] is 0.86 Å (see Supporting information) which closely corresponds to the value calculated from T_1 for rapidly rotating H₂. Dihydrogen complex **3** was found to be labile at room temperature; the bound H₂ gets replaced by the counter anion OTf and leads to the formation of [Ru(OTf)(Tpms)(PPh₃)₂].

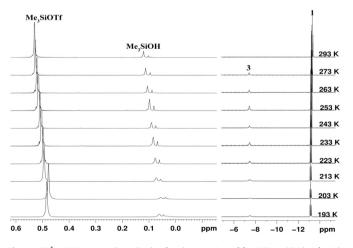
Reaction of [RuH(Tpms)(PPh₃)₂], 1 with Me₃SiOTf

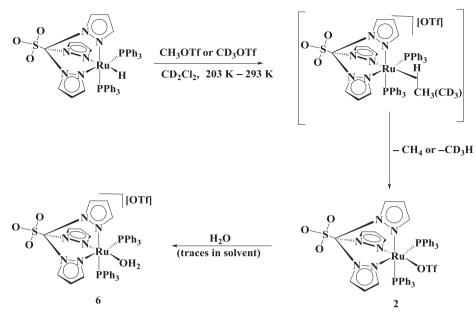
In an attempt to obtain a ruthenium η^2 -silane complex, we treated complex 1 with Me₃SiOTf and monitored the reaction using NMR spectroscopy. In this reaction at 193 K, instead of cationic η^2 – silane intermediate we observed peaks corresponding to the dihydrogen complex **3** and hydride complex **1** (Scheme 1). On the basis of these products we propose that the electrophile Me₃Si⁺ attacks complex **1** and forms a highly electrophilic unobservable cationic $[Ru(\eta^2-HSiMe_3)(Tpms)(PPh_3)_2][OTf]$ species. This species rapidly undergoes hydrolysis due to the presence of residual water in the solvent and forms dihydrogen complex 3 and Me₃SiOH (Scheme 1). Brookhart and his co-workers [15] noted that cationic η^2 -silane complexes are quite sensitive to weak nucleophiles or even non-nucleophilic counter ions such as BF₄, resulting in the formation of R₃SiF. Closely related system, for example, $[Fe(Cp)(\eta^2 -$ HSiEt₃)(CO)(PEt₃)][BF₄] is readily hydrolyzed by trace amount of water and forms Et₃SiOH and [Fe(η²-H₂)(Cp)(CO)(PEt₃)][BF₄] [21]. The appearance of a broad singlet at δ –7.63 ppm in the ¹H NMR spectrum and a singlet at δ 43.6 ppm in the ³¹P{¹H} NMR spectrum are consistent with the dihydrogen complex [Ru(η^2 -H₂)(Tpms)(PPh₃)₂][OTf], **3** all other signals of complex **3** were also observed and matched those of an authentic sample. In addition, Me₃SiOH shows a singlet at δ 0.05 ppm for methyl protons in the ¹H NMR spectrum (Fig. 1). Another possibility is that the electrophilic reagent reacts first with the water present in the solvent to generate HOTf, which causes the protonation of the hydride complex to form the dihydrogen complex **3** (see Supplementary material). In order to trace generation of HOTf, we carried out an independent reaction; reaction of Me₃SiOTf and water leads to the

Scheme 1. Reaction of complex 1 with Me₃SiOTf.

formation of HOTf (see Supplementary material). On the other hand, cationic silane intermediate could also undergo nucleophilic attack by counter ion OTf, leading to the formation of **1** and Me₃SiOTf. Identification of methyl signals in the NMR spectrum for the eliminated Me₃SiOTf was difficult due to excess Me₃SiOTf present in the reaction mixture. As is evident from the ¹H NMR spectral stack plot, the signal of the dihydrogen complex **3** remained intact up to 273 K and due to lower thermal stability of **3** at higher temperature (293 K) it eliminates H₂ and forms complex **2** (see Supplementary material). Formation of complex **3** even at low temperature is indicative of the highly reactive nature of the cationic σ -silane intermediate which undergoes Si–H bond cleavage by weak nucleophiles such as residual water.

From the VT ¹H NMR spectral stack plot it is apparent that (Fig. 1), the starting materials (complex 1 and Me₃SiOTf) were present throughout the temperature range (193–293 K). Another possibility is that there is no reaction between complex 1 and Me₃SiOTf. To rule out this possibility, we carried out two independent reactions of complex 1 (see Supplementary material). In the first reaction, complex 1 was treated with acetonitrile, however no reaction took place. In the second reaction, acetonitrile was added to the solution of complex 1 and Me₃SiOTf in dichloromethane; in




Fig. 1. VT ^1H NMR spectral stack plot for the reaction of $[\text{RuH}(\text{Tpms})(\text{PPh}_3)_2]$ with Me_3SiOTf.

this case, we observed complete conversion of the hydride complex 1 to acetonitrile complex [Ru(NCCH₃)(Tpms)(PPh₃)₂][OTf], **8**. These observations suggest that Me₃Si⁺ electrophile attacks the hydride complex and forms the highly electrophilic cationic [Ru(η^2 -HSi-Me₃)(Tpms)(PPh₃)₂][OTf] sigma silane complex. To this solution, addition of acetonitrile results in elimination of free silane which is observed in the NMR when acetonitrile substitutes for the silane. Whereas, in the absence of acetonitrile, OTf⁻ acts as a nucleophile and brings about the Si–H bond cleavage leading to the formation of hydride complex **1**.

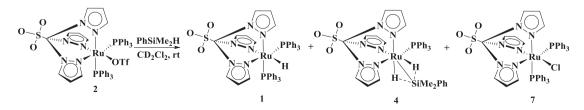
Attempt to prepare $[Ru(\eta^2-CH_4)(Tpms)(PPh_3)_2][OTf]$

Brookhart and co-workers reported solution state NMR characterization of sigma methane complex [(PONOP)Rh(CH₄)]⁺ at -110 °C which strengthen our understanding of the binding of the C–H bond of methane and its activation [6]. Recently, Weller et al. characterized rhodium(I) σ –alkane complex in the solid state [8]. In addition, Perutz and co-workers reported Mn–propane and Mn–butane σ –alkane complexes of [MnCp(CO)₂] fragment which was generated in situ from [MnCp(CO)₃] photochemically at low temperature with alkane as solvent [22]. Moreover, Ball and his group recently reported the [(L_{OEt})Re(CO)₂(alkane)] (alkane = cyclopentane, cyclohexane, pentane; L_{OEt} = cyclopentadienyltris(diethyl-phosphito)cobaltate(III)) species using both IR and NMR spectroscopies [23]. These results extend the range of alkane complexes observable by NMR spectroscopy.

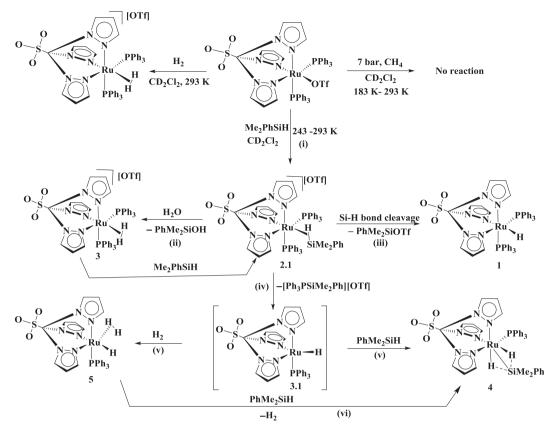
Following the Brookhart's strategy, we attempted to generate methane ligand directly bound in the coordination sphere of the ruthenium metal by treating electrophilic reagent (CH₃OTf or CD₃OTf) with hydride [RuH(Tpms)(PPh₃)₂] (Scheme 2). We found that the reaction was quite slow at low temperature (203 K), however, at 213 K complex 1 started reacting and eliminates CH₄ (or CD_3H) accompanied by the formation of complex **2**. The sigma methane intermediate was not observed even after ~ 2 h at 213 K. We noted signals for CH₄ and CD₃H at δ , 0.18 and 0.16 ppm, respectively in the ¹H NMR spectra. In addition, ³¹P{¹H} NMR spectrum shows a peak at δ 36.5 ppm for complex **2** (see Supplementary material). Other minor products were $[Ru(\eta^2 -$ H₂)(Tpms)(PPh₃)₂][OTf] (**3**) and [Ru(H₂O)(Tpms)(PPh₃)₂][OTf] (**6**). The possible pathway for the generation of these minor products is through the hydrolysis of CH₃OTf by residual water which generates HOTf which in turn protonates complex 1 and leads to the

formation of complex **3**. ³¹P{¹H} NMR spectral stack plot (see Supplementary material) suggests that complex **6** is formed through complex **2**. Even trace amount of moisture in rigorously dried solvent causes the formation of the aqua complex. Since alkanes and in particular methane, are very poor electron donors and acceptors, bind rather quite weakly to metal centers. Stronger binding ability of OTf compared to CH₄ or CD₃H rendered the formation and observation of only the triflate complex but not the methane complex.

Reaction of [Ru(OTf)(Tpms)(PPh₃)₂] with H₂


In the case of protonation reaction of complex **1** with HOTf, we noted that complex **3** to be quite unstable at room temperature and resulted in the formation of complex **2** and evolution of free H₂ over ~ 10 min. However, complex **3** was found to be stable enough and H₂ was bound intact to the metal center at low temperature (243 K), and no free H₂ was observed. In an attempt to observe complex **3** at RT, complex **2** was pressurized with 1 or 2 bar of H₂ at 298 K which resulted in the formation of a small amount of dihydrogen complex [Ru(η^2 -H₂)(Tpms)(PPh₃)₂][OTf] (**3**) (Scheme 4) via the displacement of the weakly bound OTf ion (see Supplementary material). This indicates that H₂ is not a better donor than OTf at room temperature.

Reaction of [Ru(OTf)(Tpms)(PPh₃)₂] with PhMe₂SiH


Reaction of [Ru(OTf)(Tpms)(PPh₃)₂] (**2**) with PhMe₂SiH at room temperature resulted in the formation of [RuH(Tpms)(PPh₃)₂] (**1**),

 $[Ru(Tpms)(PPh_3)(\eta^3-HSiMe_2Ph)]$ (4), $[RuCl(Tpms)(PPh_3)_2]$ (7) complexes and PhMe_2SiOH, PhMe_2SiOTf and $[PPh_3SiMe_2Ph][OTf]$ as evidenced by NMR spectroscopy (Scheme 3). This reaction was found to be slow and took ~24 h at room temperature to reach completion. The spectral properties of 1, 4 and 7 matched those of similar complexes reported in the literature [24,25] (see Supplementary material). In order to get an insight into the mechanistic aspects of the reaction, we carried out the same reaction at low temperature and monitored the progress of the reaction by using VT NMR spectroscopy. The VT partial ¹H NMR spectral stack plot of this reaction is shown in Fig. 2 and the corresponding ³¹P{¹H} NMR spectral stack plot has been deposited in the Supplementary material.

Complex **2** contains a triflate, which is bound to the ruthenium center opposite to one of the nitrogen atoms of the pyrazole of Tpms ligand. Generally, silanes are good sigma donors when compared to the H–H and C–H mojeties [26]. In this reaction Si–H bond of HSiMe₂Ph could replace the weakly coordinating triflate to form highly reactive cationic intermediate $[Ru(Tpms)(PPh_3)_2(\eta^2 -$ HSiMe₂Ph)][OTf] 2.1 (see Scheme 4). It is well established that labile ligands in transition metal complexes can be displaced by free silanes to form η^2 -silane complexes [21]. The ¹H NMR spectral data displayed a low intensity broad singlet at -6.21 ppm and the ^{31}P ¹H} NMR showed a signal at 47.2 ppm. These signals could be due to the η^2 -silane species **2.1** at 253 K. Appearance of a broad signal is indicative of rapid exchange of coordinated silane with triflate in the temperature range 253–223 K. Mechanistically, these reactions may proceed via two main pathways. The first pathway wherein intermediate species 2.1 undergoes rapid hydrolysis of Si-H bond

+ Me₂PhSiOTf + Me₂PhSiOH + [Me₂PhSiPPh₃][OTf]

Scheme 4. Proposed mechanism of the reaction of complex 2 with PhMe₂SiH.

due to the presence of residual water, leads to H₂ gas evolution and PhMe₂SiOH formation. This process would take place until complete consumption of residual water present in the solvent. At the same time, very small amount of aqua complex **6** present in the starting material also assists the hydrolysis of free silane via an intermediate **2.1** and forms H₂ and PhMe₂SiOH. The hydrolysis products H₂ gas and PhMe₂SiOH were noted in the ¹H NMR spectrum as a singlet at δ 4.6 ppm and another singlet at 0.3 ppm for methyl protons of PhMe₂SiOH (see Supplementary material). Free H₂ generated in the reaction gets consumed by complex **2** giving

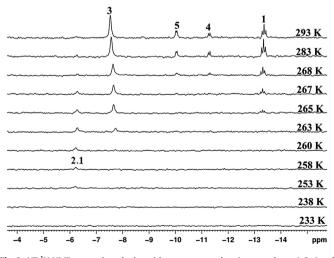
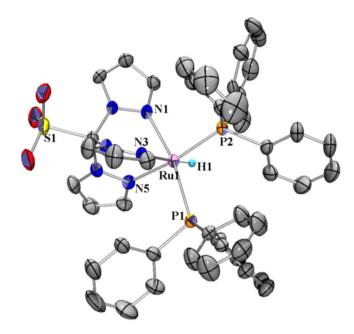



Fig. 2. VT ¹H NMR spectral stack plot with temperature showing complexes 1, 3, 4 and 5 in the reaction of complex 2 with PhMe₂SiH in CD_2CI_2 .

rise to **3** as noted above. The appearance of a broad singlet at δ –7.63 ppm and singlet at δ 43.6 ppm in the ¹H and ³¹P{¹H} NMR spectra, respectively are consistent with the dihydrogen complex 3. In order to understand the origin of H₂, we carried out few independent reactions; reaction of PhMe₂SiH with residual water in CD₂Cl₂ leads to no H₂ evolution and silane hydrolysis even up to \sim 2 h. Once we add complex 2 to this solution, we noted instantaneous liberation of H₂ (signal at δ 4.6 ppm in ¹H NMR spectrum), along with Me₂PhSiOH (see Supplementary material). This indicates an important role of complex 2 in the initiation of metal complex assisted silane hydrolysis. Attempts to avoid all traces of water from CD₂C1₂ and PhMe₂SiH to protect the cationic silane intermediate 2.1 from hydrolysis were unsuccessful. Wide variety of neutral transition metal sigma silane complexes have been extensively studied although the cationic complex of type 2.1 is limited due to its remarkable reactivity toward water and attack of weakly coordinating anions such as BF₄, OTf [15,27]. In the other pathway, the intermediate 2.1 rapidly undergoes Si-H bond cleavage by weakly coordinating counter anion OTf to afford hydride derivative [RuH(Tpms)(PPh₃)₂], 1 and PhMe₂SiOTf as observed in the NMR spectra. More importantly, from the ¹H NMR spectral stack plot we noted that hydrolysis was much more rapid in comparison to Si-H bond cleavage by counter anion OTf which could be due to the better nucleophilicity of water than that of OTf. The Si–H bond cleaved product, PhMe₂SiOTf was noted in the ¹H NMR spectrum as a singlet at δ 0.7 ppm for methyl groups. There have been limited reports in the literature about heterolytic cleavage of SiH bond, in which a σ -complex was observed as an intermediate in the activation pathway [15,21,28]. Upon raising the temperature of the reaction to 268 K, the spectral stack plots (Fig. 2) show complexes **4** and **5** along with formation of [PPh₃SiMe₂Ph] [OTf] species. Complex **4** shows a doublet at δ –11.21 ppm (Ru- η^3 - H₂SiMe₂Ph) which integrates to two protons in the ¹H NMR spectrum; the doublet is flanked by ²⁹Si satellite signals J(SiH) = 22 Hz indicating the presence of η^2 -silane ligand and a sharp singlet at δ 69.9 ppm in the ³¹P{¹H} NMR spectrum. Similar complex of **4** with Tp ligand was reported by Lau et al. by reacting [TpRuH(CH₃CN)(PPh₃)] with PhMe₂SiH at 90 °C for 4 h [24]. In addition, complex **5** shows a doublet at $\delta - 10.11$ ppm (RuH-n²-H₂) in the ¹H NMR spectrum and a sharp singlet at δ 70.19 ppm in the $^{31}P{^{1}H}$ NMR spectrum. The value of J(HP) = 18 Hz and the peak nature for the dihydrogen complex can be compared with the analogous $[TpRuH(\eta^2-H_2)(PPh_3)]$ complex [29]. It might be that complex 2.1 undergoes subsequent intramolecular dissociation of [PPh₃SiMe₂Ph][OTf] (Scheme 4) and formation of unobserved complex [RuH(Tpms)(PPh₃)], 3.1. In this reaction, the in-situ formation of [PPh₃SiMe₂Ph][OTf] was not observed in the NMR spectrum at low temperature because of its poor solubility. However at room temperature, the ¹H NMR spectrum of [PPh₃SiMe₂Ph] [OTf] shows a doublet at 2.78 ppm and the ³¹P{¹H} NMR spectrum displayed a signal at 21.2 ppm, which was further confirmed by HSQC of ¹H-³¹P NMR spectrum (see Supplementary material). A similar observation on the intramolecular dissociation was reported wherein Si–H bond gets cleaved at the metal center with elimination of Si–OH species [24]. Based on NMR spectral evidence, it could be envisioned that formation of complexes 4 and 5 take place via the intermediacy of a highly reactive five coordinated neutral complex **3.1**; this species could be a very short lived one and reacts instantaneously with PhMe₂SiH and free H₂ present in the solution. Apparently, we noted that the major product was 4 compared to **5** because it can also react with free silane (PhMe₂SiH) present in the solution to form 4. Additionally, to rule out the possibility of formation of 4 and 5 via 1, we independently established the reaction of 1 with PhMe₂SiH at room temperature and found that formation of a small amount of **4** and free PPh₃ take place after one week (see Supplementary material). On the other hand, complex **3** is unstable at room temperature and slowly goes back to $[Ru(OTf)(Tpms)(PPh_3)_2]$ within a short time (~10 min). Another plausible route for the formation of complex 3 is that H₂ could be substituted by PhMe₂SiH to give 2.1 (as mentioned earlier, silane is a better donor than H_2). Complex 1 is reactive toward CD₂Cl₂ to form [RuCl(Tpms)(PPh₃)₂], 7 through a metathesis process. Complex **7** shows a sharp singlet at 37.5 ppm in the ${}^{31}P{}^{1}H{}$ NMR spectrum.

Attempted preparation of sigma methane complex from $[Ru(OTf)(Tpms)(PPh_3)_2]$ and CH_4 at 7 bar

The lability of triflate in complex 2 is clearly demonstrated by its reaction with acetonitrile and water which results in the formation of [Ru(NCCH₃)(Tpms)(PPh₃)₂][OTf], 8 and [Ru(H₂O)(Tpms)(PPh₃)₂] [OTf], 6 complexes, respectively. Structures for these two complexes were determined unambiguously by X-ray crystallography (Figs. 5 and 6). We found that in complex 2 the Ru–O bond distance is 2.198(2) Å, which is indicative of weakly coordinating nature of the triflate ion. Generally, weakly coordinating triflate ion is expected to be a better leaving group in presence of strong donors such as acetonitrile and water as mentioned earlier; however, for very weakly coordinating ligands especially C–H bond of simple alkanes, triflate behaves as strong ligand and remains tightly bound to the metal center as we observed this when 2 was reacted with CH₄ at 7 bar. On the other hand, the reactions of complex **2** with H₂ and PhMe₂SiH, resulted in a σ -H₂ complex (3) and Si-H bond activation along with silane hydrolysis through an expected σ silane intermediate **2a**, respectively. As in the case of H₂ and silane reactions of complex 2, methane complexation with 2 at low temperature and 7 bar of CH₄ could be possible. In this context, we

Fig. 3. ORTEP view of $[RuH(Tpms)(PPh_3)_2]$ complex, **1** at the 50% probability level showing selected atom labeling. Hydrogen atoms are omitted for clarity except for the hydride H1.

pressurized complex **2** with 7 bar of CH₄ at 298 K (Scheme 4), and the reaction was monitored by VT NMR spectroscopy. We gradually cooled down the NMR probe from 293 K to 183 K (see Supplementary material). However, under these conditions even at 183 K, we did not observe any signal for a σ -methane complex spectroscopically. The sample was kept at 183 K for nearly 3 h to find any trace amount of σ -methane complex formed in solution; however no signals were found. On the other hand, broadening of the ³¹P{¹H} NMR spectral signal was noted at 203–213 K along with change in the pattern of proton signals of the aromatic region. Then further cooling led to disappearance of the ³¹P{¹H} NMR spectral

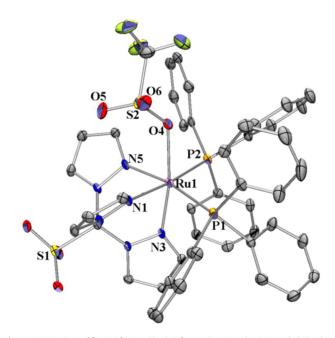


Fig. 4. ORTEP view of [Ru(OTf)(Tpms)(PPh₃)₂] complex, **2** at the 50% probability level showing selected atom labeling. Hydrogen atoms are omitted for clarity.

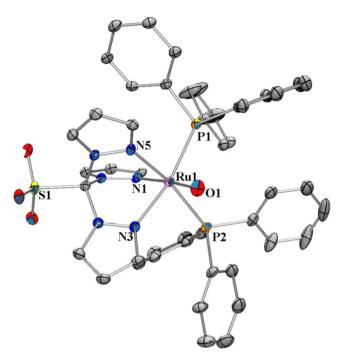


Fig. 5. ORTEP view of $[Ru(H_2O)(Tpms)(PPh_3)_2]$ complex, 6 at the 50% probability level showing selected atom labeling. Hydrogen atoms are omitted for clarity.

signal and reappearance of two separate broad signals at 183 K, and again a clear change in the pattern of proton signals of aromatic region at 183 K (see Supplementary material) which could be due to weak interactions of phenyl protons of PPh₃ competing with triflate counter anion for binding at the metal center at low temperature which are in rapid equilibrium.

H₂ and silane are better donors as compared to methane wherein H₂ and silane σ -binding to metal center are governed by electron donation from σ -H-H and Si-H bonds to metal and the π -back bonding from metal to the respective σ^* orbitals of these ligands. In contrast, alkanes especially methane, notoriously unreactive, interact with metals very weakly because the HOMO (σ)

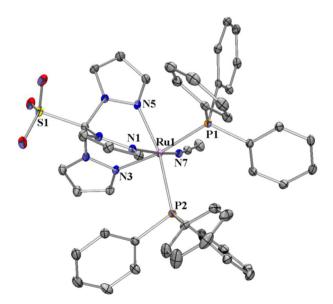


Fig. 6. ORTEP view of $[Ru(CH_3CN)(Tpms)(PPh_3)_2]$ complex, 8 at the 50% probability level showing selected atom labeling. Hydrogen atoms are omitted for clarity.

Table 1		
Selected bond distances (Å) and angles (°) for complexes	1. 2.	6 and 8.

	1	2	6	8
Ru1– ^a L′	1.58(3)	2.198(2)	2.126(3)	2.0319(16)
Ru1-N1	2.154(2)	2.077(2)	2.039(3)	2.0688(16)
Ru1-N3	2.1628(19)	2.029(2)	2.125(3)	2.0967(16)
Ru1-N5	2.116(2)	2.104(2)	2.099(3)	2.1214(16)
Ru1–P1	2.3169(8)	2.4037(8)	2.3856(9)	2.3739(5)
Ru1–P2	2.2910(9)	2.3858(8)	2.3646(9)	2.3946(5)
P2-Ru1-P1	100.02(3)	99.71(3)	101.84(3)	101.086(17)
N1-Ru1-N3	82.10(8)	85.48(9)	85.62(12)	86.74(6)
P2-Ru1-L'	84.2(12)	89.26(6)	91.19(9)	97.19(5)
N3-Ru1-L'	173.8(12)	170.17(8)	86.38(12)	87.93(6)
N1-Ru1-P2	92.09(6)	172.94(7)	94.63(8)	88.59(4)

^a L' represents the atom of the monodentate ligand coordinated to Ru, L' = H(1), OTf (2), H₂O (6), CH₃CN (8).

is low-lying and therefore, unsuitable for electron donation, and the LUMO (σ^*) is high in energy and unsuitable for accepting electron density and in addition, the dominant coordinating ability of OTf in comparison to the weakly coordinating nature of methane, could be the two reasons for not being able to observe interaction of methane with complex **2**.

X-ray structural studies of 1, 2, 6 and 8

Molecular structures of 1, 2, 6 and 8 have been confirmed by an X-ray crystallographic study. The molecular geometries of 1, 2, 6 and **8** are depicted in Figs. 3-6 and the crystallographic details and selected bond distances and angles have been summarized in Tables 1 and 2. The geometries of these four structures were found to be quite similar to one another. The ruthenium center in all these structures adopts an approximately octahedral geometry, with the Tpms ligand occupying one face of the octahedron and the phosphines and L' (L' = H, OTf, H₂O, NCCH₃) ligands occupying the remaining positions. The Ru–N distance (L' trans to N of pyrazolyl) in **1** was found to be slightly longer (2.1628(19) Å) in comparison to the other three (2.029(2) Å), (2.039(3) Å), (2.0688(16) Å); 2, 6, 8, respectively structures which could be attributed to the good sigma donating ability of the hydride ligand trans to N. The distances between the ruthenium atom and the metal bound pyrazolyl nitrogen atoms in all these structures compare well with those

Table 2Crystal data and refinement details for 1, 2, 6, 8.

	1	2	6	8
Formula	C47H45Cl2N6	C49H43Cl4F3N6	C48H41Cl2F3N6	C ₆₀ H ₅₈ F ₃ N ₇ O ₈
	O ₃ P ₂ RuS	O ₆ P ₂ RuS ₂	$O_9P_2RuS_2$	P_2RuS_2
Formula weight	1004.84	1237.82	1200.92	1289.26
Cryst syst	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P - 1	P - 1	P - 1	P - 1
T (K)	293(2)	100(2)	100(2)	100(2)
a, Å	12.236(5)	11.4609(10)	11.7928(5)	12.0652(7)
<i>b</i> , Å	13.134(5)	13.9020(12)	12.5404(5)	14.2645(8)
<i>c</i> , Å	15.670(5)	16.7287(14)	17.3718(7)	17.2149(9)
α , deg	94.504(5)	84.964(4)	86.752(2)	80.906(3)
β	93.034(5)	79.137(4)	75.499(2)	85.682(3)
γ	115.329(5)	73.210(4)	81.402(2)	81.442(3)
<i>V</i> , Å	2258.7(15)	2504.4(4)	2458.76(17)	2888.9(3)
Ζ	2	2	2	2
$d_{\rm calc}$, g cm ⁻³	1.477	1.641	1.622	1.482
$\mu ({\rm mm}^{-1})$	0.631	0.742	0.650	0.471
λ (Å)	0.71073	0.71073	0.71073	0.71073
R ^a	0.0332	0.0525	0.0654	0.0389
R _w	0.0919	0.1262	0.1982	0.0982

^a $R = \sum (|F_o| - |F_c|) / \sum |F_o|, R_w = [\sum w (|F_o| - |F_c|)^2 / \sum w |F_o|^2]^{1/2}$ (based on reflections with $I > 2\sigma(I)$).

observed in the structure of [RuCl(PPh₃)₂(Tpms)] [25]. The Ru–N bond lengths of pyrazolyl ligand in **2**, **6** and **8** complexes which are *trans* to the phosphorus ligands (PPh₃) are slightly longer than the other Ru–N bond which is *trans* to OTf, H₂O or CH₃CN ligand. This might indicate the *trans* influence of PPh₃ ligand. The P1–Ru–P2 bond angle in all the four structures was found to be about 100°, which is a consequence of the steric bulk of PPh₃ ligands. The Ru–H bond length in **1** is 1.58(3) Å which sits comfortably within the range of distances generally observed in the hydride complexes [30]. In complex **2**, the Ru–O bond length is 2.198(2) Å which is longer than that in [Ru(Cp^{*})(OTf)(PⁱPr₃)] [31] (2.136(2) Å) and shorter than that in [Ru(SO₃CF₃){C₆H₃(CH₂NMe₂)₂-2,6)(C₇H₈)] [32] complex (2.2327(16) Å).

Conclusions

In an attempt to stabilize and gain insights into the bonding nature and reactivity behavior of various sigma ligands on a ruthenium center $[Ru(\eta^2-HX)(Tpms)(PPh_3)_2][OTf], (X = H, SiR$ $(R = Me_3 \text{ or } Me_2Ph)$ and CH_3 , we followed two strategies to generate these complexes in solution. In the first strategy, reaction of [RuH(Tpms)(PPh₃)₂] complex, **1** with electrophilic reagent HOTf results in dihydrogen complex $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$ **3**, whereas the reaction of **1** with Me₃SiOTf afforded the dihydrogen complex **3** and complex **1** through an unobserved σ -silane intermediate. In addition, reaction of 1 with CH₃OTf resulted in [Ru(OTf)(Tpms)(PPh₃)₂] complex **2** and free methane through an unobserved sigma methane species. In the second strategy, reaction of [Ru(OTf)(Tpms)(PPh₃)₂] complex, **2** with H₂, PhMe₂SiH and CH₄ at low temperature were carried out. These reactions resulted in dihydrogen complex, a probable σ -silane complex, and no reaction between complex 2 and methane, respectively.

Experimental section

General procedures

All reactions were carried out under N₂ or Ar using standard Schlenk and inert atmosphere techniques unless otherwise specified [33,34]. Reagent-grade solvents were dried and distilled under N₂ atmosphere from Na-benzophenone (hexane, petroleum ether, THF, diethyl ether) just before use. Dichloromethane was first dried and distilled using P2O5 and once again dried and distilled over CaH₂. Solvents for the reactions that involved the synthesis of ruthenium complexes were thoroughly saturated with Ar or N₂ just before use. The ¹H and ³¹P NMR spectral data were obtained using an Avance Bruker 400 MHz instrument. All chemical shifts are reported on the δ scale. The chemical shift of the residual protons of the deuterated solvent was used as an internal reference. Dichloromethane- d_2 (CD₂Cl₂) was purchased from Cambridge-Isotopes Limited, USA and distilled over CaH₂ prior to use. Methanol was dried and distilled under N2 atmosphere from Na. Variable-temperature ${}^{1}H$ T_{1} measurements were carried out at 400 MHz using the inversion recovery method ($180^{\circ} - \tau - 90^{\circ}$ pulse sequence at each temperature) [35]. All ³¹P NMR spectra were proton-decoupled, unless otherwise stated. ³¹P NMR chemical shifts have been measured relative to 85% H₃PO₄ (external) in CD₂Cl₂. Lithium tris(pyrazolyl)methane sulfonate (LiTpms) and [RuH₂(PPh₃)₄], [RuCl(Tpms)(PPh₃)₂] complexes were prepared using literature procedures. [10,25,36].

X-ray structure determination of 1, 2, 6, and 8

Good quality crystals of complexes **1**, **2**, **6**, and **8** suitable for Xray diffraction study were carefully selected after examination under an optical microscope and mounted on the Goniometer head with paraffin oil coating. The unit cell parameters and intensity data were collected at room temperature and 100 K using a Bruker SMART APEX CCD diffractometer equipped with a fine focus Mo Kα X-ray source (50 kV, 40 mA). The data acquisition was done using SMART software and SAINT software was used for data reduction [37]. The empirical absorption corrections were made using the SADABS program [38]. The structure was solved and refined using the SHELXL-97 program [39]. The ruthenium atom was located from the Patterson map, and the non-hydrogen atoms and the hydride were located from the difference Fourier map and refined anisotropically. All other hydrogen atoms were fixed in idealized positions and refined in a riding model.

Synthesis of [RuH(Tpms)(PPh₃)₂], 1

[RuH₂(PPh₃)₄] (0.400 g, 0.347 mmol) and LiTpms (0.102 g, 0.347 mmol) were dissolved in 20 mL of THF. The resulting yellow solution was refluxed for 2 h to give a yellowish green suspension. The mixture was filtered off and the filtrate was concentrated under vacuum and washed with diethyl ether and then finally dried under vacuum to obtain a yellow powder. Pure product of [RuH(Tpms)(PPh₃)₂], **1** was obtained by recrystallization of the residue from dichloromethane/n-hexane at room temperature for overnight. Yield: 0.159 g, 50%. Anal. Calcd for C₄₇H₄₅Cl₂N₆O₃P₂RuS: C, 56.01; H, 4.50; N, 8.34; S, 3.18. Found: C, 56.59; H, 4.28; N, 8.0; S, 3.17. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ – 13.35 (t, ²J(HP) = 27.7 Hz, 1H, Ru–H), 5.68 [t, 2H, H⁴(pz')], 5.98 [t, 1H, H⁴(pz)], 6.45 [d, 1H, $H^{5}(pz)$], 6.92 [d, 2H, $H^{5}(pz')$], 7.02–7.26 [m, 30H, PC₆H₅], 8.74 [d, 2H, $H^{3}(pz')$], 9.05 [d, 1H, $H^{3}(pz)$] (pz = pyrazolyl group trans to hydride, pz' = pyrazolyl group trans to PPh₃, all coupling constants for pyrazolyl proton resonance were about 2.5 Hz). ³¹P{¹H} NMR (161.70 MHz, CD₂Cl₂, 25 °C): δ 65.8 (s).

Preparation of [Ru(OTf)(Tpms)(PPh₃)₂], 2

[RuCl(Tpms)(PPh₃)₂] (0.200 g, 0.209 mmol) and AgOTf (0.052 g, 0.209 mmol) were dissolved in 20 mL of dichloromethane. The yellow solution was stirred at room temperature for 30 min to give a yellow suspension. The mixture was filtered through Celite and washed with hexane and dried under vacuum to give a yellow powder of [Ru(OTf)(Tpms)(PPh₃)₂], **2**. Yield: 0.180 g, 80%. Anal. Calcd for C₄₇H₄₃F₃N₆O₆P₂RuS₂·2CH₂Cl₂: C, 47.54; H, 3.50; N, 6.79; S, 5.18. Found: C, 47.32; H, 3.32; N, 6.58; S, 5.14. ¹H NMR (400 MHz, CD₂Cl₂, 293 K): 5.06 [d, 1H, H³(pz)]; 5.36 [t, 2H, H⁴(pz')]; 5.90 [t, 2H, H⁴(pz')]; 7.24 [d, 2H, H⁵(pz')]; 6.99–7.34 [m, 30H, P(C₆H₅)₃]; 8.96 [d, 2H, H³(pz')]; 9.10 [d, 1H, H⁵(pz)] (pz = pyrazolyl group trans to OTf, pz' = pyrazolyl group trans to PPh₃; all coupling constants for pyrazolyl proton resonance were about 2.5 Hz). ³¹P{¹H} NMR (161.70 MHz, CDCl₃, 293 K): δ 36.6 (s). ¹⁹F NMR (376 MHz, CDCl₃, 293 K): δ –76.69 (s, 3F). El-MS *m/z* = 919[M-OTf].

Protonation of [RuH(Tpms)(PPh₃)₂], 1

[RuH(Tpms)(PPh₃)₂] (0.020 g, 0.021 mmol) was dissolved in 0.5 mL of CD₂Cl₂ in a 5 mm NMR tube that was capped with a septum. The resulting solution was subjected to three cycles of freeze–pump–thaw degassing. The tube was cooled to 243 K. One equivalent (ca. 2 μ L, 0.028 mmol) of HOTf was added to this solution immediately and then the sample was inserted into the NMR probe, which was pre-cooled to 243 K. The ¹H and ³¹P NMR spectra recorded at 243 K showed the presence of the dihydrogen complex **3**. ¹H NMR (400 MHz, CD₂Cl₂, 243 K): δ –7.63 [br s, 2H, Ru-(H₂)]; 5.90 [t, 1H, H⁴(pz); 5.94 [t, 2H, H⁴(pz')]; 6.16 [d, 1H, H⁵(pz')]; 7.11–7.71 (m, 30H, PC₆H₅); 9.04 [d, 2H, H³(pz')]; 9.25

[d, 1H, H³(pz)] (pz = pyrazolyl group trans to η^2 -H₂, pz' = pyrazolyl group trans to PPh₃; all coupling constants for pyrazolyl proton resonance were about 2.5 Hz). ³¹P{¹H} NMR (161.70 MHz, CD₂Cl₂, 243 K): δ 43.6 (s). Variable-temperature T_1 measurements on the H₂ signal were carried out by the inversion-recovery method using standard 180°- τ -90° pulse sequence. T_1 (400 MHz, ms): 21.6 (193 K), 20.9 (203 K), 18.7 (213 K), 18.0 (223 K), 17.3 (233 K), 15.8 (243 K), 18.0 (253 K), 18.7 (263 K), 19.4 (273 K), 19.4 (283), 20.2 (293 K). $T_1(\min)$ (400 MHz, 243 K): 15.8 ms.

Preparation of [Ru(HD)(Tpms)(PPh₃)₂][OTf]

In an attempt to prepare the HD isotopomer of $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$, we purged the corresponding CD_2Cl_2 solution containing the $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$ complex with HD gas (generated from NaH and D₂O) at 243 K. The ¹H NMR spectrum of the resulting solution was then recorded at 243 K. The η^2 -HD signal (δ –7.6 (tt), ¹*J*(HD) = 31.6 Hz, ²*J*(HP) = 6.6 Hz) was observed after nullifying the η^2 -H₂ peak at δ –7.6 using the inversion-recovery method with a delay time of 11 ms.

Reaction of complex 1 with Me₃SiOTf

This reaction was carried out using complex **1** (0.02 g, 0.021 mmol) and Me₃SiOTf (8 μ L, 0.043 mmol). The sealed NMR tube with the frozen contents was inserted into the NMR probe precooled to 183 K and the ¹H and ³¹P{¹H} spectra were recorded as the reaction progressed upon raising the temperature. In this case we noted the formation of free Me₃SiOH along with [Ru(η^2 -H₂)(Tpms)(PPh₃)₂]. ¹H NMR (400 MHz, CD₂Cl₂, 193–293 K): δ 0.05 ppm [1H, Me₃SiOH].

Attempt to prepare $[Ru(\eta^2-CH_4)(Tpms)(PPh_3)_2][OTf]$

A flame-dried 5 mm Schlenk NMR tube was charged with $[RuH(Tpms)(PPh_3)_2]$ (0.020 g, 0.021 mmol) and ca. 0.5 mL of CD₂Cl₂ was added under nitrogen. The sample was cooled to 77 K, and then CH₃OTf (4 µL, 0.036 mmol) was added and the tube was sealed under vacuum. The sample was then inserted into the NMR probe immediately, which was pre-cooled to 183 K. The progress of the reaction was monitored by recording the ¹H and ³¹P NMR spectra of the sample over a temperature range 203–298 K. The ¹H and ³¹P {¹H} NMR spectra recorded at 213 K showed the presence of free methane, [Ru(OTf)(Tpms)(PPh_3)_2], **2** and [Ru(OH₂)(Tpms)(PPh_3)_2], **6** complexes. ¹H NMR (CD₂Cl₂, 213 K): δ 0.18 (s, 4H, CH₄).

Reaction of RuH(Tpms)(PPh₃)₂ complex 1 with CD₃OTf

This reaction was conducted in a similar manner to that of complex **1** with CH₃OTf starting with complex **1** (0.020 g, 0.021 mmol) and CD₃OTf (ca. 4 μ L, 0.030 mmol). The sealed NMR tube with the frozen contents was inserted into the NMR probe precooled to 213 K and the ¹H and ³¹P{¹H} NMR spectra were recorded as the reaction progressed upon raising the temperature. In this case we found free CD₃H along with [Ru(OTf)(Tpms)(PPh₃)₂], **2** and [Ru(OH₂)(Tpms)(PPh₃)₂], **6** complexes. ¹H NMR (CD₂Cl₂, 213–293 K): δ 0.16 (sept, 1H, CD₃H).

Reaction of [Ru(OTf)(Tpms)(PPh₃)₂] with H₂ at 298 K

Complex 1 (0.020 g, 0.018 mmol) was dissolved in 0.6 mL of CD_2Cl_2 in a 5 mm high pressure NMR tube. Next, H_2 (2 atm) was pressurized for a period of 5 min. The ¹H and the ³¹P NMR spectra of the sample recorded immediately thereafter at 298 K showed the

formation of $[Ru(\eta^2-H_2)(Tpms)(PPh_3)_2][OTf]$, **3** complex (5%) along with starting material.

Reaction of [Ru(OTf)(Tpms)(PPh₃)₂] with PhMe₂SiH

Complex **2** (0.020 g, 0.018 mmol) was dissolved in 0.6 mL of CD_2Cl_2 in a 5 mm NMR tube and then the tube was cooled to 203 K using slush bath (ethanol/liq N₂). Next, 1 equiv of Me₂PhSiH (3 µL, 0.018 mmol) was added at 203 K, immediately the sample was inserted into the NMR probe, which was pre-cooled to 203 K. The ¹H and ³¹P{¹H} NMR spectra were recorded. The same reaction was also carried out at room temperature and the products were characterized by NMR spectroscopy.

Reaction of $[Ru(OTf)(Tpms)(PPh_3)_2]$ complex **2** with methane (7 bar) in a pressure-stable NMR tube

Complex **2** (0.020 g, 0.018 mmol) was dissolved in 0.6 mL of CD₂Cl₂ in a high-pressure NMR tube. The solution was subjected to one freeze–pump–thaw degassing cycle, and then CH₄ (7 bar) was pressurized in the tube. The tube was closed by a Teflon valve, and the progress of the reaction was monitored by using VT NMR spectroscopy. ¹H NMR spectroscopy did not reveal the formation of the [Ru(η^2 -CH₄)(Tpms)(PPh₃)₂][OTf] σ –methane complex.

Preparation of $[Ru(L')(Tpms)(PPh_3)_2][OTf]$ ($L' = H_2O(6)$, $CH_3CN(8)$)

[Ru(OTf)(Tpms)(PPh₃)₂] (0.1 g, 0.092 mmol) and H₂O (ca. 10 µL, 0.140 mmol) were dissolved in 10 mL of dichloromethane under nitrogen atmosphere. The yellow solution was stirred at room temperature for 5 min to give a light yellow solution. The yellow product of [Ru(H₂O)(Tpms)(PPh₃)₂][OTf] was obtained in a yield of 75 mg, 70%. ¹H NMR (400 MHz, CDCl₃, 293 K): 5.43 [d, 1H, H⁵(pz)]; 5.59 [t, 1H, H⁴(pz)]; 5.72 [t, 2H, H⁴(pz')]; 6.21[d, 2H, H⁵(pz')]; 7.11-7.89 [m, 30H, P(C₆H₅)₃]; 8.78 [d, 2H, H³(pz')]; 9.23 [d, 1H, H³(pz)] $(pz = pyrazolyl group trans to H_2O, pz' = pyrazolyl group trans to$ PPh₃; all coupling constants for pyrazolyl proton resonance were about 2.5 Hz). ³¹P{¹H} NMR (161.70 MHz, CD₂Cl₂, 293 K): δ 39.9 (s). [Ru(NCCH₃)(Tpms)(PPh₃)₂][OTf] compound was prepared using above similar procedure. ¹H NMR (400 MHz, CDCl₃, 293 K): 2.71 (s, 3H, CH₃CN), 5.52 [t, 1H, H⁴(pz); 5.98 [t, 2H, H⁴(pz')]; 6.52 [d, 1H, H⁵(pz)]; 6.74 [d, 2H, H⁵(pz')]; 6.95–7.42 [m, 30H, P(C₆H₅)₃]; 8.94 [d, 2H, $H^{3}(pz')$]; 9.16 [d, 1H, $H^{3}(pz)$] (pz = pyrazolyl group trans to NCCH₃, pz' = pyrazolyl group *trans* to PPh₃; all coupling constants for pyrazolyl proton resonance were about 2.5 Hz). ³¹P{¹H} NMR (161.70 MHz, CD₂Cl₂, 293 K): δ 39.1 (s).

Appendix A. Supplementary material

CCDC 984250–984253 contain the supplementary crystallographic data for [RuH(Tpms)(PPh₃)₂] (**1**), [Ru(OTf)(Tpms)(PPh₃)₂] (**2**), [Ru(H₂O)(Tpms)(PPh₃)₂] (**6**) and [Ru(CH₃CN)(Tpms)(PPh₃)₂] (**8**). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif.

Appendix B. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.jorganchem.2014.03.027.

References

 G.J. Kubas, in: Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic/ Plenum Publishers, New York, 2001.

- [2] G.S. McGrady, G. Guilera, Chem. Soc. Rev. 32 (2003) 383-392.
- [3] R.H. Crabtree, Angew. Chem. Int. Ed. Engl. 32 (1993) 789-805.
- [4] G. Alcaraz, S. Sabo-Etienne, Coord. Chem. Rev. 252 (2008) 2395–2409.
- [5] C. Hall, R.N. Perutz, Chem. Rev. 96 (1996) 3125-3146.
- [6] W.H. Bernskoetter, C.K. Schauer, K.I. Goldberg, M. Brookhart, Science 326 (2009) 553-556.
- [7] D.J. Lawes, S. Geftakis, G.E. Ball, J. Am. Chem. Soc. 127 (2005) 4134-4135.
- [8] S.D. Pike, A.L. Thompson, A.G. Algarra, D.C. Apperley, S.A. Macgregor,
- A.S. Weller, Science 337 (2012) 1648–1651.
- [9] S. Trofimenko, Chem. Rev. 93 (1993) 943–980.
- [10] W. Kläui, M. Berghahn, G. Rheinwald, H. Lang, Angew. Chem. Int. Ed. 39 (2000) 2464-2466.
- [11] W. Kläui, M. Berghahn, W. Frank, Guido J. Reiß, T. Schönherr, G. Rheinwald, H. Lang, Eur. J. Inorg. Chem. 2003 (2003) 2059–2070.
- W. Klaui, D. Schramm, W. Peters, Eur. J. Inorg. Chem. 2001 (2001) 3113–3117.
 S. Miguel, J. Diez, M.P. Gamasa, M.E. Lastra, Eur. J. Inorg. Chem. 2011 (2011)
- 4745-4755 [14] G.J. Kubas, Chem. Rev. 107 (2007) 4152-4205.
- [15] E. Scharrer, S. Chang, M. Brookhart, Organometallics 14 (1995) 5686–5694. [16] X.-L. Luo, G.J. Kubas, J.C. Bryan, C.J. Burns, C.J. Unkefer, J. Am. Chem. Soc. 116 (1994) 10312 - 10313
- [17] W.-C. Chan, C.-P. Lau, Y.-Z. Chen, Y.-Q. Fang, S.-M. Ng, G. Jia, Organometallics 16 (1997) 34-44.
- [18] P.J. Desrosiers, L. Cai, Z. Lin, R. Richards, J. Halpern, J. Am. Chem. Soc. 113 (1991) 4173-4184.
- [19] dHH(Å) = 1.44 0.0168[J(H,D)].
- [20] T.A. Luther, D.M. Heinekey, J. Am. Chem. Soc. 119 (1997) 6688-6689.
- [21] X.L. Luo, R.H. Crabtree, J. Am. Chem. Soc. 111 (1989) 2527-2535.

- [22] J.A. Calladine, S.B. Duckett, M.W. George, S.L. Matthews, R.N. Perutz, O. Torres, K.Q. Vuong, J. Am. Chem. Soc. 133 (2011) 2303–2310.
- [23] R.D. Young, A.F. Hill, W. Hillier, G.E. Ball, J. Am. Chem. Soc. 133 (2011) 13806–13809. [24] T.Y. Lee, L. Dang, Z. Zhou, C.H. Yeung, Z. Lin, C.P. Lau, Eur. J. Inorg. Chem. 2010
- (2010) 5675-5684.
- [25] K. Hindson, Eur. J. Inorg. Chem. 2011 (2011) 4-6.
- [26] J.Y. Corey, J. Braddock-Wilking, Chem. Rev. 99 (1999) 175–292.
- [27] J. Huhmann-Vincent, B.L. Scott, G.J. Kubas, Inorg. Chim. Acta 294 (1999) 240–254. [28] H.F.T. Klare, M. Oestreich, J.-i. Ito, H. Nishiyama, Y. Ohki, K. Tatsumi, J. Am. Chem. Soc. 133 (2011) 3312–3315.
- [29] Y.-Z. Chen, W.C. Chan, C.P. Lau, H.S. Chu, H.L. Lee, G. Jia, Organometallics 16 (1997) 1241-1246.
- [30] K. Abdur-Rashid, R. Abbel, A. Hadzovic, A.J. Lough, R.H. Morris, Inorg. Chem. 44 (2005) 2483-2492.
- [31] M.E. Fasulo, P.B. Glaser, T.D. Tilley, Organometallics 30 (2011) 5524–5531.
- [32] J.-P. Sutter, S.L. James, P. Steenwinkel, T. Karlen, D.M. Grove, N. Veldman, W.J.J. Smeets, A.L. Spek, G. van Koten, Organometallics 15 (1996) 941–948.
 [33] S. Herzog, J. Dehnert, K. Luhder, in: Techniques of Inorganic Chemistry,
- Interscience, New York, 1969.
- [34] D.F. Shriver, M.A. Drezdon, in: The Manipulation of Air-sensitive Compounds, Wiley, New York, 1986.
- [35] D.G. Hamilton, R.H. Crabtree, J. Am. Chem. Soc. 110 (1988) 4126-4133.
- [36] J.J. Levison, S.D. Robinson, J. Chem. Soc. A Inorg. Phys. Theor. (1970) 2947–2954.
- [37] Siemens Analytical X-ray Instruments, Inc., WI, Madison, 1995.
- [38] G.M. Sheldrick, in: SADABS User Guide, University of Göttingen, Göttingen, Germany 1993
- [39] G.M. Sheldrick, Acta Cryst. Found. Crystallogr. 64 (2008) 112-122.