

PII: S0040-4020(96)00581-9

Chemoselectivity in the Rhodium(II) Acetate Catalysed Decomposition of α-Diazo-β-keto-γ,δ-alkenyl-δ-aryl Compounds: Aromatic C-H Insertion Reaction or Wolff Rearrangement-Electrocyclization

Didier Collomb, Bernard Chantegrel and Christian Deshayes

Laboratoire de Chimie Organique, Département de Biochimie, Institut National des Sciences Appliquées, 20 avenue A. Einstein, 69621 Villeurbanne, FRANCE. Fax: 33 72 43 88 96. E-mail: deshayes@insa.insa-lyon.fr

Abstract: The rhodium(II) acetate catalysed decomposition of α -diazo- β -keto- γ , δ -alkenyl phosphonates 1 substituted in the δ -position by an aryl group gave rise to mixtures of isomeric hydroxynaphthalenephosphonates, 3 resulting from a Wolff rearrangement-electrocyclization process and 5 resulting from an aromatic C-H insertion reaction. The 3:5 ratio was found to depend on the substitution pattern of the γ , δ -double bond. The diazoesters 9 which are the analogs of diazophosphonates 1 showed similar behaviour. In particular the rhodium(II) acetate catalysed decomposition of ethyl 2-diazo-5,5diphenyl-3-oxopent-4-enoate 9c led to ethyl 1-hydroxy-4-phenyl-2-naphthalenecarboxylate 11c and not to ethyl 2-hydroxy-4-phenyl-1-naphthalenecarboxylate 10c as previously reported. The structure of 11c was confirmed by X-ray crystallography. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

The rhodium(II) catalysed decomposition of α -diazo- β -carbonyl compounds is a well documented process leading to the formation of intermediate rhodium carbenoids which can undergo a variety of reactions like cyclopropanation, C-H or heteroatom-H insertion and ylide formation.¹ Many examples of aromatic C-H insertion reactions resulting from rhodium mediated decomposition of α -diazo- β -keto esters,² α -diazoketones,³ aryl 2-diazobutyrates,⁴ N-aryl 2-diazoamides⁵ and α -diazo- β -phenylmethanesulfonyl esters⁶ are known.

We have recently reported that the thermolysis, in refluxing toluene, of some α -diazo- β -keto- γ , δ -alkenyl phosphonates substituted in the δ -position by an aryl group allowed the synthesis of various phenolic compounds, these products being formed by the $\delta\pi$ electrocyclization of an intermediate aryl vinyl ketene resulting from a thermal Wolff rearrangement.⁷

These results suggested that the decomposition of the α -diazo- β -keto- γ , δ -alkenyl- δ -arylphosphonates 1 could be specifically directed either to ketenes 2 through a thermal Wolff rearrangement or to rhodium carbenoids 4 if catalysed by rhodium(II) acetate, allowing respectively the synthesis of dimethyl 1-hydroxy-2-naphthalene-phosphonates 3 or isomeric dimethyl 2-hydroxy-1-naphthalenephosphonates 5 (Scheme 1).

However during the course of our previous work,^{7c} we have carried out the rhodium(II) mediated decomposition of the diazoalkenylphosphonate 1a with the aim of synthesizing the naphthol $5a^8$ and we have observed the formation of the naphthol 3a (yield: 28 %) along with its isomer 5a (yield: 48 %). Various competitive rhodium carbenoid mediated reactions directed towards two differents groups within the same molecule have been reported; they include C-H, N-H or O-H insertion reactions, cyclopropanation and carbonyl

ylide formation.^{2c,5c,9-19} However, only one report, concerning the metal catalysed decomposition of α -alkoxy- α '-diazoketones, in which the Wolff rearrangement is a competing process with aromatic and aliphatic C-H insertion reactions has been studied.²⁰ The Wolff rearrangement as a side-reaction has been considered in intramolecular cyclizations of rhodium carbenoids resulting from the decomposition of α -diazo- β -ketoalkylphosphonates to explain "deviations of the yields from the quantitative".²¹ Diazophosphonates of type 1 can give rise to Wolff rearrangement products which are easy to detect and isolate from the reaction medium, together with aromatic C-H insertion products, and therefore they were well designed for competition experiments. We report here the results of the rhodium(II) acetate catalysed decomposition of α -diazo- β -ketophosphonates 1 and its extension to some ester analogues.

RESULTS AND DISCUSSION

The α -diazo- β -ketophosphonates 1b-i required for this study were synthesized according to the sequence outlined in scheme 2. Starting from ketones 6, the ethyl alkenoates 7c-e, 7f,²² 7h²³ and 7i²⁴ were prepared by a Wadsworth-Horner-Emmons reaction whereas compound 7g²⁵ was obtained by a Wittig reaction. The ethyl propenoate 7b was prepared by semihydrogenation of the corresponding alkyne.²⁶ Subjected to the action of dimethyl lithiomethylphosphonate (2 eq) compounds 7 were then transformed into β -ketophosphonates 8. The diazo-transfer reaction was conducted using tosyl azide and potassium carbonate in acetonitrile according to the

conditions reported by Koskinen and Munoz for the preparation of α -diazo- β -ketoesters.²⁷ The α -diazo- β -ketophosphonates 1 were thus obtained from compounds 7 in overall yields ranging from 38% to 83%.

i) (EtO)2OP-CH2-CO2Et, NaH (c-e,i); (CF3CH2O)2OP-CH2-CO2Et, Et3N (f); Ph3P=CHCO2Et (g); (EtO)2OP-CHF-CO2Et, BuLi (h). ii) CH3-PO(OMe)2 (2 eq), BuLi, THF. iii) TsN3, K2CO3, CH3CN.

	b	c	d	e	f	g	h	i
R1	Н	Н	Н	Н	Н	Н	F	Н
R2	Н	C ₆ H ₅	4-MeO-C6H4	4-CI-C6H4	СН3	CF3	Н	2,2'-
R3	C ₆ H ₅	C ₆ H ₅	4-MeO-C ₆ H ₄	4-CI-C6H4	C ₆ H ₅	,C6H5	C ₆ H ₅	biphenyle

Scheme 2

When the diazophosphonate 1b was treated with a catalytic amount of rhodium(II) acetate (3 % mol) in boiling benzene, the 2-hydroxy-1-naphthalenephosphonate 5b resulting from the insertion reaction of the rhodium carbenoid 4b was formed together with a small amount of isomeric 1-hydroxy-2-naphthalenephosphonate 3b (Table 1).

Table (1): (3:5) Ratios observed in the rhodium(II) acetate catalysed decomposition of 1 in refluxing benzene

1	a ^{7c}	b	с	d	e	f	g	h	i
(3:5) ratios*	37:63	12:88	85:15	100:0	92:8	47:53	0:100	5:95	100:0
(yield)	(76%)	(86%)	(78%)	(90%)	(77%)	(90%)	(75%)	(81%)	(86%)

*determined by ¹H-NMR.

Surprisingly the introduction of a phenyl group as the R_2 substituent resulted in a dramatic change in the orientation of the decomposition towards the Wolff rearrangement product since the decomposition of 1c yielded 3c as the major isomer. The same 3c:5c ratio was obtained when the rhodium mediated decomposition of 1c was conducted in refluxing dichloromethane (3 h) in place of refluxing benzene (1 h), showing that the reaction temperature did not influence the products distribution. The thermal decomposition of 1c in refluxing benzene was completed after 30 h; if the reaction was stopped after 1h, only a small amount of 3c was detected (~ 5% as shown by ¹H-NMR). Thus the formation of 3c should not be the result of a competing thermal Wolff rearrangement but, almost completely, the result of the Wolff rearrangement of a rhodium carbenoid species such as 4c. The rhodium mediated decomposition of the diazophosphonates 1d,e in refluxing benzene gave similar results, the naphthalenephosphonates 3 being obtained as exclusive (d) or major (e) isomer. These results could be explained by a steric interaction between the two R_2 and R_3 aryl groups, preventing the *cis*- R_3 group and the carbenoid centre from achieveing a proximal orientation and thus retarding the aromatic C-H insertion process. However this interpretation was not consistent with the decomposition of the diazophosphonate 1i, possessing

two bonded R_2 and R_3 aryl groups in a planar arrangement, which gave the fluoranthenephosphonate 3i as the sole product (Scheme 3).

Scheme 3

Evidence for electronic effects of the R₂ substituent was given by the decomposition of the diazophosphonates 1f or 1g which gave rise to a 47:53-mixture of 3f and 5f or exclusively to the insertion product 5g. Thus the (3:5) ratios obtained in the rhodium mediated decomposition of diazophosphonates 1b-g, i could be related to the electron density of the C_{γ} - C_{β} bond in the intermediate rhodium carbenoids 4: δ -substituents acting as mesomerically electron releasing groups (c-e,i, R₂ = aryl) increase the electron density of the C_{γ} - C_{β} bond, making it more susceptible to attack the electron product releasing (f, R₂ = CH₃), neutral (b, R₂ = H) or electron withdrawing (g, R₂ = CF₃) have an opposite effect and allow the C-H insertion to compete with the Wolff rearrangement.

As compared with compound 1b, the introduction of a fluorine atom in γ -position slightly affected the orientation of the decomposition towards the insertion product 5h (Table 1) whereas the methoxy group had resulted in an increase in the amount of Wolff rearrangement product 3a.^{7c} These results are globally consistent with an electron withdrawing effect of the fluorine atom and an electron releasing effect of the methoxy group on the electron density of C_y-C_β bond.

To establish unambiguously the structures of isomeric naphthols 3 and 5, all diazophosphonates 1 were submitted to thermolysis in refluxing toluene to afford almost exclusively the thermal Wolff rearrangement products 3; minute amounts of isomers 5 (yields ~ 2 %) were also detected in the thermal decomposition of **1b,f,g**. The structures of compounds 3b-i and 5b,c,e-h were supported by their IR and NMR spectra. Chemical shifts and coupling constants relative to the benzannulated ring are gathered in Tables 2 and 3.²⁸ The observed H-P and C-P coupling constants were particularly useful to establish the relative positions of hydroxy and dimethylphosphono groups. Thus compounds 3 possess a ³J_{HP} relative to H-3 (or H-1 for 3i) in the range 11.9-13.0 Hz whereas compounds 5 show a ⁴J_{HP} relative to H-3 in the range 5.8-5.9 Hz. A similar and conclusive comparison can be made between 3 and 5 concerning the ⁿJ_{CP} coupling constants.²⁹

	b (H-3)	b (H-4)	c (H-3)	d (H-3)	e (H-3)	f (H-3)	g (H-3)	h (H-4)	i (H-1)
3	7.30	7.39	7.22	7.07	7.18	7.10	7.78-7.54	6.96	7.73
	${}^{3}J_{HP} = 12.1$	${}^{4}J_{HP} = 3.4$	${}^{3}J_{HP} = 12.9$	${}^{3}J_{HP} = 13.0$	${}^{3}J_{HP} = 11.9$	${}^{3}J_{HP} = 12.7$	³ J _{HP} ~ 13	${}^{4}J_{HP} = 5.4$	${}^{3}J_{HP} = 12.5$
								${}^{2}J_{HF} = 10.8$	
5	7.12	7.92	7.14	-	7.06	6.95	buried in a	buried in a	-
	^₄ J _{HP} = 5.8	(s)	${}^{4}J_{HP} = 5.9$		⁴ J _{HP} = 5.8	${}^{4}J_{HP} = 5.9$	multiplet	multiplet	

Table (2): Pertinent ¹H-NMR data of phosphonates 3 and 5 [δ (ppm) and J (Hz)]

3ћ	C-1 161.8	C-2 99 5	C-3 125 7	C-4 119.7	C-4a 137.5	C-8a 125 1
30	$^{2}ICP = 7.5$	1 JCP = 181.4	2 JCP = 6.3	${}^{3}ICP = 13.4$	4 JCP = 2.0	3 JCP = 13.8
	C-1	C-2	C-3	C-4	C-4a	C-8a
3c	160.9	98.7	125.8	132.1	135.3	125.0
	${}^{2}JCP = 7.3$	${}^{1}J_{CP} = 183.0$	${}^{2}J_{CP} = 7.8$	$^{3}JCP = 13.5$	${}^{4}J_{CP} = 2.4$	${}^{3}JCP = 13.8$
	C-1	C-2	C-3	C-4	C-4a	C-8a
3d	159.5	99.2	123.3	131.8	130.8	126.1
	$^{2}J_{CP} = 7.4$	$^{1}J_{CP} = 181.8$	$^{2}J_{CP} = 6.4$	${}^{3}J_{CP} = 13.8$	${}^{4}J_{CP} = 2.0$	${}^{3}JCP = 14.2$
	C-1	C-2	C-3	C-4	C-4a	C-8a
3e	160.1	100.2	126.2	130.7	133.4	125.8
	$^{2}J_{CP} = 7.4$	$^{1}JCP = 183.4$	$^{2}JCP = 6.5$	$^{-3}JCP = 13.5$	$^{4}J_{CP} = 2.4$	${}^{3}JCP = 14.3$
20	C-1	C-2	C-3	C-4	C-4a	C-8a
31	100.2	98.1 11	21 6.4	31 14.0	41	31
	-3CP = 7.0	-JCP = 102.4	-3CP = 0.4	$^{\circ}JCP = 14.9$	JCP = 2.3	$^{\circ}JCP = 13.4$
3.0	164.6	97.9	1254	118.0 (od)	132.5	125 4
75	$2_{ICP} = 77$	$1_{ICP} = 186.9$	(m)	$2_{ICE} = 30.7$	102.0	$3_{ICP} = 13.2$
	5CP - 1.1	JCP = 100.5		$_{31cp = 13.8}^{31cp = 13.8}$		JCF = 15.2
	C-1	<u>C2</u>	C.3	$\frac{3CP - 13.0}{CA}$	C 49	<u>C 82</u>
3h	163.4 (dd)	91.4 (dd)	158.9 (dd)	101.9 (dd)	136.7(dd)	122.2 (d)
	${}^{2}J_{CP} = 4.2$	${}^{1}JCP = 181.1$	${}^{2}J_{CP} = 1.8$	${}^{3}JCP = 6.9$	$^{4}J_{CP} = 1.0$	${}^{3}JCP = 12.6$
	${}^{3}JCF = 8.4$	${}^{2}J_{CF} = 26.6$	${}^{1}JCF = 246.7$	2 JCF = 21.9	3 JCF = 11.9	
	C-3	C-2	C-1	C-10b	C-10c	C-3a
3i	163.2	100.8	120.6	128.7	138.5	122.3
	${}^{2}J_{CP} = 8.7$	${}^{1}JCP = 179.8$	${}^{2}J_{CP} = 7.0$	${}^{3}JCP = 14.8$	${}^{4}J_{CP} = 1.6$	${}^{3}J_{CP} = 15.1$
	C-1	C-2	C-3	C-4	C-4a	C-8a
5b ^a	97.5	165.3	119.9	136.9	128.7	133.7
	1100 - 1766	41cp - 68	³ ICP = 136	$4I_{CP} = 2.7$	${}^{3}J_{CP} = 11.8$	$41_{CP} = 78$
	-JCP = 170.0	<u> </u>	5 <u>CF</u> =15.0	<u></u>	<u> </u>	
- 1	C-1	C-2	C-3	C-4	C-4a	C-8a
5c ^b	-3CP = 170.8 C-1 98.9	C-2 164.2	C-3 120.4	C-4 148.8	C-4a 127.9	C-8a 134.0
5c ^b	$\frac{C-1}{98.9}$ $\frac{1}{J_{CP}} = 177.8$	$C-2 \\ 164.2 \\ 2J_{CP} = 6.8 $	$\frac{C-3}{120.4}$	C-4 148.8 $^{4}JCP = 2.8$	C-4a 127.9 ${}^{3}J_{CP} = 10.6$	$\frac{C-8a}{134.0}$ $\frac{^{2}J_{CP} = 8.1}{2}$
5c ^b	$\frac{-5CP = 170.0}{C-1}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{5}$ $\frac{1}{5}$	$\begin{array}{r} 3CP = 0.0 \\ C-2 \\ 164.2 \\ 2J_{CP} = 6.8 \\ C-2 \\ 164.7 \end{array}$	$\begin{array}{r} C-3 \\ \hline C-3 \\ 120.4 \\ 3J_{CP} = 13.7 \\ \hline C-3 \\ 120.3 \\ \end{array}$	$C-4 \\ 148.8 \\ 4J_{CP} = 2.8 \\ C-4 \\ 144.1 \\ C-4 \\ 144.1 \\ C-4 \\ $	$\frac{C-4a}{127.9}$ $^{3}J_{CP} = 10.6$ $C-4a$ $128 1$	$\frac{C-8a}{134.0}$ $\frac{^{2}J_{CP} = 8.1}{C-8a}$ 133.5
5c ^b 5f ^c	-3CP = 176.8 C-1 98.9 $1_{JCP} = 177.8$ C-1 95.0 $1_{JCP} = 178.8$	$\begin{array}{c} C_{2} \\ C_{2} \\ 164.2 \\ 2J_{CP} = 6.8 \\ C_{2} \\ 164.7 \\ 2I_{CP} = 6.7 \end{array}$	$\begin{array}{r} C = 13.0 \\ C = 3 \\ 120.4 \\ 3J_{CP} = 13.7 \\ C = 3 \\ 120.3 \\ 3J_{CP} = 13.6 \\ \end{array}$	$C-4 \\ 148.8 \\ 4J_{CP} = 2.8 \\ C-4 \\ 144.1 \\ 4I_{CP} = 2.7 $	$\begin{array}{c} C-4a \\ 127.9 \\ {}^{3}JCP = 10.6 \\ C-4a \\ 128.1 \\ {}^{3}ICP = 11.8 \end{array}$	$\frac{134.0}{2J_{CP} = 8.1}$ C-8a 134.0 2J_CP = 8.1 C-8a 133.5 2I_CP = 8.2
5c ^b 5f ^c	$-3CP = 178.8$ C-1 98.9 $1J_{CP} = 177.8$ C-1 95.0 $1J_{CP} = 178.8$ C-1	$\begin{array}{c} \mathbf{C} = \mathbf{C} \\ \mathbf{C} = \mathbf{C} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} = \mathbf{C} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} = \mathbf{C} \\ $	C-3 120.4 3JCP = 13.7 C-3 120.3 3JCP = 13.6 C-3	$C4 148.8 4J_{CP} = 2.8 C4 144.1 4J_{CP} = 2.7 C4 C4 C4 C4 C4 C4 C4 C4$	C-4a 127.9 ³ J _{CP} = 10.6 C-4a 128.1 ³ J _{CP} = 11.8	$\frac{134.0}{2J_{CP} = 8.1}$ C-8a 134.0 2J_{CP} = 8.1 C-8a 133.5 2J_{CP} = 8.2 C-8a
5c ^b 5f ^c	$\begin{array}{r} -3CP = 178.8 \\ \hline C-1 \\ 98.9 \\ 1J_{CP} = 177.8 \\ \hline C-1 \\ 95.0 \\ 1J_{CP} = 178.8 \\ \hline C-1 \\ 101.6 \end{array}$	$\begin{array}{c} \mathbf{C} = 0 \\ \mathbf{C} = 0 \\ \mathbf{C} = 164.2 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} = 0 \\ \mathbf{C} = 0 \\ 164.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} = 0 \\ \mathbf{C} =$	C-3 120.4 3JCP = 13.7 C-3 120.3 3JCP = 13.6 C-3 119.4 (do)	C_{4} C_{4} 148.8 $4_{J_{CP}} = 2.8$ C_{4} 144.1 $4_{J_{CP}} = 2.7$ C_{4} $1336 (ad)$	C-4a 127.9 3JCP = 10.6 C-4a 128.1 3JCP = 11.8 C-4a 123.5 C-4a 123.5 C-4a 123.5 C-4a 123.5 C-4a 127.9 C-4a 127.9 C-4a 128.1 C-4a C-4	$\begin{array}{r} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ \end{array}$
5c ^b 5f ^c 5g ^d	$-3CP = 178.8$ C-1 98.9 $1J_{CP} = 177.8$ C-1 95.0 $1J_{CP} = 178.8$ C-1 101.6 $1J_{CP} = 175.9$	$\begin{array}{c} \mathbf{C} = \mathbf{C} = \mathbf{C} \\ \mathbf{C} = \mathbf{C} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} = \mathbf{C} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} = \mathbf{C} \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \end{array}$	C-3 120.4 3JCP = 13.7 C-3 120.3 3JCP = 13.6 C-3 119.4 (dq) 3JCP = 14.0	C_{4} C_{4} 148.8 $4_{J_{CP}} = 2.8$ C_{4} 144.1 $4_{J_{CP}} = 2.7$ C_{4} $133.6 (qd)$ $4_{J_{CP}} = 3.0$	C-4a 127.9 ³ J _{CP} = 10.6 C-4a 128.1 ³ J _{CP} = 11.8 C-4a 123.5 ³ J _{CP} = 11.8	$\begin{array}{r} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2I_{CP} = 8.0 \end{array}$
5c ^b 5f ^c 5g ^d	$\begin{array}{c} -3CP = 178.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\end{array}$	$\begin{array}{c} \mathbf{C} = 0 \cdot 0 \\ \mathbf{C} \cdot 2 \\ 164.2 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6 \cdot 8 \\ \mathbf{C} \cdot 2 \\ 164.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6 \cdot 7 \\ \mathbf{C} \cdot 2 \\ 163.20 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6 \cdot 9 \end{array}$	C-3 120.4 3JCP = 13.7 C-3 120.3 3JCP = 13.6 C-3 119.4 (dq) 3JCP = 14.0 3JCF = 6.1	$C4$ 148.8 $4J_{CP} = 2.8$ $C-4$ 144.1 $4J_{CP} = 2.7$ $C-4$ 133.6 (qd) $4J_{CP} = 3.0$ $2J_{CF} = 30.6$	C-4a 127.9 3JCP = 10.6 C-4a 128.1 3JCP = 11.8 C-4a 123.5 3JCP = 11.8	$\begin{array}{c} C-8a\\ 134.0\\ 2J_{CP}=8.1\\ C-8a\\ 133.5\\ 2J_{CP}=8.2\\ C-8a\\ 134.4\\ 2J_{CP}=8.0\\ \end{array}$
5c ^b 5f ^c 5g ^d	$\begin{array}{c} -3CP = 178.8 \\ C-1 \\ 98.9 \\ 1J_{CP} = 177.8 \\ C-1 \\ 95.0 \\ 1J_{CP} = 178.8 \\ C-1 \\ 101.6 \\ 1J_{CP} = 175.9 \\ \hline \end{array}$	$\begin{array}{c} \mathbf{C} = \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot \mathbf{C} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot \mathbf{C} \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \end{array}$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ 3J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ 3J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ ^{3}J_{CP} = 14.0 \\ ^{3}J_{CF} = 6.1 \\ C_{-3} \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ 4J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ 4J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ 4J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \end{array}$	C-4a 127.9 ³ J _{CP} = 10.6 C-4a 128.1 ³ J _{CP} = 11.8 C-4a 123.5 ³ J _{CP} = 11.8 C-4a	$C-8a$ 134.0 $2J_{CP} = 8.1$ $C-8a$ 133.5 $2J_{CP} = 8.2$ $C-8a$ 134.4 $2J_{CP} = 8.0$ $C-8a$
5c ^b 5f ^c 5g ^d 5h ^e	$\begin{array}{c} -3CP = 178.8 \\ C-1 \\ 98.9 \\ 1J_{CP} = 177.8 \\ C-1 \\ 95.0 \\ 1J_{CP} = 178.8 \\ C-1 \\ 101.6 \\ 1J_{CP} = 175.9 \\ \hline \\ C-1 \\ 100.2 \ (dd) \end{array}$	$\begin{array}{c} \mathbf{C} = \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \end{array}$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ 3J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ 3J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ 3J_{CP} = 14.0 \\ 3J_{CF} = 6.1 \\ C_{-3} \\ 151.5 (dd) \end{array}$	$C-4$ 148.8 $^{4}J_{CP} = 2.8$ $C-4$ 144.1 $^{4}J_{CP} = 2.7$ $C-4$ 133.6 (qd) $^{4}J_{CP} = 3.0$ $^{2}J_{CF} = 30.6$ $C-4$ 118.7 (dd)	C-4a 127.9 ${}^{3}J_{CP} = 10.6$ C-4a 128.1 ${}^{3}J_{CP} = 11.8$ C-4a 123.5 ${}^{3}J_{CP} = 11.8$ C-4a 127.7(dd)	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 \text{ (d)} \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e	$\begin{array}{c} -3CP = 176.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\\ \hline \\ C-1\\ 100.2 \ (dd)\\ 1J_{CP} = 176.4 \end{array}$	$C-2$ 164.2 $2J_{CP} = 6.8$ $C-2$ 164.7 $2J_{CP} = 6.7$ $C-2$ 163.20 $2J_{CP} = 6.9$ $C-2$ $155.6 (dd)$ $2J_{CP} = 7.7$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ 3J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ 3J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ 3J_{CP} = 14.0 \\ 3J_{CF} = 6.1 \\ C_{-3} \\ 151.5 (dd) \\ 3J_{CP} = 21.6 \end{array}$	C_{4} C_{4} 148.8 $^{4}J_{CP} = 2.8$ C_{4} 144.1 $^{4}J_{CP} = 2.7$ C_{4} $133.6 (qd)$ $^{4}J_{CP} = 30.6$ C_{4} C_{4} $118.7 (dd)$ $^{4}J_{CP} = 2.7$	C-4a 127.9 $^{3}J_{CP} = 10.6$ C-4a 128.1 $^{3}J_{CP} = 11.8$ C-4a 123.5 $^{3}J_{CP} = 11.8$ C-4a 127.7(dd) $^{3}J_{CP} = 14.3$	$\begin{array}{c} C-8a \\ C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e	$\begin{array}{c} -3CP = 178.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\\ \hline \\ C-1\\ 100.2 (dd)\\ 1J_{CP} = 176.4\\ 3J_{CF} = 1.8 \end{array}$	$\begin{array}{c} C-2 \\ C-2 \\ 164.2 \\ 2J_{CP} = 6.8 \\ C-2 \\ 164.7 \\ 2J_{CP} = 6.7 \\ C-2 \\ 163.20 \\ 2J_{CP} = 6.9 \\ \hline \\ C-2 \\ 155.6 \ (dd) \\ 2J_{CP} = 7.7 \\ 2J_{CF} = 14.9 \end{array}$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ 3J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ 3J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ ^{3}J_{CP} = 14.0 \\ ^{3}J_{CP} = 14.0 \\ ^{3}J_{CF} = 6.1 \\ C_{-3} \\ 151.5 (dd) \\ ^{3}J_{CP} = 21.6 \\ 1_{J_{CF}} = 252.2 \end{array}$	C_{4} C_{4} 148.8 $^{4}J_{CP} = 2.8$ C_{4} 144.1 $^{4}J_{CP} = 2.7$ C_{4} $133.6 (qd)$ $^{4}J_{CP} = 30.6$ C_{4} $118.7 (dd)$ $^{4}J_{CP} = 2.7$ $^{2}J_{CF} = 17.2$	C-4a 127.9 $^{3}J_{CP} = 10.6$ C-4a 128.1 $^{3}J_{CP} = 11.8$ C-4a 123.5 $^{3}J_{CP} = 11.8$ C-4a 127.7(dd) $^{3}J_{CP} = 14.3$ $^{3}J_{CF} = 7.5$	$\begin{array}{c} C-8a \\ C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e	$\begin{array}{c} -3CP = 176.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\\ \hline \\ C-1\\ 100.2 (dd)\\ 1J_{CP} = 176.4\\ 3J_{CF} = 1.8\\ \hline \\ C-1\\ \end{array}$	$\begin{array}{c} C-2 \\ C-2 \\ 164.2 \\ 2J_{CP} = 6.8 \\ C-2 \\ 164.7 \\ 2J_{CP} = 6.7 \\ C-2 \\ 163.20 \\ 2J_{CP} = 6.9 \\ \hline \\ C-2 \\ 155.6 \ (dd) \\ 2J_{CP} = 7.7 \\ 2J_{CF} = 14.9 \\ C-2 \\ \end{array}$	$C-3$ 120.4 $^{3}JCP = 13.7$ C-3 120.3 $^{3}JCP = 13.6$ C-3 119.4 (dq) $^{3}JCP = 14.0$ $^{3}JCP = 14.0$ $^{3}JCP = 6.1$ C-3 151.5 (dd) $^{3}JCP = 21.6$ $^{1}J_{CF} = 252.2$ C-3	C_{4} C_{4} 148.8 $^{4}J_{CP} = 2.8$ C_{4} 144.1 $^{4}J_{CP} = 2.7$ C_{4} $133.6 (qd)$ $^{4}J_{CP} = 3.0$ $^{2}J_{CF} = 30.6$ C_{4} $118.7 (dd)$ $^{4}J_{CP} = 2.7$ $^{2}J_{CF} = 17.2$ C_{4}	C-4a 127.9 $^{3}J_{CP} = 10.6$ C-4a 128.1 $^{3}J_{CP} = 11.8$ C-4a 123.5 $^{3}J_{CP} = 11.8$ C-4a 127.7(dd) $^{3}J_{CP} = 14.3$ $^{3}J_{CF} = 7.5$ C-4a	$\begin{array}{c} C-8a \\ C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 \text{ (d)} \\ 2J_{CP} = 6.9 \\ \hline \\ C-8a \\ \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e 10g	$\begin{array}{c} -3CP = 176.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\\ \hline \\ C-1\\ 100.2 \ (dd)\\ 1J_{CP} = 176.4\\ 3J_{CF} = 1.8\\ \hline \\ C-1\\ 108.4\\ \end{array}$	$\begin{array}{c} \mathbf{C} - \mathbf{C} - \mathbf{C} \\ \mathbf{C} - 2 \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} - 2 \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} - 2 \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \hline \\ \mathbf{C} - 2 \\ 155.6 \ (\mathbf{dd}) \\ \mathbf{2J}_{\mathbf{CP}} = 7.7 \\ \mathbf{2J}_{\mathbf{CF}} = 14.9 \\ \hline \\ \mathbf{C} - 2 \\ 161.8 \end{array}$	$C-3$ 120.4 $^{3}JCP = 13.7$ C-3 120.3 $^{3}JCP = 13.6$ C-3 119.4 (dq) $^{3}JCP = 14.0$ $^{3}JCP = 14.0$ $^{3}JCF = 6.1$ C-3 151.5 (dd) $^{3}JCP = 21.6$ $^{1}J_{CF} = 252.2$ C-3 119.1(q)	C_{4} C_{4} 148.8 $^{4}J_{CP} = 2.8$ C_{4} 144.1 $^{4}J_{CP} = 2.7$ C_{4} $133.6 (qd)$ $^{4}J_{CP} = 3.0$ $^{2}J_{CF} = 30.6$ C_{4} $118.7 (dd)$ $^{4}J_{CP} = 2.7$ $^{2}J_{CF} = 17.2$ C_{4} $133.1 (q)$	$\begin{array}{c} C-4a\\ 127.9\\ 3J_{CP} = 10.6\\ C-4a\\ 128.1\\ 3J_{CP} = 11.8\\ C-4a\\ 123.5\\ 3J_{CP} = 11.8\\ \hline \\ C-4a\\ 127.7(dd)\\ 3J_{CP} = 14.3\\ 3J_{CF} = 7.5\\ C-4a\\ 125.0\\ \end{array}$	$\begin{array}{c} C-8a \\ C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 \text{ (d)} \\ 2J_{CP} = 6.9 \\ \hline \\ C-8a \\ 132.8 \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e 10g	$\begin{array}{c} -3CP = 176.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 175.9\\ \hline \\ C-1\\ 100.2 (dd)\\ 1J_{CP} = 176.4\\ 3J_{CF} = 1.8\\ \hline \\ C-1\\ 108.4\\ \end{array}$	$\begin{array}{c} \mathbf{C} \mathbf{C}^{2} \\ \mathbf{C} \mathbf{C}^{2} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \mathbf{C}^{2} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \mathbf{C}^{2} \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \hline \mathbf{C} \mathbf{C}^{2} \\ 155.6 \ (\mathbf{dd}) \\ \mathbf{2J}_{\mathbf{CP}} = 7.7 \\ \mathbf{2J}_{\mathbf{CF}} = 14.9 \\ \hline \mathbf{C} \mathbf{C}^{2} \\ 161.8 \end{array}$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ {}^{3}J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ {}^{3}J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 21.6 \\ 151.5 (dd) \\ {}^{3}J_{CP} = 21.6 \\ 1J_{CF} = 252.2 \\ C_{-3} \\ 119.1(q) \\ {}^{3}J_{CF} = 6.2 \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ {}^{4}J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ {}^{4}J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ {}^{4}J_{CP} = 3.0 \\ {}^{2}J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ {}^{4}J_{CP} = 2.7 \\ {}^{2}J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ {}^{2}J_{CF} = 30.5 \end{array}$	C-4a 127.9 $^{3}J_{CP} = 10.6$ C-4a 128.1 $^{3}J_{CP} = 11.8$ C-4a 123.5 $^{3}J_{CP} = 11.8$ C-4a 127.7(dd) $^{3}J_{CP} = 14.3$ $^{3}J_{CF} = 7.5$ C-4a 125.0 $^{3}J_{CF} = 2.8$	$\begin{array}{c} C-8a \\ C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \\ C-8a \\ 130.0 \text{ (d)} \\ 2J_{CP} = 6.9 \\ \hline \\ C-8a \\ 132.8 \\ \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e 10g	$\begin{array}{c} -1\\ & \text{C-1}\\ & 98.9\\ & 1_{JCP} = 177.8\\ & \text{C-1}\\ & 95.0\\ & 1_{JCP} = 178.8\\ & \text{C-1}\\ & 101.6\\ & 1_{JCP} = 178.8\\ & \text{C-1}\\ & 100.2 \ (dd)\\ & 1_{JCP} = 176.4\\ & 3_{JCF} = 1.8\\ & \text{C-1}\\ & 108.4\\ & \text{C-1}\\ \end{array}$	$\begin{array}{c} \mathbf{C} - \mathbf{C} \\ \mathbf{C} - 2 \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} - 2 \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} - 2 \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \hline \mathbf{C} - 2 \\ 155.6 \ (\mathbf{dd}) \\ \mathbf{2J}_{\mathbf{CP}} = 7.7 \\ \mathbf{2J}_{\mathbf{CF}} = 14.9 \\ \hline \mathbf{C} - 2 \\ 161.8 \\ \hline \mathbf{C} - 2 \\ \hline \mathbf{C} -$	$\begin{array}{c} C-3\\ C-3\\ 120.4\\ {}^{3}JCP = 13.7\\ C-3\\ 120.3\\ {}^{3}JCP = 13.6\\ C-3\\ 119.4 (dq)\\ {}^{3}JCP = 14.0\\ {}^{3}JCP = 14.0\\ {}^{3}JCP = 14.0\\ {}^{3}JCP = 14.0\\ {}^{3}JCP = 21.6\\ 1JCF = 252.2\\ C-3\\ 119.1(q)\\ {}^{3}JCF = 6.2\\ C-3\\ \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ {}^{4}J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ {}^{4}J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ {}^{4}J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ {}^{4}J_{CP} = 2.7 \\ 2J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ 2J_{CF} = 30.5 \\ C.4 \end{array}$	$\begin{array}{c} C-4a\\ 127.9\\ 3J_{CP} = 10.6\\ C-4a\\ 128.1\\ 3J_{CP} = 11.8\\ C-4a\\ 123.5\\ 3J_{CP} = 11.8\\ \hline \\ C-4a\\ 127.7(dd)\\ 3J_{CP} = 14.3\\ 3J_{CF} = 7.5\\ C-4a\\ 125.0\\ 3J_{CF} = 2.8\\ \hline \\ C-4a\\ \hline \end{array}$	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \hline C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \\ \hline \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline \hline C-8a \\ \hline $
5c ^b 5f ^c 5g ^d 5h ^e 10g 11c	$\begin{array}{c} -1\\ C-1\\ 98.9\\ 1_{JCP} = 177.8\\ C-1\\ 95.0\\ 1_{JCP} = 178.8\\ \hline \\ C-1\\ 101.6\\ 1_{JCP} = 175.9\\ \hline \\ C-1\\ 100.2 \ (dd)\\ 1_{JCP} = 176.4\\ \hline \\ 3_{JCF} = 1.8\\ \hline \\ C-1\\ 108.4\\ \hline \\ C-1\\ 160.4\\ \end{array}$	$\begin{array}{c} \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ 1 \\ 6 4.2 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot 2 \\ 1 \\ 6 4.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot 2 \\ 1 \\ 6 3.20 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.9 \\ \hline \mathbf{C} \cdot 2 \\ 1 \\ 5 5.6 \ (\mathbf{dd}) \\ 2 \mathbf{J}_{\mathbf{CP}} = 7.7 \\ 2 \mathbf{J}_{\mathbf{CF}} = 14.9 \\ \hline \mathbf{C} \cdot 2 \\ 16 1.8 \\ \hline \mathbf{C} \cdot 2 \\ 105 .4 \end{array}$	$\begin{array}{c} C-3\\ 120.4\\ 3J_{CP}=13.7\\ C-3\\ 120.3\\ 3J_{CP}=13.6\\ C-3\\ 119.4 (dq)\\ ^{3}J_{CP}=14.0\\ ^{3}J_{CP}=14.0\\ ^{3}J_{CF}=6.1\\ C-3\\ 151.5 (dd)\\ ^{3}J_{CF}=252.2\\ C-3\\ 119.1(q)\\ ^{3}J_{CF}=6.2\\ C-3\\ 124.9\\ \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ {}^{4}J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ {}^{4}J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ {}^{4}J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ {}^{4}J_{CP} = 2.7 \\ 2J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ 2J_{CF} = 30.5 \\ C.4 \\ 131.1 \end{array}$	$\begin{array}{c} C-4a\\ 127.9\\ 3J_{CP} = 10.6\\ C-4a\\ 128.1\\ 3J_{CP} = 11.8\\ C-4a\\ 123.5\\ 3J_{CP} = 11.8\\ \hline \\ C-4a\\ 127.7(dd)\\ 3J_{CP} = 14.3\\ 3J_{CF} = 7.5\\ \hline \\ C-4a\\ 125.0\\ 3J_{CF} = 2.8\\ \hline \\ C-4a\\ 135.5\\ \hline \end{array}$	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline C-8a \\ 130.0 \ (d) \\ 2J_{CP} = 6.9 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 134.9 \\ \hline \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e 10g 11c	$\begin{array}{c} -1\\ & C-1\\ & 98.9\\ & 1_{JCP} = 177.8\\ & C-1\\ & 95.0\\ & 1_{JCP} = 178.8\\ & C-1\\ & 101.6\\ & 1_{JCP} = 175.9\\ & C-1\\ & 100.2 \ (dd)\\ & 1_{JCP} = 176.4\\ & 3_{JCF} = 1.8\\ & C-1\\ & 108.4\\ & \hline \\ & C-1\\ & 160.4\\ & \hline \end{array}$	$\begin{array}{c} \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ 1 \\ 6 4.2 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot \mathbf{C} \\ 1 \\ 6 4.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot \mathbf{C} \\ 1 \\ 5 3.20 \\ 2 \mathbf{J}_{\mathbf{CP}} = 6.9 \\ \mathbf{C} \cdot 2 \\ 1 \\ 5 5.6 \\ 6 \\ \mathbf{d} 0 \\ 2 \mathbf{J}_{\mathbf{CP}} = 7.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 7.7 \\ 2 \mathbf{J}_{\mathbf{CP}} = 7.7 \\ 2 \mathbf{J}_{\mathbf{CF}} = 14.9 \\ \mathbf{C} \cdot 2 \\ 16 1.8 \\ \mathbf{C} \cdot 2 \\ 10 5.4 \\ \mathbf{C} \cdot 10 \\ \mathbf{C} \cdot $	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ {}^{3}J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ {}^{3}J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 14.0 \\ {}^{3}J_{CP} = 21.6 \\ 1_{JCF} = 252.2 \\ C_{-3} \\ 119.1(q) \\ {}^{3}J_{CF} = 6.2 \\ C_{-3} \\ 124.9 \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ {}^{4}J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ {}^{4}J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ {}^{4}J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ {}^{4}J_{CP} = 2.7 \\ 2J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ 2J_{CF} = 30.5 \\ C.4 \\ 131.1 \\ \end{array}$	$\begin{array}{c} C-4a\\ 127.9\\ 3J_{CP} = 10.6\\ C-4a\\ 128.1\\ 3J_{CP} = 11.8\\ C-4a\\ 123.5\\ 3J_{CP} = 11.8\\ \hline \\ C-4a\\ 127.7(dd)\\ 3J_{CP} = 14.3\\ 3J_{CF} = 7.5\\ \hline \\ C-4a\\ 125.0\\ 3J_{CF} = 2.8\\ \hline \\ C-4a\\ 135.5\\ \hline \end{array}$	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \hline C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \\ \hline \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 124.9 \end{array}$
5c ^b 5f ^c 5g ^d 5h ^e 10g 11c	$\begin{array}{c} -1\\ & C-1\\ & 98.9\\ & 1_{JCP} = 177.8\\ & C-1\\ & 95.0\\ & 1_{JCP} = 178.8\\ & C-1\\ & 101.6\\ & 1_{JCP} = 178.8\\ & C-1\\ & 100.2 \ (dd)\\ & 1_{JCP} = 176.4\\ & 3_{JCF} = 1.8\\ & C-1\\ & 108.4\\ & \hline \\ & C-1\\ & 160.4\\ & C-1\\ & C-1$	$\begin{array}{c} \mathbf{C} \cdot \mathbf{C}^{2} \\ \mathbf{C} \cdot \mathbf{C}^{2} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot \mathbf{C}^{2} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot \mathbf{C}^{2} \\ 163.20 \\ \mathbf{2J}_{\mathbf{CP}} = 6.9 \\ \hline \mathbf{C} \cdot \mathbf{C}^{2} \\ 155.6 (\mathbf{dd}) \\ \mathbf{2J}_{\mathbf{CP}} = 7.7 \\ \mathbf{2J}_{\mathbf{CP}} = 7.7 \\ \mathbf{2J}_{\mathbf{CF}} = 14.9 \\ \hline \mathbf{C} \cdot \mathbf{C}^{2} \\ 161.8 \\ \hline \mathbf{C} \cdot \mathbf{C}^{2} \\ 105.4 \\ \hline \mathbf{C} \cdot \mathbf{C}^{2} \\ 105.4 \\ \hline \mathbf{C} \cdot \mathbf{C}^{2} \\ \mathbf{C} \cdot C$	$\begin{array}{c} C-3\\ 120.4\\ 3J_{CP} = 13.7\\ C-3\\ 120.3\\ 3J_{CP} = 13.7\\ C-3\\ 119.4 (dq)\\ ^{3}J_{CP} = 14.0\\ ^{3}J_{CP} = 14.0\\ ^{3}J_{CP} = 14.0\\ ^{3}J_{CP} = 6.1\\ C-3\\ 151.5 (dd)\\ ^{3}J_{CP} = 21.6\\ 1J_{CF} = 252.2\\ C-3\\ 119.1 (q)\\ ^{3}J_{CF} = 6.2\\ C-3\\ 124.9\\ \hline \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ 4J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ 4J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ 4J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ 4J_{CP} = 2.7 \\ 2J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ 2J_{CF} = 30.5 \\ C.4 \\ 131.1 \\ \hline \end{array}$	C-4a 127.9 ${}^{3}J_{CP} = 10.6$ C-4a 128.1 ${}^{3}J_{CP} = 11.8$ C-4a 123.5 ${}^{3}J_{CP} = 11.8$ C-4a 127.7(dd) ${}^{3}J_{CP} = 14.3$ ${}^{3}J_{CP} = 14.3$ ${}^{3}J_{CF} = 7.5$ C-4a 125.0 ${}^{3}J_{CF} = 2.8$ C-4a 135.5 C-4a	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \hline C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \\ \hline \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 124.9 \\ \hline C-8a \\ 124.9$
5c ^b 5f ^c 5g ^d 5h ^e 10g 11c	$\begin{array}{c} -1\\ SCP = 176.8\\ C-1\\ 98.9\\ 1J_{CP} = 177.8\\ C-1\\ 95.0\\ 1J_{CP} = 178.8\\ C-1\\ 101.6\\ 1J_{CP} = 176.4\\ 3J_{CP} = 176.4\\ 3J_{CF} = 1.8\\ C-1\\ 108.4\\ \hline \\ C-1\\ 160.4\\ \hline \\ C-1\\ 163.7\\ \end{array}$	$\begin{array}{c} \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \cdot \mathbf{C} \\ 164.2 \\ \mathbf{2J}_{\mathbf{CP}} = 6.8 \\ \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \\ 164.7 \\ \mathbf{2J}_{\mathbf{CP}} = 6.7 \\ \mathbf{C} \cdot \mathbf{C} \\ \mathbf{C} \\$	$\begin{array}{c} C_{-3} \\ C_{-3} \\ 120.4 \\ 3J_{CP} = 13.7 \\ C_{-3} \\ 120.3 \\ 3J_{CP} = 13.6 \\ C_{-3} \\ 119.4 (dq) \\ ^{3}J_{CP} = 14.0 \\ ^{3}J_{CP} = 14.0 \\ ^{3}J_{CP} = 21.6 \\ 1_{3}J_{CF} = 6.1 \\ C_{-3} \\ 151.5 (dd) \\ ^{3}J_{CF} = 25.2 \\ C_{-3} \\ 119.1 (q) \\ ^{3}J_{CF} = 6.2 \\ C_{-3} \\ 124.3 (q) \\ 3L_{-} = 6.4 \\ \end{array}$	$\begin{array}{c} C.4 \\ 148.8 \\ 4J_{CP} = 2.8 \\ C.4 \\ 144.1 \\ 4J_{CP} = 2.7 \\ C.4 \\ 133.6 (qd) \\ 4J_{CP} = 3.0 \\ 2J_{CF} = 30.6 \\ C.4 \\ 118.7 (dd) \\ 4J_{CP} = 2.7 \\ 2J_{CF} = 17.2 \\ C.4 \\ 133.1 (q) \\ 2J_{CF} = 30.5 \\ C.4 \\ 131.1 \\ \hline \end{array}$	C-4a 127.9 $^{3}J_{CP} = 10.6$ C-4a 128.1 $^{3}J_{CP} = 11.8$ C-4a 123.5 $^{3}J_{CP} = 11.8$ C-4a 127.7(dd) $^{3}J_{CP} = 14.3$ $^{3}J_{CP} = 14.3$ $^{3}J_{CF} = 7.5$ C-4a 125.0 $^{3}J_{CF} = 2.8$ C-4a 135.5 C-4a 132.4 $^{3}J_{CF} = 2.8$	$\begin{array}{c} C-8a \\ 134.0 \\ 2J_{CP} = 8.1 \\ \hline C-8a \\ 133.5 \\ 2J_{CP} = 8.2 \\ \hline C-8a \\ 134.4 \\ 2J_{CP} = 8.0 \\ \hline \hline C-8a \\ 130.0 (d) \\ 2J_{CP} = 6.9 \\ \hline \hline C-8a \\ 132.8 \\ \hline C-8a \\ 132.8 \\ \hline C-8a \\ 124.9 \\ \hline C-8a \\ 125.3 \\ \hline \end{array}$

Table (3): Pertinent ¹³C-NMR data of phosphonates 3 and 5 and esters 10 and 11 [δ (ppm) and J (Hz)]

^aC-8: 124.8 (${}^{3}J_{CP} = 4.6$); ^bC-8: 124.6 (${}^{3}J_{CP} = 4.8$); ^cC-8: 124.9 (${}^{3}J_{CP} = 5.2$); ^dC-8: 125.2 (${}^{3}J_{CP} = 4.5$); ^eC-8: 124.5 (${}^{3}J_{CP} =$

Comparison of the rhodium(II) mediated decomposition of diazophosphonates 1 with literature results concerning analogous diazoesters revealed a different behaviour. A few years ago, Taylor and Davies^{2a} reported that the rhodium(II) acetate catalysed decomposition of ethyl 2-diazo-3-oxopent-4-enoates 9c-e resulted in the exclusive formation of ethyl 4-aryl-2-hydroxy-1-naphthalenecarboxylates 10c-e through rhodium carbenoid insertion into an aromatic C-H bond (scheme 4). As compared with the diazophosphonates 1c-e, these results seemed to point out a strong influence of the ester group on the decomposition pathways. However Taylor and Davies gave no spectral data in their communication and we found no subsequent publication on this subject. Hence we considered that the relative positions of the hydroxy and ester groups in compounds 10 were not established and we decided to reinvestigate the decomposition of the diazoester 9c.

We prepared the diazoester 9c by transformation of ethyl propenoate 8c into the corresponding acid chloride and subsequent reaction with ethyl diazoacetate (Scheme 5). The decomposition of 9c, in the presence of rhodium(II) acetate according to the conditions of Taylor and Davies (refluxing fluorobenzene, 1 h), gave rise to an ethyl hydroxynaphthalenecarboxylate, described as 10c by these authors. Surprisingly the thermolysis of 9c in refluxing toluene furnished the same compound; the identity between both products was evidenced by the equivalence of their melting points, IR and NMR spectra. The comparison of C-4a and C-8a chemical shifts of this compound [δ (C-4a) 135.4 or 124.9; δ (C-8a) 124.9 or 135.4], 1-hydroxy-2-naphthoic acid [δ (C-4a) 136.7; δ (C-8a) 124.2] and 2-hydroxy-1-naphthoic acid [δ (C-4a) 128.0; δ (C-8a) 131.8]³⁰ was revealing. Supposing that the influence of the 4-phenyl substituent on C-4a and C-8a chemical shifts could be considered as negligible. these data showed that this compound seemed more likely to be formulated as ethyl 1-hydroxy-2-naphthalenecarboxylate 11c rather than its isomer 10c; furthermore the C-4a and C-8a chemical shifts were very close to those observed for the dimethyl 1-hydroxy-2-naphthalenephosphonate 3c [δ (C-4a) 135.3; δ (C-8a) 125.0]. Thus the structure 10c proposed by Taylor and Davies appeared questionable and therefore crystals of hypothetical 11c were submitted to an X-ray analysis. The X-ray spectrum (Figure)³¹ confirmed its structure as 11c and proved that the product formed in the rhodium(II) acetate catalysed decomposition of the diazo ester 9c resulted from a Wolff rearrangement-electrocyclisation process and not from an aromatic C-H insertion reaction.

Traces of a second compound, with a smaller R_f than 11c, were detected by TLC of the crude mixtures obtained by thermal as well as rhodium mediated decomposition of diazo ester 9c. From the rhodium catalysed decomposition of 9c in dichloromethane at room temperature (15 h) we were able to isolate about 2 mg of a sample containing 95 % of this compound. Its ¹H-NMR spectrum was in agreement with its formulation as ethyl 2-hydroxy-1-naphthalenecarboxylate 10c.³² The structures of compounds 10c and 11c were consistent with the predictable effects of hydroxy and ethoxycarbonyl groups on H-3 and H-8 chemical shifts as shown in Table (4).

Since the rhodium mediated decomposition of diazo phosphonate 1c and diazo ester 9c followed a similar course we finally decided to investigate the decomposition of diazo ester 9g possessing a trifluoromethyl group

as the R₂ substituent. This compound was prepared in the same way as 9c (Scheme 5). The rhodium(II) catalysed decomposition of 9g gave rise to a 74:26-mixture of the insertion product 10g and azulenone 12g whereas its thermolysis afforded a 13:78:9-mixture of 10g, the Wolff rearrangement product 11g and 12g. The structures of naphthols 10g and 11g were in agreement with their IR and NMR spectra. Comparison of the H-3/H-8 and C-4a/C-8a pairs of chemical shifts between 10g and 11g was consistent with the relative positions of the hydroxy and ester groups (Tables 3 and 4). The formulation of the azulenone 12g was clearly supported by its IR and NMR spectra, the ¹³C-NMR spectrum showing a ketonic carbonyl (C-1) at δ 198.2 and a quaternary sp³ carbon (C-8a) at δ 63.6. The formation of the azulenone 12g results presumably from a cyclopropanation of the aromatic ring by the initially formed carbenoid species producing an intermediate norcaradiene which undergoes a pericyclic rearrangement.³³ Hence, in a similar manner as observed with the diazophosphonate 1g, no product resulting from the Wolff rearrangement was formed in the rhodium mediated decomposition of the diazoester 9g.

Thus, the rhodium(II) acetate catalysed decompositions of α -diazo- β -ketoalkenylphosphonates 1 and α diazo- β -ketoalkenylesters 9 were found to follow similar pathways, exhibiting the same dependence on the nature of the R₂ substituent. Some years ago Corbel et al.²¹ had reported that the rhodium(II) catalysed decomposition of α -diazo- β -ketoalkylphosphonates gave side-products resulting from the Wolff rearrangement together with the expected intramolecular aliphatic C-H insertion products whereas the rhodium(II) catalysed decomposition of related α -diazo- β -ketoalkylesters was known to give exclusively aliphatic C-H insertion products; they interpreted the difference by the fact that the dimethylphosphono group, "which is less electron-withdrawing than its carbonyl counterpart, renders the carbenoid intermediate less electrophilic, allowing the competition between the Wolff rearrangement and the cyclization to take place". The behaviour of α -diazo- β -ketoalkenyl compounds appears different since the chemoselectivity does not depend on the presence of the ester or phosphonate group, but only on the substitution pattern of the double bond.

Table (4): Pertinent ¹H-NMR chemical shifts (ppm) of esters 10 and 11

	10c	11c	10 g	11g
H-3	7.06	7.74	7.58	8.20
H-8	8.81	8.50	8.84	8.50

i) KOH, MeOH ; ii) (COCl)2 , Et2O ; iii) N2CH-CO2Et

Scheme 5

 Dihedral angles
 Plane (C1,C2,C3,C4,C4a,C5,C6,C7,C8,C8a) and plane (C1',C2'C3',C4,C5,C6'): 65.0°

 Plane (C1,C2,C3,C4,C4a,C5,C6,C7,C8,C8a) and plane (O2,C9,O3,C10,C11): 2.8°

 Intramolecular hydrogen bond
 distance H1...O2: 2.597 Å

 angle O1-H1...O2: 147.9°.

Figure: PLUTO³⁴ drawing of 11c showing the numbering scheme

CONCLUSION

The (1-naphthol:2-naphthol) ratios observed in the rhodium(II) acetate catalysed decomposition of α diazo- β -keto- γ , δ -alkenyl compounds 1 or 9 appear to depend mainly on the substitution pattern of the γ , δ -double bond. The chemoselectivity of the decomposition of β -keto- γ , δ -alkenyl rhodium carbenoids towards aromatic C-H insertion *versus* Wolff rearrangement can be related to the electron density of the C₇-C_{β} bond, a lower electron density favouring the aromatic C-H insertion.

EXPERIMENTAL

General: Diethyl ether was distilled from potassium hydroxide, pentane from phosphorus pentoxide, tetrahydrofuran from sodium benzophenone ketyl. Benzene and toluene were dried over sodium. Organic solutions were dried over anhydrous sodium sulfate. Column chromatographies were performed using Merck Silica gel 60 (70-230 mesh) and TLC were carried out using Merck Kieselgel 60 F254 plates. Melting points were determined on a Kofler block apparatus. IR spectra were recorded in CDCl3 on a Brucker AC200 (200/50 MHz) spectrometer and for specified cases on a Brucker AM300 (300/75 MHz). All NMR recordings were referenced to CHCl3 resonances (7.26 and 77.0 ppm). Splitting patterns abbreviations are: s, singulet; d, doublet; t, triplet; m, multiplet; br, broad; p, pseudo. Multiplicity (¹³C NMR) was determined by DEPT sequencies. Elemental Analysis and Mass Spectra were performed by Service Central d'Analyse, Centre National de la Recherche Scientifique, 69300 Vernaison, France.

SYNTHESIS OF ETHYL ALKENOATES (7c-e,i)

To a stirred suspension of sodium hydride (60% in oil, 0.6 g, 15 mmol) in anhydrous DME (100 ml) under nitrogen, cooled in a water-ice bath, was added dropwise a solution of triethyl phosphonoacetate (3.36 g, 15 mmol) in anhydrous DME (20 ml). After 15 mn at room temperature the solution was transfered to a separatory funnel and added to a refluxing solution of ketone 6 (18 mmol) in anhydrous DME (80 ml). The reaction mixture was then heated for 24 h (d), 8 h (c,e) or 5 h (i) and was then hydrolyzed with a saturated sodium chloride solution (40 ml). The aqueous phase was extracted with diethyl ether (100 ml) and the combined organic extracts were dried, filtered and concentrated to afford a residue which was purified by chromatography eluting with pentane/diethyl ether 90:10 (7c,e), pentane/diethyl ether 85:15 (7i) or pentane/diethyl ether 50:50 (7d).

*Ethyl 3,3-diphenylprop-2-enoate (7c)*³⁵ Yield 64 %. Oil.

Ethyl 3,3-di(4-methoxyphenyl)prop-2-enoate (7d)³⁶

Yield 82 %. Oil.

Ethyl 3,3-di(4-chlorophenyl)prop-2-enoate (7e)

Yield 65 %. Mp 63°C. IR (CHCl₃): 1710, 1620, 1590. ¹H-NMR: δ 7.38-7.09 (m, 8H); 6.34 (s, 1H); 4.07 (q, 2H, J = 7.1); 1.15 (t, 3H, J = 7.1). ¹³C-NMR: δ 165.7; 154.1; 138.9; 136.9; 135.8; 134.5; 130.6; 129.6; 128.8; 128.4; 118.2; 60.4; 14.1. Anal. Calcd. for C₁₇H₁₄O₂Cl₂: C, 63.57; H, 4.39; Cl, 22.08. Found: C, 63.39; H, 4.39; Cl, 22.20.

*Ethyl (9H-fluorenylidene)ethanoate (7i)*²³ Yield 80 %. Mp 78°C.

SYNTHESIS OF β -KETO- γ , δ -ALKENYLPHOSPHONATES (8)

To a stirred solution of dimethyl methylphosphonate (1.24 g, 10 mmol) in anhydrous THF (30 ml) cooled at -80°C, was added dropwise, under nitrogen, 6.25 ml (10 mmol) of *n*-butyllithium 1.6 M in hexanes. The mixture was kept for 45 mn at -60 °C and then a solution of ester 7 (5 mmol) in anhydrous THF (30 ml) was added slowly. The reaction mixture was allowed to react at room temperature for 3 h, and was then quenched with a 1 M aqueous hydrogen chloride solution saturated with sodium chloride (10 ml). The aqueous phase was extracted with diethyl ether $(3 \times 20 \text{ ml})$, the organic layers were washed with brine, dried, filtered and concentrated to afford a residue which was purified by chromatography eluting with ethyl acetate (8b,f,h), diethyl ether/methanol 95:5 (8c,e,g,i) or diethyl ether/methanol 93:7 (8d).

Dimethyl (Z)-2-oxo-4-phenylbut-3-enylphosphonate (8b) Yield 97%. Oil. IR (neat): 1685, 1600, 1565,1255, 1030. ¹H-NMR: δ 7.61-7.56 (m, 2H); 7.38-7.20 (m, 3H); 6.94 (d, 1H, J = 12.6); 6.33 (d, 1H, J = 12.6); 3.77 (d, 6H, ³J_{HP} = 11.2); 3.36 (d, 2H, ²J_{HP} = 22.4). ¹³C-NMR: δ 192.4 (d, ²J_{CP} = 6.4); 142.4; 134.6; 129.9; 129.8; 128.3; 127.4; 53.0 (d, ²J_{CP} = 6.4); 42.1 (d, ¹J_{CP} = 127.7). Anal. Calcd. for C₁₂H₁₅O₄P: C, 56.70; H, 5.95; P, 12.18. Found: C, 56.22; H, 6.09; P, 12.12.

Dimethyl 4,4-diphenyl-2-oxobut-3-enylphosphonate (8c) Yield 87%. Mp 68°C. IR (CHCl₃): 1685, 1650, 1585, 1570, 1245, 1050, 1035. ¹H-NMR: δ 7.44-7.19 (m, 10 H); 6.71 (s, 1H); 3.74 (d, 6H, ³J_{HP} = 11.2); 2.96 (d, 2H, ²J_{HP} = 22.2). ¹³C-NMR: δ 191.7 (d, ²J_{CP} = 6.4); 155.5; 140.6; 138.4; 129.8; 129.7; 129.0; 128.7; 128.5; 128.4; 125.7 (d, ³J_{CP} = 1.8); 52.9 (d, ²J_{CP} = 6.4); 10464

41.5 (d, ${}^{1}J_{CP}$ = 128.0). Anal. Calcd. for C₁₈H₁₉O₄P: C, 65.45; H, 5.80; P, 9.38. Found: C, 65.85; H, 5.93; P, 9.21.

Dimethyl 4,4-di(4-methoxyphenyl)-2-oxobut-3-enylphosphonate (8d)

Yield 97%. Mp 76°C. IR (CHCl₃): 1675, 1645, 1605, 1580, 1560, 1250, 1030. ¹H-NMR: δ 7.29-7.14 (m, 4H); 6.94-6.83 (m, 4H); 6.57 (s, 1H); 3.86 (s, 3H); 3.83 (s, 3H); 3.75 (d, 6H, ³J_{HP} = 11.2); 2.96 (d, 2H, ²J_{HP} = 22.2). ¹³C-NMR: δ 191.6 (d, ²J_{CP} = 6.4); 161.2; 160.5; 155.8; 133.5; 131.6; 130.7; 130.6; 123.6; 113.8; 113.7; 55.4; 55.3; 52.9 (d, ²J_{CP} = 6.4); 41.3 (d, ¹J_{CP} = 128.0). Anal. Calcd. for C₂₀H₂₃O₆P: C, 61.54; H, 5.94; P, 7.93. Found: C, 61.48; H, 6.02; P, 7.94.

Dimethyl 2-oxo-4,4-di(4-chlorophenyl)but-3-enylphosphonate (8e)

Yield 74%. Mp 90°C. IR (CHCl₃): 1685, 1585, 1260, 1040. ¹H-NMR: δ 7.38-7.10 (m, 8H); 6.72 (s, 1H); 3.75 (d, 6H, ³J_{HP} = 11.2); 3.05 (d, 2H, ²J_{HP} = 22.5). ¹³C-NMR: δ 190.7 (d, ²J_{CP} = 6.2); 153.4; 138.8; 136.4; 136.3; 135.2; 131.0; 130.0; 128.8; 128.7; 125.3 (d, ³J_{CP} = 1.4); 53.1 (d, ²J_{CP} = 6.5); 42.2 (d, ¹J_{CP} = 127.4). Anal. Calcd. for C₁₈H₁₇Cl₂O₄P: C, 54.16; H, 4.29; Cl, 17.76; P, 7.76. Found: C, 54.11; H, 4.29; Cl, 17.76; P, 7.70.

Dimethyl (Z)-2-oxo-4-phenylpent-3-enylphosphonate (8f)

Yield 58%. Oil. IR (neat): 1690, 1615, 1260, 1030. ¹H-NMR: δ 7.36-7.27 (m, 3H); 7.22-7.15 (m, 2H); 6.25 (q, 1H, J = 1.4); 3.68 (d, 6H, ³J_{HP} = 11.2); 2.85 (d, 2H, ²J_{HP} = 22.3); 2.17 (d, 3H, J = 1.4). ¹³C-NMR: δ 191.8 (d, ²J_{CP} = 6.5); 154.9; 140.3; 128.6; 128.4; 127.2; 126.6 (d, ³J_{CP} = 1.9); 52.9 (d, ²J_{CP} = 6.4); 41.2 (d, ¹J_{CP} = 128.3); 27.2. Anal. Calcd. for C₁₃H₁₇O₄P: C, 58.21; H, 6.39; P, 11.55. Found: C*, 57.65; H, 6.59; P, 11.33. *No better analysis could be obtained.

Dimethyl (E)-2-oxo-4-phenyl-5,5,5-trifluoropent-3-enylphosphonate (8g) Yield 85%. Oil IR (neat): 1710, 1640, 1285, 1180, 1130, 1030, 980. ¹H-NMR: δ 7.45-7.29 (m, 5H); 6.87 (s, 1H); 3.72 (d, 6H, ³J_{HP} = 11.3); 2.93 (d, 2H, ²J_{HP} = 22.4). ¹³C-NMR: δ 192.0 (d, ²J_{CP} = 6.8); 140.1 (q, ²J_{CF} = 31.0); 131.2 (q, ³J_{CF} = 4.3); 130.4; 130.1; 129.1; 128.8; 122.7 (q, ¹J_{CF} = 275.2); 53.1 (d, ³J_{CP} = 6.4); 41.7 (d, ¹J_{CP} = 128.2). Anal. Calcd. for C₁₃H₁₄F₃O₄P: C, 48.46; H, 4.38; F, 17.69; P, 9.61. Found: C, 48.18; H, 4.43; F, 17.27; P, 9.74.

Dimethyl (E)-3-fluoro-2-oxo-4-phenylbut-3-enylphosphonate (8h)

Yield 80%. Oil. IR (neat): 1700, 1610, 1270, 1125, 1060, 1030. ¹H-NMR: δ 7.53-7.47 (m, 2H); 7.26-7.19 (m, 3H); 6.68 (d, 1H, ${}^{3}J_{HF} = 24.5$); 3.68 (d, 6H, ${}^{3}J_{HP} = 11.3$); 3.26 (dd, 2H, ${}^{2}J_{HP} = 22.4$, ${}^{4}J_{HF} = 4.1$). ¹³C-NMR: δ 185.9 (dd, ${}^{2}J_{CF} = 40.4$, ${}^{2}J_{CP} = 7.3$); 151.6 (dd, ${}^{1}J_{CF} = 256.0$, ${}^{3}J_{CP} = 2.5$); 130.2 (d, ${}^{3}J_{CF} = 10.5$); 130.1 (d, ${}^{4}J_{CF} = 2.7$); 129.6; 128.1; 121.8 (d, ${}^{2}J_{CF} = 27.7$); 53.0 (d, ${}^{2}J_{CP} = 6.3$); 38.1 (dd, ${}^{1}J_{CP} = 130.4$, ${}^{3}J_{CF} = 1.6$). Anal. Calcd. for C₁₂H₁₄FO₄P: C, 52.95; H, 5.18; F, 6.98; P, 11.38. Found: C, 52.80; H, 5.01; F, 6.56; P, 10.77.

Dimethyl 3-(9-(9H-fluorenylidene)-2-oxopropylphosphonate (8i)

Yield 54%. Oil. IR (neat): 1685, 1625, 1590, 1260, 1050, 1040. ¹H-NMR: δ 8.83 (d, 1H, J = 7.7); 7.70 (d, 1H, J = 7.5); 7.61-7.55 (m, 2H); 7.44-7.23 (m, 4H); 7.20 (s, 1H); 3.82 (d, 6H, ³J_{HP} = 11.2); 3.41 (d, 2H, ²J_{HP} = 22.5). ¹³C-NMR : δ 190.7 (d, ²J_{CP} = 6.1); 148.4; 142.8; 141.5; 138.8; 135.1; 131.8; 131.2; 128.8; 128.3; 127.6; 121.6; 119.9; 119.7 (d, ³J_{CP} = 1.5); 119.7; 53.2 (d, ²J_{CP} = 6.5); 43.5 (d, ¹J_{CP} = 127.7). Anal. Calcd. for C₁₈H₁₇O₄P: C, 65.85; H, 5.22; P, 9.43. Found: C*, 65.01; H, 5.18; P, 9.88. *No better analysis could be obtained.

SYNTHESIS of α -DIAZO- β -KETO- γ , δ -ALKENYLPHOSPHONATES (1)

To a mixture of β -ketophosphonate 8 (6 mmol) and potassium carbonate (1 g, 7.2 mmol) in acetonitrile (20 ml) cooled in a water-ice bath, under nitrogen, was added dropwise with stirring a solution of tosyl azide³⁷ (1.42 g, 7.2 mmol) in acetonitrile (5 ml). The cooling bath was removed and the mixture was stirred at room temperature. The disappearance of compound 8 was monitored by tlc. After ~ 1 h potassium carbonate was filtered off and acetonitrile was evaporated *in vacuo* to afford a residue which was purified by chromatography eluting with ethyl acetate:pentane 90:10 (1b), diethyl ether/methanol 95:5 (1c,d), diethyl ether (1e,g,i) or ethyl acetate (1f), ethyl acetate:pentane 75:25 (1h).

Dimethyl (Z)-1-diazo-2-oxo-4-phenylbut-3-enylphosphonate (1b)

Yield 90 %. Oil. IR (neat): 2115, 1635, 1265, 1050, 1025. ¹H-NMR: δ 7.58-7.55 (m, 2H); 7.38-7.27 (m, 3H); 6.89 (d, 1H, J = 12.6); 6.28 (d, 1H, J = 12.6); 3.81 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR: δ 184.7 (d, ²J_{CP} = 8.5); 140.8; 134.7; 129.6; 129.5; 128.4; 123.9; 64.6 (d, ¹J_{CP} = 216.5); 53.7 (d, ²J_{CP} = 5.6). Anal. Calcd. for C₁₂H₁₃N₂O₄P: C, 51.44; H, 4.68; N, 10.00; P, 11.05. Found: C, 51.23; H, 4.80; N, 10.25; P, 10.81.

Dimethyl 1-diazo-4,4-diphenyl-2-oxobut-3-enylphosphonate (1c)

Yield 87%. Oil IR (neat): 2120, 1630, 1585, 1565, 1270, 1050, 1025. ¹H-NMR: δ 7.43-7.22 (m, 10 H); 6.80 (s, 1H); 3.82 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR: δ (Only 12 resonances were observed) 183.0; 154.7; 140.7; 138.5; 129.7; 129.5; 128.7; 128.5; 128.1; 121.1; 64.6 (d, ¹J_{CP} = 215.1); 53.6 (²J_{CP} = 5.5). Anal. Calcd. for C₁₈H₁₇N₂O₄P: C, 60.68; H, 4.81; N, 7.86; P, 8.69. Found: C, 60.75; H, 4.57; N, 8.06; P, 8.33.

Dimethyl 1-diazo-4, 4-di(4-methoxyphenyl)-2-oxobut-3-enylphosphonate (1d) Yield 87%. Mp 112°C. IR (CHCl₃): 2115, 1625, 1600, 1580, 1560, 1250, 1050, 1030. ¹H-NMR: δ 7.28-7.16 (m, 4H); 6.93-6.83 (m, 4H); 6.65 (s, 1H); 3.84 (s, 3H); 3.84 (d, 6H, ³J_{HP} = 12.0); 3.82 (s, 3H). ¹³C-NMR: δ 182.7 (d, ²J_{CP} = 11.8); 161.1; 160.2; 155.0; 133.6; 131.3; 130.7; 130.4; 118.6; 113.9; 113.4; 64.2 (d, ¹J_{CP} = 216.4); 55.3; 55.2; 53.6 (d, ²J_{CP} = 5.5). Anal. Calcd. for C₂₀H₂₁N₂O₆P: C, 57.69; H, 5.08; N, 6.73; P, 7.44. Found: C, 57.40; H, 5.11; N, 6.98; P, 7.46.

Dimethyl 4,4-di(4-chlorophenyl)-1-diazo-2-oxobut-3-enylphosphonate (1e)

Yield 77%. Mp 118°C. IR (CHCl₃): 2115, 1635, 1585, 1270, 1055, 1030. ¹H-NMR: δ 7.39-7.14 (m, 8H); 6.87 (s, 1H); 3.88 (d, 6H, ³J_{HP} = 11.9). ¹³C-NMR: δ 182.1 (d, ²J_{CP} = 11.4); 152.7; 138.9; 136.5; 136.2; 134.9; 130.8; 129.8; 128.9; 128.4; 121.3; 65.1 (d, ¹J_{CP} = 216.2); 53.7 (d, ²J_{CP} = 5.6). Anal. Calcd. for C₁₈H₁₅Cl₂N₂O₄P: C, 50.85; H, 3.56; Cl, 16.68; N, 6.59; P, 7.28. Found: C, 51.14; H, 3.63; Cl, 16.38; N, 6.74; P, 7.42.

Dimethyl (Z)-1-diazo-2-oxo-4-phenylpent-3-enylphosphonate (1f)

Yield 86%. Mp 62-64°C. IR (neat): 2120, 1650, 1620, 1270, 1050, 1030. ¹H-NMR: δ 7.37-7.28 (m, 3H); 7.27-7.21 (m, 2H); 6.27 (q, 1H, J = 1.4); 3.77 (d, 6H, ³J_{HP} = 12.0); 2.19 (d, 3H, J = 1.4). ¹³C-NMR: δ 183.7 (d, ²J_{CP} = 11.8); 153.0; 140.1; 128.3; 128.1; 126.9; 121.7; 64.1 (d, ¹J_{CP} = 215.6); 53.5 (d, ²J_{CP} = 5.5); 26.6. Anal. Calcd. for C₁₃H₁₅N₂O₄P: C, 53.07; H, 5.14; N, 9.52; P, 10.53. Found: C, 53.18; H, 5.27; N, 9.29; P, 10.21.

Dimethyl (E)-1-diazo-2-oxo-4-phenyl-5,5,5-trifluoropent-3-enylphosphonate (1g)

Yield 79 %. Oil. IR (CHCl₃): 2110, 1640, 1620, 1590, 1270, 1055, 1030. ¹H-NMR: δ 7.48-7.28 (m, 5H); 6.95 (s, 1H); 3.76 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR: δ 182.5 (d, ²J_{CP} = 10.5); 139.6 (d, ²J_{CF} = 31.2); 130.5; 129.9; 128.9; 128.6; 128.1 (d, ³J_{CF} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 275.0); 65.8 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CF} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CP} = 216.7); 53.9 (d, ²J_{CP} = 5.1); 122.6 (d, ¹J_{CP} = 216.7); 53.9 (d, ¹J_{CP} =

5.7). Anal. Calcd. for C₁₃H₁₂F₃N₂O₄P: C, 44.84; H, 3.47; F, 16.37; N, 8.04; P, 8.89. Found: C, 44.90; H, 3.72; F, 16.21; N, 7.89; P, 8.53.

Dimethyl (E)-1-diazo-3-fluoro-2-oxo-4-phenylbut-3-enylphosphonate (1h) Yield 90%. Oil. IR (neat): 2110, 1625, 15270, 1265, 1060, 1030. ¹H-NMR: δ 7.55-7.49 (m, 2H); 7.38-7.34 (m, 3H); 6.75 (d, 1H, ³J_{HF} = 24.9); 3.84 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR: δ 178.1 (dd, ²J_{CF} = 44.4, ²J_{CP} = 9.1); 151.0 (dd, ¹J_{CF} = 263.5, ³J_{CP} = 5.0); 129.9 (d, ³J_{CF} = 10.0); 129.5 (d, ⁴J_{CF} = 2.8); 129.4 (d, ⁵J_{CF} = 1.2); 128.4; 119.1 (d, ²J_{CF} = 24.9); 63.8 (dd, ¹J_{CP} = 218.2, ³J_{CF} = 4.2); 54.0 (d, ²J_{CP} = 5.9). Anal. Calcd. for C₁₂H₁₂FN₂O₄P: C, 48.33; H, 4.06; N, 9.39; F, 6.37; P, 10.39. Found: C, 48.18; H, 4.07; N, 9.29; F, 5.99; P, 9.64.

Dimethyl 1-diazo-3-(9'-(9H-fluorenylidene))-2-oxopropylphosphonate(1i)

Yield 71%. Mp 108°C. IR (neat): 2110, 1640, 1620, 1590, 1270,1050, 1025. ¹H-NMR: δ 8.84 (d, 1H, J = 7.6Hz); 7.66-7.57 (m, 3H); 7.45-7.21 (m, 5H); 3.94 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR: δ 182.1 (d, ²J_{CP} = 12.5); 147.8; 142.7; 141.2; 138.9; 135.0; 131.6; 131.0; 128.8; 128.2; 127.6; 121.4; 119.9; 119.7; 116.6; 66.1(d, ¹J_{CP} = 214.2); 53.7 (d, ²J_{CP} = 5.5). Anal. Calcd. for C₁₈H₁₅N₂O₄P: C, 61.02; H, 4.27; N, 7.91; P, 8.74. Found: C, 60.94; H, 4.28; N, 8.02; P, 8.60.

THERMOLYSIS OF α -DIAZO- β -KETO- γ , δ -ALKENYLPHOSPHONATES (1)

A solution of diazo compound 1 (1.5 mmol) in anhydrous toluene (50 ml) was refluxed with stirring under nitrogen for 4 h (1b-f,h,i) or 7 h (1g), until the disppearance of compound 1 was completed as judged by TLC. The solvent was then evaporated in vacuo and the residue was purified by chromatography eluting with diethyl ether/pentane 80:20 (3b), diethyl ether/pentane 67:33 (3d,h,i), diethyl ether/pentane 60:40 (3f) and diethyl ether/pentane 50:50 (3c,e,g). Minute amounts of compounds 5b,f,g (yields ~ 2%) were detected during the purification.

Dimethyl 1-hydroxy-2-naphthalenephosphonate (3b)

Yield 75%. Mp 38-39°C. IR (CHCl₃): 3600-2500, 1625, 1565, 1050, 1030. ¹H-NMR (300 MHz, CD₂Cl₂): δ 11.36 (d, 1H, J = 1.1); 8.41 (brd, 1H, J = 8.2); 7.81 (brd, 1H, J = 8.3); 7.63 (m, 1H); 7.56 (m, 1H); 7.39 (dd, 1H, J = 8.5, ⁴J_{HP} = 3.4); 7.30 (dd, 1H, J = 8.5, ³J_{HP} = 12.1); 3.77 (d, 6H, ³J_{HP} = 11.5). ¹³C-NMR (75 MHz, CD₂Cl₂): δ 161.8 (d, ²J_{CP} = 7.5); 137.5 (d, ⁴J_{CP} = 2.0); 129.6; 127.9; 126.4 (d, ⁵J_{CP} = 1.2); 125.7 (d, ²J_{CP} = 6.3); 125.1 (d, ³J_{CP} = 13.8); 123.7 (d, ⁴J_{CP} = 1.6); 119.7 (d, ³J_{CP} = 13.5); 99.5 (d, ¹J_{CP} = 181.8); 53.3 (d, ²J_{CP} = 4.7). Anal. Calcd. for C₁₂H₁₃O₄P: C, 57.15; H, 5.20; P, 12.28. Found: C, 57.50; H, 5.48; P, 12.18.

Dimethyl 1-hydroxy-4-phenyl-2-naphthalenephosphonate (3c) Yield 86 %. Mp 100°C. IR (CHCl₃): 3500-2500, 1615, 1565, 1050, 1030. ¹H-NMR : δ 11.17 (d, 1H, J = 0.8); 8.50-8.43 (m, 1H); 7.89-7.80 (m, 1H); 7.79-7.50 (m, 2H); 7.50-7.34 (m, 5H); 7.22 (d, 1H, ³J_{HP} = 12.9); 3.78 (d, 6H, ³J_{HP} = 11.5). ¹³C-NMR : δ 160.9 (d, ²J_{CP} = 7.3); 138.9; 135.3 (d, ⁴J_{CP} = 2.4); 132.1 (d, ³J_{CP} = 13.5); 130.1; 129.3; 128.4; 127.3; 125.9 (d, ⁵J_{CP} = 1.1); 125.8; 125.8 (d, ²J_{CP} = 7.8); 125.0 (d, ³J_{CP} = 13.8); 123.9 (d, ⁴J_{CP} = 1.8); 98.7 (d, ¹J_{CP} = 183.0); 53.0 (d, ²J_{CP} = 4.8). Anal. Calcd. for C₁₈H₁₇O₄P: C, 65.85; H, 5.22; P, 9.43. Found: C, 65.62; H, 5.28; P, 9.44.

Dimethyl 1-hydroxy-7-methoxy-4-(4-methoxyphenyl)-2-naphthalenephosphonate (3d) Yield 88 %. Mp 122°C. IR (CHCl₃): 3500-2700, 1610, 1575, 1055, 1030. ¹H-NMR: δ 11.10 (s, 1H); 7.79-7.74 (m, 2H); 7.35 (d, 2H, J = 8.4); 7.23-7.16 (m, 1H); 7.07 (d, 1H, ³J_{HP} = 13.0); 6.99 (d, 2H, J = 8.5); 3.95 (s, 3H); 3.86 (s, 3H); 3.79 (d, 6H, ³J_{HP} = 11.0). ¹³C-NMR: δ 159.5 (d, ²J_{CP} = 7.4); 158.9; 157.8; 132.2;

10467

131.8 (d, ${}^{3}J_{CP} = 13.8$); 131.1; 130.8; 127.6; 126.1 (d, ${}^{3}J_{CP} = 14.2$); 123.3 (d, ${}^{2}J_{CP} = 6.4$); 121.4; 113.8; 102.0; 99.2 (d, ${}^{1}J_{CP} = 181.8$); 55.4; 55.3; 53.0 (d, ${}^{2}J_{CP} = 4.7$). Anal. Calcd. for C₂₀H₂₁O₆P: C, 61.86; H, 5.45; P, 7.98. Found: C, 61.87; H, 5.53; P, 8.09.

Dimethyl 1-hydroxy-7-chloro-4-(4-chlorophenyl)-2-naphthalenephosphonate (3e) Yield 76 %. Mp 182°C. IR (CHCl₃): 3500-2500, 1570, 1055, 1030. ¹H-NMR: δ 11.18 (large, 1H); 8.44 (d, 1H, J = 2.2); 7.71 (d, 1H, J = 8.9); 7.47 (dd, 1H, J = 8.9, J = 2.2); 7.45 (d, 2H, J = 8.4); 7.35 (d, 2H, J = 8.4); 7.18 (d, 1H, ³J_{HP} = 11.9); 3.80 (d, 6H, ³J_{HP} = 11.4). ¹³C-NMR: δ 160.1 (d, ²J_{CP} = 7.4); 137.8; 133.7; 133.4 (d, J_{CP} = 2.4); 132.3 (d, J_{CP} = 2.1); 131.3; 130.7 (d, ³J_{CP} = 13.5); 130.2; 128.7; 127.3; 126.2 (d, ²J_{CP} = 6.5); 125.8 (d, ³J_{CP} = 14.3); 123.2 (d, ⁴J_{CP} = 2.0); 100.2 (d, ¹J_{CP} = 183.4); 53.1 (d, ²J_{CP} = 4.9). Anal. Calcd. for C₁₈H₁₅Cl₂O₄P: C, 54.43; H, 3.81; Cl, 17.85; P, 7.80. Found: C, 53.99; H, 3.85; Cl, 17.56; P, 7.66.

Dimethyl 1-hydroxy-4-methyl-2-naphthalenephosphonate (3f)

Yield 94%. Oil. IR (CHCl₃): 3400-2700, 1625, 1055, 1030. ¹H-NMR: δ 11.68 (d, 1H, J = 1.2); 8.44 (dd, 1H, J = 8.1, J = 1.4); 7.90 (d, 1H, J = 8.1); 7.66 (ddd, 1H, J = 8.1, 6.9, 1.4); 7.56 (ddd, 1H, J = 8.1; 6.9, 1.4); 7.10 (dd, 1H, ³J_{HP} = 12.7, J = 0.7); 3.78 (d, 6H, ³J_{HP} = 11.5); 2.58 (s, 3H). ¹³C-NMR: δ 160.2 (d, ²J_{CP} = 7.0); 136.3 (d, ⁴J_{CP} = 2.3); 129.1; 125.6 (d, ⁴J_{CP} = 2.3); 125.4 (d, ³J_{CP} = 13.4); 124.9 (d, ³J_{CP} = 14.9); 124.6 (d, ²J_{CP} = 6.4); 124.0; 123.9; 98.1 (d, ¹J_{CP} = 182.4); 52.8 (d, ²J_{CP} = 4.6); 18.7. Anal. Calcd. for C₁₃H₁₅O₄P: C, 58.65; H, 5.68; P, 11.63. Found: C, 58.87; H, 5.69; P, 11.05.

Dimethyl 1-hydroxy-4-trifluoromethyl-2-naphthalenephosphonate (3g) Yield 73 %. Oil. IR (neat): 3600-2400, 1630, 1575, 1050, 1030. ¹H-NMR: δ 11.62 (s, 1H); 8.48 (d, 1H, J = 7.8); 8.10 (d, 1H, J = 8.2); 7.78-7.54 (m with a doublet with ³J_{HP} ~13, 3H); 3.81 (d, 6H, ³J_{HP} = 11.4). ¹³C-NMR: δ 164.6 (d, ²J_{CP} = 7.7); 132.5; 130.8; 126.9; 125.4 (m); 125.4 (d, ³J_{CP} = 13.2); 124.6 (q, ¹J_{CF} = 272.5); 124.5 (d, J_{CP} = 1.1); 124.3 (d, J_{CP} = 2.0); 118.0 (qd, ²J_{CF} = 30.7, ³J_{CP} = 13.8); 97.9 (d, ¹J_{CP} = 186.9); 53.3 (d, ²J_{CP} = 4.9). Anal. Calcd. for C₁₃H₁₂F₃O₄P: C, 48.76; H, 3.78; F, 17.80; P, 9.67. Found: C, 49.10; H, 3.87; F, 17.62; P, 9.57.

Dimethyl 3-fluoro-1-hydroxy-2-naphthalenephosphonate (3h)

Yield 88 %. Mp 70°C. IR (CHCl₃): 3600-2400, 1635, 1610, 1570, 1065, 1020. ¹H-NMR: δ 11.92 (s, 1H); 8.34 (d, 1H, J = 8.3); 7.70-7.30 (m, 3H); 6.96 (dd, 1H, ²J_{HF} = 10.8, ⁴J_{HP} = 5.4); 3.83 (d, 6H, ³J_{HP} = 11.8). ¹³C-NMR: δ 163.4 (dd, ³J_{CF} = 8.4, ²J_{CP} = 4.2); 158.9 (dd, ¹J_{CF} = 246.7, ²J_{CP} = 1.8); 136.7 (dd, ³J_{CF} = 11.9, ⁴J_{CP} = 1.0); 130.3; 126.9 (d, ⁴J_{CF} = 5.8); 125.0 (dd, ⁵J_{CF} = 3.6, ⁴J_{CP} = 1.4); 124.1; 122.2 (d, ³J_{CP} = 12.6); 101.9 (dd, ²J_{CF} = 21.9, ³J_{CP} = 6.9); 91.4 (dd, ¹J_{CP} = 181.1, ²J_{CF} = 26.6); 53.4 (d, ²J_{CP} = 5.4). Anal. Calcd. for C₁₂H₁₂FO₄P: C, 53.34; H, 4.48; F, 7.03; P, 11.46. Found: C, 53.93; H, 4.64; F, 6.60; P, 10.80.

Dimethyl 3-hydroxy-2-fluoranthenephosphonate (3i)

Yield 91 %. Mp 137°C. IR (CHCl₃): 3400-2700, 1625, 1055, 1030. ¹H-NMR: δ 11.50 (s, 1H); 8.22 (d, 1H, J = 8.2); 8.03 (d, 1H, J = 7.0); 7.91-7.79 (m, 2H); 7.73 (d, 1H, ³J_{HP} = 12.5); 7.64 (d, 1H, J = 7.9); 7.41-7.30 (m, 2H); 3.82 (d, 6H, ³J_{HP} = 11.5). ¹³C-NMR: δ (Only 15 resonances were observed) 163.2 (d, ²J_{CP} = 8.7); 138.9; 138.5 (d, ⁴J_{CP} = 1.6); 136.7; 128.6 (d, ³J_{CP} = 14.8); 127.8; 126.9; 122.9 (d, ⁴J_{CP} = 1.8); 122.7; 122.3 (d, ³J_{CP} = 15.1); 121.6; 120.9; 120.6 (d, ²J_{CP} = 7.0); 100.8 (d, ¹J_{CP} = 180.0); 53.1 (d, ²J_{CP} = 4.7). Anal. Calcd. for C₁₈H₁₅O₄P: C, 66.26; H, 4.63; P, 9.49. Found: C, 66.47; H, 4.84; P, 8.96.

RHODIUM(II) ACETATE CATALYSED DECOMPOSITION OF α-DIAZO- β -KETO- γ ,δ-ALKENYLPHOSPHONATES (1)

A mixture of rhodium(II) acetate (40 mg, 3 % mol), diazophosphonate 1 (3 mmol) and anhydrous benzene (80 ml) was refluxed with stirring under nitrogen for 1 h (1c), 1.5 h (1d,f), 2.5 h (1b,g), 3 h (1e), 4 h (1i) or 5 h (1h) until the disappearance of compound 1 was completed as judged by TLC. The solvent was evaporated and the residue was purified by chromatography eluting with diethyl ether/pentane 80:20 (b), diethyl ether/pentane 67:33 (d,h,i), diethyl ether/pentane 60:40 (f) or diethyl ether/pentane 50:50 (c,e,g) to afford mixtures of 3b+ 5b, 3c+ 5c, 3e+ 5e, 3f+ 5f, 3h+ 5h or pure 3d, 3i or 5g; the 3:5 ratios were determined by ¹H-NMR (for yields and 3:5 ratios, see table 1). Pure compounds 5b,f were obtained after a second purification by chromatography.

Dimethyl 2-hydroxy-1-naphthalenephosphonate (5b)

Isolated yield 53%. Mp 66°C. IR (CHCl₃): 3600-2500, 1615, 1595, 1045, 1020. ¹H-NMR (300 MHz, CD₂Cl₂): δ 11.75 (d, 1H, J = 1.3); 8.02 (brd, 1H, J = 8.7); 7.92 (pd, 1H, J = 9.1); 7.76 (dt, 1H, J = 8.0, J = 1.7); 7.52 (m, 1H); 7.36 (m, 1H); 7.12 (dd, 1H, J = 9.0, ⁴J_{HP} = 5.8); 3.72 (d, 6H, ³J_{HP} = 11.8). ¹³C-NMR (75 MHz, CD₂Cl₂): δ 165.3 (d, ²J_{CP} = 6.8); 136.9 (d, ⁴J_{CP} = 2.7); 133.7 (d, ²J_{CP} = 7.8); 129.2 (d, ⁴J_{CP} = 1.5); 128.7 (d, ³J_{CP} = 11.8); 128.5; 124.8 (d, ³J_{CP} = 4.6); 124.1; 119.9 (d, ³J_{CP} = 13.6); 97.5 (d, ¹J_{CP} = 176.6); 53.0 (d, ²J_{CP} = 4.4). Anal. Calcd. for C₁₂H₁₃O₄P: C, 57.15; H, 5.20; P, 12.28. Found: C, 56.75; H, 5.30; P, 11.91.

Dimethyl 2-hydroxy-4-phenyl-1-naphthalenephosphonate (5c):

A pure sample (yield ~ 10%) was separated for spectroscopic characterization. Mp 112-114°C. IR (CHCl₃): 3500-2500, 1610, 1595, 1570, 1050, 1020. ¹H-NMR : δ 11.79 (d, 1H, J = 1.3); 8.13 (brd, 1H, J = 8.5); 7.73 (brd, 1H, J = 8.3); 7.60-7.45 (m, 6H); 7.32 (ddd, 1H, J = 8.3, 7.2, 1.0); 7.14 (d, 1H, ⁴J_{HP} = 5.9); 3.80 (d, 6H, ³J_{HP} = 12.0). ¹³C-NMR : δ 164.2 (d, ²J_{CP} = 6.8); 148.8 (d, ⁴J_{CP} = 2.8); 139.3 (d, ⁵J_{CP} = 0.7); 134.0 (d, ²J_{CP} = 8.1); 129.5; 128.4; 128.1; 127.9 (d, ³J_{CP} = 10.6); 127.2; 127.1 (d, ³J_{CP} = 10.6); 124.6 (d, ³J_{CP} = 4.8); 123.7; 120.4 (d, ³J_{CP} = 13.7); 96.4 (d, ¹J_{CP} = 177.8); 52.8 (d, ²J_{CP} = 4.3).

Dimethyl 2-hydroxy-7-chloro-4-(4'-chlorophenyl)-1-naphthalenephosphonate (5e) ¹H-NMR: δ (partial data obtained from the spectrum of the 92:8 mixture of 5d/7d) 11.81 (s, 1H); 8.12 (d, H-8, J ~ 8); 7.06 (d, H-3, ⁴J_{HP} = 5.8).

Dimethyl 2-hydroxy-4-methyl-1-naphthalenephosphonate (5f)

Isolated yield 48%. Oil. IR (neat): 3600-2500, 1615, 1605, 1595, 1045, 1020. ¹H-NMR: δ 11.59 (d, 1H, J = 1.2); 7.96 (dd, 1H, J = 8.0); 7.84 (dd, 1H, J = 8.2, 1.7); 7.44 (ddd, 1H, J = 8.2, 6.9, 1.2); 7.31 (ptd, 1H, J = 6.9, 1.2); 6.95 (d, 1H, ⁴J_{HP} = 5.9); 3.65 (d, 6H, ³J_{HP} = 11.8); 2.58 (s, 3H). ¹³C-NMR: δ 164.7 (d, ²J_{CP} = 6.7); 144.1 (d, ⁴J_{CP} = 2.7); 133.5 (d, ²J_{CP} = 8.2); 128.1 (d, ³J_{CP} = 11.8); 128.0; 124.9 (d, ³J_{CP} = 5.2); 124.8; 123.7; 120.3 (d, ³J_{CP} = 13.6); 95.0 (d, ¹J_{CP} = 178.8); 52.7 (d, ²J_{CP} = 4.3); 20.0. Anal. Calcd. for C₁₃H₁₅O₄P: C, 58.65; H, 5.68; P, 11.63. Found: C, 58.69; H, 5.28; P, 11.51.

Dimethyl 2-hydroxy-4-trifluoromethyl-1-naphthalenephosphonate (5g)

Yield 83 %. Oil. IR (neat): 3600-2500, 1620, 1590, 1050, 1030. ¹H-NMR: δ 11.87 (s, 1H); 8.14-8.10 (m, 2H); 7.64-7.44 (m, 3H); 3.79 (d, 6H, ³J_{HP} = 12.8). ¹³C-NMR: δ 163.2 (d, ²J_{CP} = 6.9); 134.4 (d, ²J_{CP} = 8.0); 133.6 (qd, ²J_{CF} = 30.6, ⁴J_{CP} = 3.0); 128.9; 125.3; 125.2 (d, ²J_{CP} = 4.5); 125.1; 123.5 (d, ³J_{CP} = 11.8); 119.4 (dq, ³J_{CP} = 14.0, ³J_{CF} = 6.1); 118.2 (q, ¹J_{CF} = 274.7); 101.6 (d, ¹J_{CP} = 175.9); 53.1 (d, ²J_{CP} = 4.5). Anal. Calcd. for C₁₃H₁₂F₃O₄P: C, 48.76; H, 3.78; F, 17.80; P, 9.67. Found: C, 48.89; H, 3.86; F, 17.21; P, 9.70.

Dimethyl 3-fluoro-2-hydroxy-1-naphthalenephosphonate (5h)

Isolated yield 40 %. Mp 104-106°C. IR (CHCl₃): 3600-2400, 1630,1610, 1580, 1055, 1015. ¹H-NMR: δ 12.02 (s, 1H); 8.00 (d, 1H, J = 8.4); 7.74-7.37 (m, 4H); 3.78 (d, 6H, ³J_{HP} = 11.8). ¹³C-NMR: δ 155.6 (dd, ²J_{CF} = 14.9, ²J_{CP} = 7.7); 151.5 (dd, ¹J_{CF} = 252.2, ³J_{CP} = 21.6); 130.0 (d, ²J_{CP} = 6.9); 128.4 (dd, ⁴J_{CF} = 5.3, ⁴J_{CP} = 2.0); 127.7 (dd, ³J_{CP} = 14.3, ³J_{CF} = 7.5); 127.6 (d, ⁵J_{CF} = 2.5); 124.8; 124.5 (dd, ³J_{CP} = 4.5, ⁵J_{CF} = 1.9); 118.7 (dd, ²J_{CF} = 17.2, ⁴J_{CP} = 2.7); 100.2 (dd, ¹J_{CP} = 176.4, ³J_{CF} = 1.8); 53.2 (d, ²J_{CP} = 4.5). Anal. Calcd. for C₁₂H₁₂FO₄P: C, 53.34; H, 4.48; F, 7.03; P, 11.46. Found: C, 53.53; H, 4.39; F, 5.89* P, 11.04. * No better analysis could be obtained.

SYNTHESIS OF ETHYL 2-DIAZO-3-OXOPENT-4-ENOATES (9)

A solution of ester 7 (9.3 mmol) in a 3 M methanolic solution of potassium hydroxide (15 ml, 44.6 mmol) was refluxed for 1 h (c) or allowed to stay at room temperature for 30 mn (g). The solution was acidified to pH 5 with Dowex W50X8 H⁺ and filtrated. The solvent was evaporated under vacuum. Anhydrous toluene (30 ml) was added and then evaporated under reduced pressure. Anhydrous toluene (50 ml) was added and the suspension was treated with freshly distilled oxalyl chloride (5 ml, 55.8 mmol) at room temperature. The mixture was refluxed for 3 h. The solvent was evaporated under reduced pressure, anhydrous toluene (50 ml) was added and evaporated; this operation was repeated once again to remove oxalyl chloride completely and afforded a crude acid chloride. A mixture of this crude acid chloride and ethyl diazoacetate (5.3 g, 46.4 mmol) under nitrogen was kept at room temperature. The crude residue was purified by chromatography, eluting with diethyl ether/pentane 5:95.

Ethyl 2-diazo-5,5-diphenyl-3-oxopent-4-enaote (9c)

Yield: 65%. Oil. IR (neat): 2130, 1700, 1640. ¹H-NMR: δ 7.54 (s, 1H); 7.41-7.21 (m, 10H); 4.32 (q, 2H, J = 7.1); 1.34 (t, 3H, J = 7.1). Anal. Calcd. for C₁₉H₁₆N₂O₃: C, 71.24; H, 5.03; N, 8.74. Found: C, 70.95; H, 5.28; N, 8.51.

Ethyl (E)-2-diazo-3-oxo-5-phenyl-5-trifluoromethylpent-4-enaote (9g)

Yield: 54%. Oil. IR (neat): 2140, 1710, 1640. ¹H-NMR : δ 7.74-7.25 (m, 6H); 4.33 (q, 2H, J = 7.1); 1.35 (t, 3H, J = 7.1). ¹³C-NMR : δ 181.4; 160.7; 139.4 (q, ²J_{CF} = 30.8); 131.1; 129.4; 128.9; 128.7 (q, ³J_{CF} = 5.2); 128.3; 122.7 (q, ¹J_{CF} = 274.7); 78.5; 62.1; 14.2. LRMS (EI) m/z (rel int) 284 (4), 239 (24), 238 (100), 212 (42), 211 (88), 210 (48), 199 (43), 183 (28), 182 (35). HRMS (EI) m/z Calcd. for C₁₄H₁₁F₃O₃ (M⁺- N₂) 284.0660, found 284.0660.

THERMOLYSIS OF ETHYL 2-DIAZO-3-OXOPENT-4-ENOATES (9)

A solution of diazo ester 9 (1.5 mmol) in anhydrous toluene (20 ml) was refluxed with stirring under nitrogen for 3.5 h (c) or 15 h (g). The solvent was then evaporated in vacuo and the residue was purified by chromatography eluting with diethyl ether/pentane 5:95. The diazo 9c gave pure 11c; the diazo 9g gave a 13:78:9 mixture of 10g, 11g and 12g in a total yield of 73 % (see the following paragraph for the spectral data of 10g and 12g)

Ethyl 1-hydroxy-4-phenyl-2-naphthalenecarboxylate (11c)

Yield 68 %. Mp 118-120°C. IR (CHCl₃): 3400-2600, 1665, 1630, 1580. ¹H-NMR (300 MHz, CDCl₃): δ 12.09 (s, 1H); 8.52-8,48 (m, 1H); 7.82-7.79 (m, 1H); 7.74 (s, 1H); 7.55-7.51 (m, 7H); 4.43 (q, 2H, J = 7.1); 1.42

(t, 3H, J = 7.1). ¹³C-NMR (75 MHz, CDCl₃): δ 171.1; 160.4; 140.2; 135.5; 131.2; 130.2; 129.5; 128.4; 127.2; 125.9; 125.7; 125.0; 124.9; 124.2; 105.4; 61.5; 14.3. Anal. Calcd. for C₁₉H₁₆O₃: C, 78.06; H, 5.52. Found: C, 77.73; H, 5.78.

Ethyl 1-hydroxy-4-trifluoromethyl-2-naphthalenecarboxylate (11g) Isolated yield 56 %. Mp 78-80°C. IR (CHCl₃): 3400-2500, 1660, 1635, 1580. ¹H-NMR : δ 12.45 (s, 1H); 8.50 (dd, 1H, J = 8.1, 1.4); 8.20 (s, 1H); 8.10 (pd, 1H, J = 8.4); 7.74 (ddd, 1H, J = 8.4, 7.0, 1.4); 7.61 (m, 1H); 4.50 (q, 2H, J = 7.1); 1.48 (t, 3H, J = 7.1). ¹³C-NMR : δ 170.4; 163.7; 132.4; 130.8; 126.5; 125.3; 124.6 (q, ¹J_{CF} = 272.4); 124.5; 124.3 (q, ³J_{CF} = 6.4); 124.2 (q, ⁴J_{CF} = 2.6); 117.0 (q, ²J_{CF} = 30.9); 103.9; 61.9; 14.1. Anal. Calcd. for C₁₄H₁₁F₃O₃: C, 59.16; H, 3.90; F, 20.05. Found: C, 59.11; H, 4.02; F, 19.84.

RHODIUM(II) ACETATE CATALYSED DECOMPOSITION OF ETHYL 2-DIAZO-3-OXOPENT-4-ENOATES (9)

A mixture of rhodium(II) acetate (20 mg, 3 % mol), diazo ester 9 (1.5 mmol) and anhydrous fluorobenzene (20 ml) was refluxed with stirring under nitrogen for 1 h (c) or 2 h (g). The solvent was evaporated and the residue was purified by chromatography eluting with diethyl ether/pentane 5:95. The diazo ester 9c gave pure 11c; the sample of 11c for X-ray Analysis was obtained by recrystallisation from ethyl acetate. The diazo ester 9g gave a 74:26 mixture of 10g and 12g.

Ethyl 1-hydroxy-4-phenyl-2-naphthalenecarboxylate (11c)

Yield 77 %. The spectral data were identical with those of the product obtained by thermolysis (*vide supra*). Anal. Calcd. for $C_{19}H_{16}O_3$: C, 78.06; H, 5.52. Found: C, 77.53; H, 5.75.

Ethyl 2-hydroxy-4-trifluoromethyl-1-naphthalenecarboxylate (10g) Isolated yield 57 %. Oil. IR (CHCl₃): 3500-2500, 1655, 1620, 1585. ¹H-NMR : δ 12.04 (s, 1H); 8.84 (pd, 1H, J = 8.2); 8.14-8.06 (s, 1H); 7.66-7.56 (m, 2H with a singlet at 7.58); 7.48 (ddd, 1H, J = 8.4, 6.9, 1.3); 4.62 (q, 2H, J = 7.1); 1.55 (t, 3H, J = 7.1). ¹³C-NMR : δ 171.4; 161.8; 133.1 (q, ²J_{CF} = 30.5); 132.8; 128.8; 125.8; 125.0 (2C); 125.0 (q, ³J_{CF} = 2.8); 123.6 (q, ¹J_{CF} = 274.6); 119.1 (q, ³J_{CF} = 6.2); 108.4; 62.7; 14.3. Anal. Calcd. for C₁₄H₁₁F₃O₃: C, 59.16; H, 3.90; F, 20.05. Found: C, 58.87; H, 3.78; F, 19.47.

Ethyl 1,8a-dihydro-1-oxo-3-trifluoromethyl-8a-azulenecarboxylate (12g) Isolated yield 13 %. Oil. IR (neat): 1745, 1715, 1590. ¹H-NMR : δ 6.60-6.33 (m, 5H); 5.86 (pd, 1H, J = 8.5); 4.00 (q, 2H, J = 7.1); 1.07 (t, 3H, J = 7.1). ¹³C-NMR : δ 198.3; 165.1; 156.6 (q, ²J_{CF} = 34.8); 133.9; 130.7 (q, ³J_{CF} = 0.6); 129.5 (q, ³J_{CF} = 3.5); 129.2; 128.6; 128.2; 123.7; 121.2 (q, ¹J_{CF} = 273.6); 63.6; 62.2; 13.7. Anal. Calcd. for C₁₄H₁₁F₃O₃: C, 59.16; H, 3.90; F, 20.05. Found: C, 58.87; H, 3.96; F, 20.08.

Ethyl 2-hydroxy-4-phenyl-1-naphthalenecarboxylate (10c)

About 2 mg of a sample of 95 % pure 10c was isolated from the rhodium(II) acetate decomposition of 1a in dichloromethane at room temperature (15 h) allowing a proton NMR spectrum to be obtained.

¹H-NMR (300 MHz, CDCl₃): δ 12.22 (s, 1H); 8.81 (d 1H, J = 8.7); 7.70 (dd, 1H, J = 8.3, 1.3); 7.48 (ddd, 1H, J = 8.7, 6.8, 1.5); 7.47-7.35 (m, 5H); 7.22 (ddd, 1H, J = 8.3, 6.8, 1.3); 7.06 (s, 1H); 4.54 (q, 2H, J = 7.2); 1.49 (t, 3H, J = 7.2).

Acknowledgements: We thank Pr. René Faure (Université Claude Bernard-LYON I) for recording the X-ray spectrum and Mr. B. Pujol for technical assistance.

REFERENCES AND NOTES

- For reviews, see: a) Doyle, M.P. Chem. Rev. 1986, 86, 919-939. b) Maas, G. Top. Curr. Chem. 1987, 137, 75-253. c) Adams, J.; Spero, D.M. Tetrahedron 1991, 47, 1765-1808. d) Padwa, A.; Krumpe, K.E. Tetrahedron 1992, 48, 5385-5453. e) Shapiro, E.A.; Dyatkin, A.B.; Nefedov, O.M. Russ. Chem. Rev. 1993, 62, 447-472. f) Ye, T.; McKervey, M.A. Chem. Rev. 1994, 94, 1091-1160. g) Padwa, A.; Austin, D.J. Angew. Chem., Int. Ed. Engl. 1994, 33, 1797-1815.
- a) Taylor, E.C.; Davies, H.M.L. Tetrahedron Lett. 1983, 24, 5453-5456. b) Matsumoto, M.; Watanabe, N.; Kobayashi, H. Heterocycles 1987, 26, 1479-1482. c) Hashimoto, S.; Watanabe, N.; Ikegami, S. J. Chem. Soc., Chem. Comm. 1992, 1508-1510.
- 3. Nakatani, K. Tetrahedron Lett. 1987, 28, 165-166.
- 4. Hrystsak, M.; Durst, T. J. Chem. Soc., Chem. Comm. 1987, 1150-1151.
- a) Doyle, M. P.; Shanklin, M.S.; Pho, H.Q.; Mahapatro, S.N. J. Org. Chem. 1988, 53, 1017-1022. b) Etkin, N.; Babu, S.D.; Fooks, C.J.; Durst, T. J. Org. Chem. 1990, 55, 1093-1096. c) Wee, A.G.H.; Liu, B.; Zhang, L. J. Org. Chem. 1992, 57, 4404-4414. d) Brown, D.S.; Elliot, M.C.; Moody, C.J.; Mowlem, T.J.; Marino, Jr., J.P.; Padwa, A. J. Org. Chem. 1994, 59, 2447-2455. e) Miah, S.; Slawin, A.M.Z.; Moody, C.J.; Sheehan, S.M.; Marino, Jr., J.P.; Semones, M.A.; Padwa, A.; Richards, I.C. Tetrahedron 1996, 52, 2489-2514.
- 6. Hrystsak, M.; Etkin, N.; Durst, T. Tetrahedron Lett. 1986, 27, 5679-5682.
- a) Andriamiadanarivo, R.; Pujol, B.; Chantegrel, B.; Deshayes, C.; Doutheau, A. *Tetrahedron Lett.* 1993, 34, 7923-7924. b) Chen, Y. P.; Chantegrel, B.; Deshayes, C. *Heterocycles*, 1995, 41, 175-186.
 c) Collomb, D.; Deshayes, C.; Doutheau, A. *Tetrahedron* 1996, 52, 6665-6684.
- 8. The spectral comparison of the naphthol **5a** with its isomer **3a** obtained under thermal conditions permitted us to confirm their structures.
- 9. Taber, D.F.; Ruckle, Jr., R.E. J. Am. Chem. Soc. 1986, 108, 7686-7693.
- 10. Adams, J.; Poupart, M.-A.; Grenier, L.; Schaller, C.; Ouimet, N.; Frenette, R. Tetrahedron Lett. 1989, 30, 1749-1752.
- 11. Doyle, M.P.; Taunton, J.; Pho, H.Q. Tetrahedron Lett. 1989, 30, 5397-5400.
- 12. Ceccherelli, P.; Curini, M.; Marcotullio, M.C.; Rosati, O.; Wenkert, E. J. Org. Chem. 1991, 56, 7065-7070.
- 13. Spero, D.M.; Adams, J. Tetrahedron Lett. 1992, 33, 1143-1146.
- 14. Hashimoto, S.; Watanabe, N.; Ikegami, S. Tetrahedron Lett. 1992, 33, 2709-2712.
- 15. Doyle, M. P.; Shanklin, M.S.; Oon, S.-M.; Pho, H.Q.; Van der Heide, F.R.; Veal, W.R. J. Org. Chem. 1988, 53, 3384-3386.
- 16. Ceccherelli, P.; Curini, M.; Marcotullio, M.C.; Rosati, O. Tetrahedron 1992, 48, 9767-9774.
- 17. Moyer, M.P.; Feldman, P.L.; Rapoport, H. J. Org. Chem. 1985, 50, 5223-5230.
- 18. Cox, G.G.; Moody, C.J.; Austin, D.J.; Padwa, A. Tetrahedron 1993, 49, 5109-5126.
- 19. Padwa, A.; Austin, D.J.; Hornbuckle, S.F. J. Org. Chem. 1996, 61, 63-72.
- 20. Hon, Y.-S.; Chang, R.-C.; Chau, T.-Y. Heterocycles, 1990, 31, 1745-1750.
- 21. Corbel, B.; Hernot, D.; Haelters, J.-P.; Sturtz, G. Tetrahedron Lett. 1987, 28, 6605-6608 and references cited therein.
- 22. Rathke, M.W.; Bouhlel, E. Synth. Comm. 1990, 20, 869-875.
- 23. Etemad-Moghadam, G.; Seyden-Penne, J. Bull. Soc. Chim. Fr. 1985, 448-454.
- 24. Bergmann, E.D.; Solomonovici, A. Synthesis 1970, 183-189.

- 25. Burton, D.J.; Koppes, W.M. J. Org. Chem. 1975, 40, 3026-3032.
- 26. Savoia, D.; Tagliavini, E.; Trombini, C.; Umani-Ronchi, A. J. Org. Chem. 1981, 46, 5340-5343.
- 27. Koskinen, A.M.P.; Munoz, L. J. Chem. Soc., Chem. Commun. 1990, 652-653.
- 28. Chemical shifts and coupling constants reported in Tables 2 and 3 were attributed as follows. The dimethyl hydroxynaphthalenephosphonates 3b and 5b served as reference compounds. Their H-3 and H-4 resonances were established by proton decoupling experiments. Attribution of the C-1 and C-2 resonances was evident because these carbons are bonded to the hydroxy and dimethylphosphono groups. CH COSY spectra permitted us to establish the H-3/C-3 and H-4/C-4 connectivities. Attribution of C-4a and C-8a resonances was based on the expected shielding effect produced by a hydroxy group on ortho and para carbons. All attributed resonances were consistent with the H-P and C-P coupling constants values observed in the NMR spectra. Chemical shifts and coupling constants of other compounds 3 and 5 were deduced on the basis of their spectral similarities with 3b and 5b.
- 29. We observed in the case of compounds 3 (except for 3h) ${}^{1}J_{CP} = 179.8-186.9$ Hz for C-2, ${}^{2}J_{CP} = 6.3-8.7$ Hz for C-1 and C-3, ${}^{3}J_{CP} = 13.2-15.1$ Hz for C-4 (or C-10b) and C-8a and ${}^{4}J_{CP} = 0-2.4$ Hz for C-4a (or C-10c) and in the case of compounds 5 ${}^{1}J_{CP} = 175.9-178.8$ Hz for C-1, ${}^{2}J_{CP} = 6.7-8.2$ Hz for C-2 and C-8a, ${}^{3}J_{CP} = 11.8-21.6$ Hz for C-3 and C-4a and ${}^{4}J_{CP} = 2.7-3.0$ Hz for C-4.
- Pouchert, C. J.; Behnke, J. The Aldrich Library of ¹³C and ¹H FT NMR spectra, 1993, Edition I, vol. 2, spectra 1169 B (1-hydroxy-2-naphthoic acid) and 1169 C (2-hydroxy-1-naphthoic acid).
- 31. Crystal data: C9H₁₆O₃, M = 292.3, monoclinic, space group P2₁/c, a = 5.881(1), b = 21.197(3), c = 13.740(3) Å, V = 1510.4(5)Å³, Z = 4, D_C = 1.286 g.cm⁻³. Data were collected on a Nonius CAD4 diffractometer. Of 3010 unique reflections measured ($2\theta_{max} = 146^{\circ}$, $\mu(CuK\alpha) = 7.1 \text{ cm}^{-1}$), 2491 had I > $3\sigma(I)$ and were used for all calculations with the Structure Determination Package (Frenz, B.A. and Associates Inc., "SDP Structure Determination Package", College Station, Texas, USA, 1982). All the hydrogen atoms were located from ΔF syntheses and their coordinates were refined. The final refinement gave R = 0.058 and RW = 0.083.
- 32. The synthesis of a product described as 10c has been reported by Citterio, A.; Pesce, L.; Sebastiano, R.; Santi, R. *Synthesis*, 1990, 142-144. Several attempts to reproduce this synthesis failed.
- a) McKervey, M.A.; Tuladhar, S.M.; Twohig, M.F. J. Chem. Soc., Chem. Comm. 1984, 129-130. b) Kennedy, M.; McKervey, M.A.; Maguire, A.R.; Tuladhar, S.M.; Twohig, M.F. J. Chem. Soc. Perkin Trans. 1, 1990, 1047-1054. c) Duddeck, H.; Ferguson, G.; Kaitner, B.; Kennedy, M.; McKervey, M.A.; Maguire, A.R. J. Chem. Soc. Perkin Trans. 1, 1990, 1055-1063. d) Kennedy, M.; McKervey, M.A. J. Chem. Soc. Perkin Trans. 1, 1991, 2565-2574.
- 34. Motherwell, W.D.S.; Clegg, W. PLUTO: "Program for plotting molecular and crystal structures", University of Cambridge, England, 1978.
- 35. Kirilov, M.; Petrov, G. Monatsh. 1972, 103, 1651-1660.
- 36. Ooms, P.H.J.; Hartmann, W. Angew. Chem. Int. Ed. Engl. 1985, 24, 976-977.
- 37. Regitz, M.; J. Hocker, J.; Liedhegener, A. Org. Synth. 1973, Coll. Vol. 5, 179.

(Received in Belgium 18 April 1996; accepted 19 June 1996)