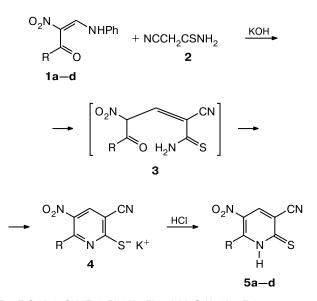
Synthesis of 6-substituted 3-cyano-5-nitropyridine-2(1H)-thiones

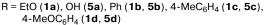
K. S. Chunikhin, L. A. Rodinovskaya, and A. M. Shestopalov*

N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (095) 135 5328. E-mail: shchem@dol.ru

The reactions of 1-substituted 2-nitro-3-phenylaminoprop-2-en-1-ones with cyano-thioacetamide afforded the corresponding 6-substituted 3-cyano-5-nitropyridine-2(1H)-thiones, which were used for the synthesis of 6-substituted 3-cyano-2-methylthio-5-nitropyridines and 7-substituted 4-hydroxy-8-nitropyrido[2',3':4,5]thieno[2,3-*b*]pyridin-2(1H)-ones.

Key words: cyanothioacetamide, 1-substituted 2-nitro-3-phenylaminoprop-2-en-1-ones, 3-cyano-5-nitropyridine-2(1H)-thiones, 3-cyano-2-methylthio-5-nitropyridines, pyrido[2',3':4,5]thieno[2,3-*b*]pyridin-2(1H)-ones.

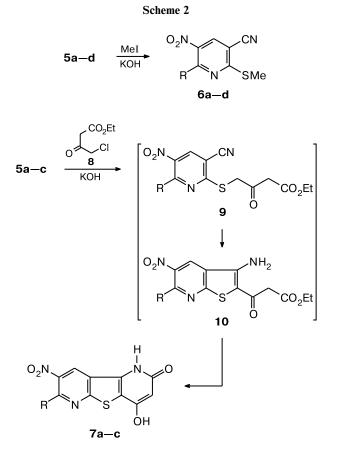

The use of substituted 3-cyanopyridinethiones in the synthesis of practically important compounds, viz., dyes, drugs, pesticides, etc., gives impetus to the extensive development of procedures for their preparation.1-3β-Enaminocarbonyl compounds serve as convenient reagents for the regioselective synthesis of substituted 3-cyanopyridine-2(1H)-thiones and their hydrogenated analogs.^{4,5} Thus, the reactions of β -enaminocarbonyl compounds with cyanothioacetamide afforded various 3-cyanopyridine-2(1H)-thiones containing the acetyl, alkoxycarbonyl, or cyano group at position 5. The reaction of the sodium salt of nitromalondialdehyde with cvanothioacetamide⁶ was the only example of the synthesis of 3-cyano-5-nitropyridine-2(1H)-thiones published in the literature. Because of this, the chemical properties of nitro-substituted 3-cyanopyridine-2(1H)-thiones remained virtually unknown.


In the present study, we carried out the regioselective synthesis of substituted 3-cyano-5-nitropyridine-2(1H)-thiones based on β -enaminocarbonyl compounds and studied some chemical transformations of nitro-containing pyridinethiones.

We used 1-substituted 1-nitro-2-phenylaminoethylenes $\mathbf{1a}-\mathbf{d}$ as β -enaminocarbonyl compounds. These enamines were prepared according to a known procedure⁷ by condensation of the corresponding α -nitrocarbonyl compounds, trimethyl orthoformate, and aniline. We chose compounds $\mathbf{1a}-\mathbf{d}$ as enamines because they are more stable and can be more easily isolated than free nitrodicarbonyl compounds.

We found that the reactions of enamines 1a-d with cyanothioacetamide 2 in water in the presence of a 10% KOH solution (Scheme 1) followed by acidification of the reaction mixture with hydrochloric acid afforded 6-substituted 3-cyano-5-nitropyridine-2(1H)-thiones **5a-d** in 95-98% yields. The reactions proceeded regio-selectively at 40-45 °C through, apparently, the formation of intermediate **3** followed by cyclization to give thiolate **4**.

Scheme 1



The structures of the compounds thus synthesized were confirmed by ¹H NMR and IR spectroscopy and elemental analysis. The¹H NMR spectra of compounds **5a**–**d** have characteristic singlets for the H(4) protons of the pyridine ring at δ 8.26–8.67. The IR spectra have absorp-

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 428-430, February, 2003.

1066-5285/03/5202-447 \$25.00 © 2003 Plenum Publishing Corporation

6, **7**: R = OH(a), Ph (b), 4-MeC₆H₄ (c), 4-MeOC₆H₄ (d)

tion bands of the cyano groups at $2224-2240 \text{ cm}^{-1}$, which are characteristic of 3-cyanopyridine-2(1H)-thiones, and intense absorption bands at 1564-1592 and $1324-1328 \text{ cm}^{-1}$ corresponding respectively to symmetrical and asymmetrical vibrations of the nitro group.

Compounds 5a-d undergo chemical transformations (Scheme 2) typical of 3-cyanopyridine-2(1H)-thiones.

The reactions of compounds 5a-d with iodomethane in ethanol in the presence of an equivalent amount of KOH produced substituted 2-(methylthio)pyridines 6a-d. 3-Cyano-5-nitropyridine-2(1*H*)-thiones 5a-c were used also in the synthesis of difficultly accessible annelated nitropyridines 7a-c according to a procedure described earlier.⁸ This procedure involved alkylation of ethyl 4-chloroacetoacetate (8) followed by cyclization of intermediate ethyl 4-(pyridylthio)acetoacetates 9 and ethyl 3-(3-aminothieno[2,3-*b*]pyrid-2-yl)-3-oxopropionates 10 in the presence of an excess of KOH.

The ¹H NMR spectra of compounds **7a–c** have singlets at δ 5.69–5.85 belonging to the C(3)H protons and singlets at δ 12.10–12.25 belonging to the N(1)H protons. These signals are characteristic of 4-hydroxy-pyrido[2',3':4,5]thieno[2,3-b]pyridin-2(1H)-ones.^{1,8} The assignment of the signals of the hydroxy groups in the ¹H NMR spectra of compounds **7a–c** presented difficulties due, apparently, to association of these compounds with water, deuterium exchange in DMSO-d₆, and low solubility in other solvents used in NMR spectroscopy.

Experimental

The melting points were measured on a Kofler hot-stage apparatus. The IR spectra were recorded on a Perkin—Elmer 577 instrument (in KBr). The ¹H NMR spectra were measured on a Bruker WM-250 instrument in DMSO-d₆. The mass spectra were obtained on a MAT INCOS-50 Finnigan instrument (energy of ionizing electrons was 70 eV). Elemental analysis was performed on a Perkin—Elmer C,H,N analyzer.

Synthesis of compounds 5a-d (general procedure). A 10% aqueous solution of KOH (2.35 mL) was added dropwise with stirring to a suspension of compounds 1a-d (3 mmol) and cyanothioacetamide (2) (0.31 g, 3.1 mmol) in water (3 mL) at 30-35 °C for 5 min. The resulting solution was stirred at 40-45 °C for 20 min, cooled to 20 °C, and acidified with concentrated HCl (0.5 mL). The precipitate that formed was filtered off, washed with water and hexane, and recrystallized from

Table 1. Characteristics of 6-substituted 3-cyano-5-nitropyridine-2(1H)-thiones 5a-d

Con pour		Yield (%)	Found Calculated (%)				Molecular formula	IR, v/cm^{-1}			MS [M] ⁺	
			С	Н	Ν	S		CN	NO ₂	H(4) (s, 1 H)	Other signals	<i>m/z</i> ,
5a	ОН	98	<u>36.71</u> 36.55	<u>1.56</u> 1.53	<u>21.10</u> 21.31	<u>16.12</u> 16.26	C ₆ H ₃ N ₃ O ₃ S	2224	1328, 1564	8.26	11.78 (s, 1 H, NH, OH)	_
5b	Ph	97	<u>56.14</u> 56.02	<u>2.82</u> 2.74	<u>16.69</u> 16.33	<u>12.23</u> 12.46	$\mathrm{C}_{12}\mathrm{H}_{7}\mathrm{N}_{3}\mathrm{O}_{2}\mathrm{S}$	2240	1328, 1584	8.67	7.56 (m, 5 H, Ph)	257
5c	$4-\text{MeC}_6\text{H}_4$	96	<u>57.68</u> 57.56	<u>3.45</u> 3.32	<u>15.78</u> 15.49	<u>11.78</u> 11.82	$C_{13}H_9N_3O_2S$	2232	1324, 1588	8.65	2.41 (s, 3 H, Me); 7.29, 7.36 (both d, 2 H each, <i>J</i> = 8.2)	271
5d	4-MeOC ₆ H ₄	4 95	<u>54.63</u> 54.35	<u>3.17</u> 3.16	<u>14.79</u> 14.63	<u>11.23</u> 11.16	C ₁₃ H ₉ N ₃ O ₃ S	2224	1324, 1592	8.57	3.85 (d, 3 H, MeO); 7.02, 7.43 (both d, 2 H each, <i>J</i> = 8.3)	287

Com- pound	Yield (%)	M.p. /°C	Found Calculated (%)				Molecular formula	IR, v/cm^{-1}			MS [M] ⁺		
			С	Н	Ν	S		CN	NO ₂	H(4) (s, 1 H)	SMe (s, 3 H)	Other signals	m/z
6a	40	271 (decomp.)	<u>40.09</u> 39.81	<u>2.42</u> 2.39	<u>19.70</u> 19.90	<u>15.08</u> 15.18	$\mathrm{C_7H_5N_3O_3S}$	2224	1304, 1576	8.13	2.41	11.65 (s, 1 H, NH, OH)	211
6b	50	129— —130	<u>57.51</u> 57.56	<u>3.44</u> 3.34	<u>15.61</u> 15.49	<u>11.69</u> 11.82	$C_{13}H_9N_3O_2S$	2224	1340, 1540	8.36	2.75	7.56 (m, 5 H, Ph)	271
6с	63	130— —131	<u>59.11</u> 58.94	<u>4.01</u> 3.89	<u>14.78</u> 14.73	<u>11.36</u> 11.24	C ₁₄ H ₁₁ N ₃ O ₂ S	2224	1336, 1584	8.87	2.71	2.39 (s, 3 H, Me); 7.31 (d, 2 H, C_6H_4 , $J = 8.4$); 7.52 (d, 2 H, C_6H_4 , $J = 8.4$);	285
6d	76	132— —133	<u>55.79</u> 55.81	<u>3.73</u> 3.84	<u>14.12</u> 13.95	<u>10.78</u> 10.64	C ₁₄ H ₁₁ N ₃ O ₃ S	2224	1340, 1568	8.81	2.72	3.85 (s, 3 H, MeO); 7.05 (d, 2 H, C_6H_4 , $J = 8.4$); 7.62 (d, 2 H, C_6H_4 , $J = 8.4$);	

Table 2. Characteristics of 6-substituted 3-cyano-2-methylthio-5-nitropyridines 6a-d

Table 3. Characteristics of 7-substituted 4-hydroxy-8-nitropyrido[2',3':4,5]thieno[2,3-b]pyridin-2(1H)-ones 7a-c

Com- pound	Yield (%)	M.p. /°C	Found Calculated (%)			Molecular formula	IR, v/cm ⁻¹		¹ H NMR, δ, ³ J/Hz				
			С	Н	Ν	S		CONH, OH, <i>etc</i> .	NO ₂	H(3)	(3) H(9) (4)		Other signals
											s, 1 H		
7a	40	>300	<u>42.97</u> 43.02	<u>1.78</u> 1.80	<u>14.82</u> 15.05	<u>11.32</u> 11.48	$C_{10}H_5N_3O_5S$	1656, 3648,	1380, 1548 3632	5.69	9.31	12.10	7.91 (s, 1 H, OH)
7b	86	>300	<u>56.69</u> 56.63	<u>2.72</u> 2.67	<u>12.29</u> 12.38	<u>9.32</u> 9.45	$C_{16}H_9N_3O_4S$	1640, 3592,	1372, 1540 3376, 3056	5.85	9.32	12.25	7.61 (m, 5 H, Ph)
7c	88	>300	<u>57.90</u> 57.79	3.17 3.14	<u>11.78</u> 11.89	<u>9.11</u> 9.07	C ₁₇ H ₁₁ N ₃ O ₄ S	1640, 3056,	1344, 1544 3240, 3580	5.82	9.32	12.22	2.39 (s, 3 H, Me); 7.29 (d, 2 H, C ₆ H ₄ , J = 8.2); 7.47 (d, 2 H, C ₆ H ₄ , J = 8.2)

EtOH. The characteristics of compounds 5a-d are given in Table 1.

Synthesis of compounds 6a-d (general procedure). A 10% aqueous solution of KOH (0.56 mL) and MeI (0.1 mL, 1.4 mmol) were successively added dropwise to a suspension of compounds 5a-d (1 mmol) in EtOH (3 mL). After 1 h, the precipitate that formed was filtered off and recrystallized from hexane. The characteristics of compounds 6a-d are given in Table 2.

Synthesis of compounds 7a-c (general procedure). A 10% aqueous solution of KOH (0.56 mL) was added dropwise with stirring to a suspension of compounds 5a-c (1 mmol) in EtOH (3 mL). Then ethyl 4-chloroacetoacetate (8) (0.14 mL, 1 mmol) was added and the reaction mixture was kept for 5 min, after which a precipitate formed. A 10% aqueous solution of KOH (0.84 mL) was added to the resulting mixture and the mixture was heated until a transparent solution was obtained. The solu-

tion was cooled to ~ 20 °C and then concentrated HCl (0.15 mL) was added. The precipitate that formed was filtered off and washed successively with EtOH, water, and hexane. The characteristics of compounds **7a**–**d** are given in Table 3.

References

- 1. V. P. Litvinov, L. A. Rodinovskaya, Yu. A. Sharanin, A. M. Shestopalov, and A. Senning, *Sulfur Reports*, 1992, **13**, 1.
- V. P. Litvinov, Usp. Khim., 1999, 68, 817 [Russ. Chem. Rev., 1999, 68, 765 (Engl. Transl.)].
- 3. V. P. Litvinov, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 2123 [*Russ. Chem. Bull.*, 1998, **47**, 1923 (Engl. Transl.)].
- 4. L. A. Rodinovskaya, A. M. Shestopalov, Yu. A. Sharanin, and V. P. Litvinov, *Tez. dokl. I Ural'skoi konf. "Enaminy v*

organicheskom sinteze," [Abstrs. of Papers, I Urals Conf. "Enamines in Organic Synthesis], Perm, 1986, 5 (in Russian).

- L. A. Rodinovskaya, Dr. Sc. (Chem.) Thesis, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, 1994 (in Russian).
- 6. US Pat. 3624877 (Cl. 424/263, A 01n); Chem. Abstr., 1972, 77, 88314.
- 7. O. S. Wolfbeis, Chem. Ber., 1981, 114, 3471.
- L. A. Rodinovskaya and A. M. Shestopalov, *Izv. Akad. Nauk, Ser. Khim.*, 2000, 347 [*Russ. Chem. Bull., Int. Ed.*, 2000, 49, 285].

Received February 18, 2002; in revised form November 11, 2002