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A ruthenium tetrazole complex-based high efficiency 
near infrared light electrochemical cell 
 

Hashem Shahroosvand a*, Saeid Abaspour a, Babak Pashaei a, b, Eros Radicchi b, c, Filippo 
De Angelis c, d, Francesco Bonoccoroso e, f

We report on the exploitation of a new tetrazole-substituted 1,10-
phenanthroline and a 2,2'-bipyridine (bpy) ancillary ligand 
modified by an electron-donating group in cationic ruthenium 
complexes. This complex, placed in between two electrodes 
without any polymer, demonstrates high efficiency near-infrared 
(NIR) electroluminescence (EL). The comparison between bpy and 
its methyl-substituted ancillary ligand shows that the cationic Ru 
tetrazolate complex containing methyl groups exhibits a red shift 
in EL wavelength from 620 to 800 nm compared to [Ru(bpy)3]2+ 

and an almost twofold reduction of turn-on voltage, i.e., from 5 to 
3 V, with respect to 5-tetrazole-1,10-phenanthroline. We achieved 
an external quantum efficiency value of 0.95% for the dimethyl 
derivative, which is a remarkable result for non-doped NIR light 
electrochemical cells based on ruthenium polypyridyl. 
 
A major challenge for scientists designing new generations of 
light emitting diodes (LEDs) is finding novel materials that 
combine important aspects such as environmental 
friendliness, high efficiency and economical cost. 1,2 Solid-state 
lighting (SSL) classes, including light-emitting diodes (LEDs) and 
organic light-emitting diodes (OLEDs), often reliably possess all 
the above requirements.3 Among SSLs, light electrochemical 
cells (LECs) are the simplest LED class, which provide some 
exclusive properties not found in other classes. Some 
remarkable advantages of LECs compared to OLEDs include the 
following: (i) their figures of merit do not strongly depend on 
the thickness of the layers, (ii) the difference of the work 
functions of the electrodes does not affect the external 
quantum efficiency (EQE), (iii) the value of the turn-on voltage 
is close to the optical band gap of the light-emitting layer, and 
(iv) LECs have a simple and inexpensive architecture due to the 
reduction of the number of deposited layers.4 However, the 
optimization of the emitter layer is not trivial and has several 
issues. The alignment of the HOMO and LUMO of the complex 

with the  energy level of anode and cathode electrodes and 
the charge transport process remain issues to be solved to 
enhance the LEC performances.5 Ruthenium(II) polypyridyl 
complexes are suitable candidates for the light-emitting layer;6 

as they are in high demand, they are currently less expensive 
than iridium cyclometalated complexes.7 However, most 
ruthenium-based LECs emit in the orange and red spectral 
regions.8 To overcome this limitation and tune the emission 
wavelength, a main strategy is the substitution of different 
functional groups including electron donor–acceptors on π-
conjugated ligands.9 Near-infrared (NIR) light-emitting sources 
are typically expensive due to the exploitation of multi layers 
costly material. 7 In this context, LECs could serve as low-cost 
alternatives in application areas where NIR luminescence has a 
key role such as telecommunications,10 bio-imaging11 and 
wound healing.9,12  However, solid-state NIR LECs, i.e., having 
the EL peak wavelength in the NIR, are not fully investigated, 
being the research effort mostly focused on ionic transition-
metal complexes (iTMCs).3 The intrinsic difficulty of NIR-EL 
emission arises from the energy gap law that disfavors 
radiative transition at lower emission energies, which causes 
these systems to exhibit EQEs <0.1%.6a,13 Intensive research 
has been focused on modifying ligands coordination sphere to 
induce a red shift in emission wavelength and to improve the 
overall efficiency of NIR EL. Moreover, since the design of 
ligands around the metal cores is key in the electron transfer 
process and light-emitting performances,14 the introduction of 
aromatic rings, containing multi nitrogen donor atoms such 
imydazolyl,15 triazolyl 16 or pyrazolyl 17 rings in the backbone of 
polypyridyl ligand, allowed the modulation of the 
spectroscopic and redox properties through the tuning of the 
HOMO and LUMO gap of the resulting complexes.18 However, 
literature on the incorporation of tetrazole ring on polypyridyl 
ligand is not exhaustive to date. Here, we propose new NIR 
electroluminescent compounds, investigating the effect of 
ancillary ligands. For this purpose, we designed and 
synthesized a series of novel ruthenium(II) complexes 
containing 5-tetrazole-1,10-phenanthroline (Tzphen) and 2,2′-
bipyridine (bpy), 4,4′-di-methyl-2,2′-bipyridine (dmbpy), or 
1,10-phenanthroline (phen) as ancillary ligands, named as SA1-
SA3. The schematic of the synthesis procedure and the 
structures of the ligands and their complexes [Ru(Tzphen)(N 
N)2](ClO4)2, SA1-SA3,  
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Table 1. UV/Vis, PL and redox properties of SA1-SA3.aInDMF solutions (1×10−5M). bIn degassed DMF solutions at 298 K. c From CV 
measurements, E1/2=1/2(Epa+Epc); 0.1 M acetonitrile/TBAP versus Ag/AgCl. d EHOMO= -(Eox(vs.Fc/FC

+)+ 4.8 eV),  ELUMO = E HOMO + E 0-0  eV, 
E0-0 was calculated from the intersection of absorption and emission spectra in acetonitrile solution.   

Complexes Absorbance 
λ (ε) a 

Emission 
λmax(Φ)b  

Eox (V)c Ered1/2 (V) c HOMOd LUMOe E0-0f (eV) 

SA1 447 (3.55) 629(0.055) +1.34 -1.31, -1.52  -6.15 - 3.89  2.26 

SA2 460 (3.75) 659(0.067) +1.28  -1.13, -1.51  -6.16 - 3.97  2.19 

SA3 456 (3.90)  618(0.012) 1.36 -1.30, -1.45 -6.08 - 3.79  2.29 

Ru(bpy)3
2+ 451 (4.17)  621 (0.095) 1.29 i -1.31i -5.74       - 3.14 2.60 

are shown in Fig. 1 (see Supplementary Information –ESI-for 
the synthesis details and the characterization). The structures 
of the complexes are identified by FTIR spectroscopy, all 
displaying the characteristic band of the N-H of Tzphen at 2950 
cm-1. Moreover, the removal of the CN band at 2200 cm-1 in 
phen(CN) indicates the formation of the Tzphen ligand.20 

Analyzing the 1H NMR spectra, for all complexes, it is possible 
to observe the signals at approximately 8.8 ppm associated 
with the CH of C6 in the Tzphen ligand (ESI.S2, Figs. S1, S3, S5). 
The 13C NMR spectra of SA1-3 show the tetrazole carbon (Ct) 
resonance (i.e., chemical-shift value δ≈162 ppm) 21 (see ESI S2, 
Figs S2, S4 and S6), a clear evidence of the presence of 
tetrazole moiety in the complexes. 

 
Figure 1..a) Chemical structures of Tzphen ligand and SA1-SA3 
complexes The synthesis procedure is summarized: ( i) NaClO, 
tetrabutyl ammonium hydrogen sulfate (TBAHS), pH=8.5, 18 
°C, 2h (ii) KCN, H2O, 4h (iii) NaN3, NH4Cl, DMF, 140 °C, 48h (iv) 
H2O,HCl, pH=3.5 (v) RuCl3.xH2O, 2mol N^N, 5 h reflux in DMF, 
140°C (vi) Tzphen, 5 h reflux, 140°C . 
 
Characterizations by elemental analysis and electrospray 
ionization mass spectrometry (ESI-mass) also confirm the 
synthesis of the complexes. Specific data are given in the 
Supplementary Information. The UV–Vis absorption and 
photoluminescence (PL) spectra of the complexes in N, N 
dimethyl formamide (DMF) solutions are shown in Figure 2 
and summarized in Table 1. Complexes SA1–SA3 show intense 
intra-ligand absorption bands in the UV region and less intense 
metal-to-ligand charge-transfer (MLCT) absorption bands at 
≈450nm with a tail extending up to 530 nm.22 The latter bands 
are originated from excitation of an electron from the 
ruthenium-based t2g HOMO to the low-lying unoccupied π* 
anti-bonding orbital of the ligands. This is confirmed by time 

dependent density functional theory (TDDFT) calculations, see 
ESI, S3, Table S2. Calculations predict a spin-orbit coupling on 
the lowest energy band of prototype SA1 complex, leading to 
broadening and red-shifting of the lowest absorption band, 
with the appearance of the band tail, which is experimentally 
observed, see ESI.S3, Fig S8-S11. The λmax,abs of the MLCT 
values in the series follow the expected trend of increasing 
electron donation, following the sequence SA3 <SA1<SA2. The 
room temperature photoluminescence (PL) emission spectra 
of the complexes display a broad and featureless band in DMF 
solution, and the emission spectrum of complex SA2 is red 
shifted by approximately 40 nm compared to SA1. According 
to DFT calculation, this result also demonstrates that the 
presence of the electron-donating methyl groups on the 
dmbpy ligands of complex SA2 destabilizes the HOMO of 
complex SA2 compared to complexes SA1 and SA3 (ESI. S7 and 
S8). 

 
Figure 2. UV-Visible region of absorption and PL (λexc=405 nm) 
spectra of Ru(Tzphen) complexes (SA1-SA3) in DMF solution at 
10-5 M. The star shows the second harmonic of laser radiation.  
 
To determine the LEC performance of the as-synthesized 
emitters, it is key to investigate the oxidation-reduction 
properties. In this context, the electrochemical behaviours of 
SA1−SA3 were investigated by cyclic voltammetry (CV) (Figure 
3). The nature of the ancillary ligands affects both the 
potentials and the quasi-reversibility of the redox processes. 
All compounds display one oxidation half-wave in the positive 
region due to the oxidation/reduction (Ox/Red) of Ru(II) to 
Ru(III) and three reduction processes in the negative potential 
region due to the Ox/Red of the ligands. The inset of Figure 3 
also shows the oxidation wave of SA2 on the platinum 
electrode at various scan rates ranging from 0.00 to 300 mV 
s−1. Moreover, there is a linear correlation between the anodic 
current and υ½, suggesting that the kinetics of the overall 
process is controlled by mass transport. The formal half-wave 
potential values of the quasi-reversible processes are reported 
in Table 1.  
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Table 2. Electroluminescence Spectral Data of ITO/[Ru(N^N)2(Tzphen)]2+ / Ga:In Devices.aCIE(x, y): Commission Internationale de 
L’Eclairage.b Maximum current density (mA cm−2).Turn-on voltage (V).c Maximum luminance, Lmax, (cd m−2). d Luminous efficiency, Leff, (cdA-

1) e External quantum efficiency (%) at 6 V. 

Complexes λmax 
(EL)[nm] 

CIEa 
[x, y] 

FWHM 
[nm] 

Jmax
b 

[mA cm-2] 
V turn on 

[V] 
Lmax

c 
[cd m-2 ] 

Leff
d [cd A-1] EQEe(%) 

SA1 690 [0.652,0.315] 155 450 at 6 (V) 5.0 375 at 6 (V) 0.85 at 6 (V) 0.55 

SA2 725, 800 [0.662, 0.316] 153 475 at 4 (V) 3.0 360 at 4 (V) 0.75 at 4 (V) 0.95 

Ru(bpy)3
2+ 632 [0.693, 0.308] 137 185 at 4(V) 2.3 1800 at 4 (V) - 1.2 

 
Figure 3. Cyclic voltammograms of complexes SA1-SA3 acetonitrile 
solution under N2 atmosphere. Inset:  Cyclic voltammograms of SA2 
on platinum electrode at various scan rates; (a) 50, (b) 100, (c) 150, 
(d) 200, (e) 250, and (f) 300 mV s−1 

 
It is useful to note the cyclic voltammetry of SA1-3 is very 
sensitive to the nature of solvent which the polarity of solvent 
will effect on the redox behaviour.23 All three complexes in 
DMF solvent were shown irreversible redox properties 
However, as shown in figure 3, the CV of SA1-3 in acetonitrile 
solvent was shown quasi-reversible half-wave potentials. 
The electronic nature of the dmbpy ligand (R =CH3) influences 
the π* acceptor energy levels in SA2. The introducing electron-
donating methyl groups destabilize the bpy-π* orbitals, 
decreasing the extent of dπ−π* back-bonding from Ru(II) to the 
dmbpy ligand. This decreased back-bonding destabilizes the 
dπ

6 core, diminishing the Ru3+/2+ redox potentials with respect 
to SA1, which is containing bpy ancillary ligand. This result 
suggests a low turn-on voltage due to the low driving force for 
ion mobility in a LEC. In the following, we describe a simple 
LEC formed by the [Ru(N^N)2(Tzphen)] complex and two 
electrodes, i.e., without PEDOT: PSS or any doped-polymeric 
layers. 24 Moreover, the working devices were obtained using 
low melting point alloy (Ga:In) cathode contacts, which 
potentially allows the avoidance of vacuum evaporation 
techniques. Upon application of a bias < 3V to the 
ITO/SA2/Ga:In device, light emission and current density 
dramatically increase over time. However, all our attempts to 
obtain a suitably compact layer of SA3 failed because of the 
aggregation of SA3 under the surface. 25 The EL spectra have a 
broad line shape, which are similar to those of the PL spectra 
obtained from the complexes in solution, showing only a red 
shift of ≈100 nm in wavelength maxima (Figure 2). The device 
based on SA2 shows two broad bands at ≈725 and ≈ 800nm, 
which are the lowest-energy emissions observed so far in LEC 
devices based on ruthenium tetrazole complexes.26   
 

 
Figure 4. EL spectra of Ru SA1 and SA2 and [Ru(bpy)3]2+ as 
reference. Inset: the photograph of LEC emission based on 
SA1. 
 
The current over time for the two devices is almost the same 
and shows good stability (ESI. Fig. S13). Moreover, the LEC 
based on complex SA2 with substituted bpy has a significantly 
lower turn-on voltage than SA1 with bpy, at 3 and 5 V, 
respectively,27 reaching luminance values up 360 cd/m2 in the 
NIR region.  

 
Figure 5. Current density and maximum luminance versus 
applied voltage for Ru-based LEC devices (SA1 and SA2). 
 
Currently, the highest demonstrated EQE value of NIR EL for a 
LEC with an anode (ITO)/ Ru polypyridyl complex/cathode (Au) 
configuration is 0.03%, 28 while the addition of hole-or 
electron-assisted polymers such as PEDOT: PSS allows to 
achieve an EQE value of 2.06%. 29 The latter being the current 
record high for such devices. The EQE value of 0.95% for SA2 
represents the current state of the art for a NIR LEC based on 
the ruthenium polypyridyl family with a configuration of 
anode(ITO)/Ru polypyridyl complex/cathode (Ga:In) (see ESI 
Table S3.). 30 The remarkable EL performances, i.e., low turn on 
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voltage and high EQE, demonstrate the influence of the 
electron-donating group in the ancillary ligand. 
In conclusion, this manuscript reports the synthesis of novel Ru 
complexes and their exploitation in NIR LECs, achieving EQE up 
to 0.95%. The influence of the electron-donating group in 
tuning the EL wavelength as well as the turn-on voltage of the 
devices is clearly observed, as the turn-on voltage is reduced 
from ≈ 5 V to ≈3 V with respect to non-dimethyl bpy derivate. 
The simple design of the proposed device is remarkable, 
avoiding the use of PEDOT: PSS or other hole-electron 
transport layer. In addition, the possibility to use liquid Ga:In 
cathode is particular interesting for the commercial application 
such as printing and injection methods for cathode deposition. 
 
Acknowledgments. Authors wish thank university of Zanjan for 
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