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ABSTRACT: Stereochemical control during the epoxidation of cis-l-[N-Cbz]-2-[hydroxymethyll-cyclohex-4-enes with 
MCPBA is dependent on hydroxyl functionalization which apparently determines ring conformation. Unprotected or 
acetate-derivatized compounds afford exclusively syn epoxide products. Sibyl ether protected analogs furnish 
predominantly products derived from anti delivery of oxygen. Respective 2-carbomethoxy and benzyl carbamate- 
protected aminomethyl derivatives show stereospecificity similar to the free hydroxyl and acetate-protected substrates. 

The stereoelectronic directing effect of an allylic alcohol or protected amine during peracid-mediated epoxidation 

of olefins is well documented1 and has been attributed to hydrogen bonding between the oxidant and polar moiety2. 

Recently we3 and others4 have demonstrated that homoallvlic carbamate-protected nitrogen atoms that occupy 

pseudoaxial positions on a cyclohexene ring may also direct syn oxygen delivery to the olefin as shown in equation 1.6 
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Obviously a compound such as 1 represents a best case scenario for observation of this electronic influence by 

virtue of the symmetrical orientation of nitrogen in the molecule. It was of interest, therefore, to examine dissymmetric 

systems in order to determine the extent of the generality of this nitrogen-mediated directing effect and develop 

stereocontrolled routes to highly substituted and functionalized cyclohexane rings. 

Thus, epoxidation of alcohol 4, derived from cis p-amino acid 3, iave in 83% yield a Sinale epoxide 5 as 

demonstrated by 1H and 13C spectroscopy.6 Afthough it was not possible to assign the relative stereochemistry of the 

product by NMR methods, the compound was transformed into epoxy ester 6 by ruthenium-catalyzed oxidation7 followed 

by esterification with diazomethane in 38% overall yield. This material proved to be identical in all respects to the epoxy 

ester obtained by iodolactonization of 3 (73%), followed by treatment with K2CO3 in MeOH at room temperature overnight 

(66%) (Scheme 1). 
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OoC x 24 h; f) 1.05 eq. K2C03/MeOH, RT x 16 h. 
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Interestingly, similar treatment of acetate 8 also led exclusively to syn epoxidation, affording 11 in 72% yield, while 

TBDMS ether 7 furnished predominantly products 96 and 10s derived from anti addition of oxygen (Scheme 2). The 

stereochemistry of epoxides 9 and 11 were assigned by correlation with epoxy alcohol 5 according to the transformations 

outlined in Scheme 3. Epoxy acetate 11 proved to be identical to the product derived from acetylation of 5; silylation of 5 

produced 12, an epoxide diastereomeric with 9.6 
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The outcome of these experiments can be understood based on the conformational disposition of the amino group 

in olefins 4, 7 and 8. It was not possible to directly ascertain the orientation of the carbamate moiety by analysis of the 

coupling constants for the associated methine hydrogen. This resonance signal was observed in all three compounds as 
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a complex multiplet not readily simplified by homonuclear decoupling experiments. However, chemical shift comparisons 

(Table 1, recorded at ambient temperature) for this proton and the adjacent methine hydrogen provide evidence 

consistent with the notion that upon silylation, but not acetylation or in the free alcohol, the molecule adopts a conformation 

with the benzyl urethane moiety in a pseudoequatorial disposition. As a consequence of this shift, the nitrogen would be 

unavailable lo stereoelectronically control epoxidation of the olefin by MCPBA.9 

Ia!2!U 1 Ha 

comDound NHCbz methine oroton CH7OR’ mefhine oroton 

4 (R=H) 4.25 1.96 
7 (R=Ac) 4.18 2.12 
8 (R=TBDMS) 4.06 2.14 

aSpectra were recorded at 300 MHz in CDC13 solution at ambient temperature. 

The generality of these results have been extended to include other 1,2-disubstituted-A4-cyclohexenes. Diamine 

13 affords solely 14 in 81% yield. The stereochemical outcome of this reaction was determined by conversion to alcohol 

15 and observation of a 1,3-interaction between the methine protons at Cl and C3 in the NOESY spectrum. Epoxidation 

of ester 16 provided a single oxirane product in 59% yield which was identical in all respects to 6 prepared 

unambiguously as described above. 
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We are currently exploring the opportunities presented by these observations within the context of the synthesis of 

modified aminocyclitol antibiotics19 as well as in the preparation of novel functionalized diamines for use as ligands for 

antineoplastic Pt (II) complexes3. 
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