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A convergent and stereoselective assembly of the C1-C14 subunit of marine natural product (+)-discodermolide has been completed. The
approach employs chiral allylsilane bond construction methodology to establish four of the eight stereogenic centers. Key fragment coupling
is achieved via an efficient stereoselective acetate aldol reaction between C1-C6 and C7—C14 subunits.

(+)-Discodermolidel is a polypropionate-derived marine synthesized both antipodes:)Discodermolide was initially
metabolite, isolated from the Caribbean deep sea spongeshown to be a potentimmunosuppressive agent, both in vitro
Discodermia dissolut&? The structure of discodermolide, and in vivo, and also an antifungal agéurther biological
determined through a combination of spectroscopic tech- studies revealed remarkable cytotoxic activity in a variety
nigues, was shown to possess a tetrasubstitdtizdtone of human and murine cell lines. This cytotoxicity is due to
ring, a side chain containing four double bonds, and a total binding and stabilizing mitotic spindle microtubules causing
of 13 stereocenters. The relative stereochemistry was as-cell cycle arrest in the M phase.

signed by X-ray crystallography, while the absolute config-  The striking biological profile as well as its structural
uration remained unidentified until Schreiber and co-workers complexity prompted substantial synthetic effort toward the
total synthesis of )-discodermolidé. To date, six total
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syntheses of discodermolide have been repdrtdderein
we report our approach to the €C14 fragment, which
sets the stage for a convergent synthesistgfdiscoder-
molide and its analogues for further structural and biological
study.

Our retrosynthetic analysis oft)-discodermolidel is
outlined in Figure 1. The first key disconnection at €14
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Figure 1. Retrosynthetic analysis ofH)-discodermolide.

C15 envisions an $p-sp’ type palladium(0)-mediated cross-
coupling reaction between €114 vinyl iodide2 and C15-

C24 alkyl iodide3 fragments. Fragmer is derived from
propargylic alcohol via Lindlar reduction of the C8C9
internal acetylene and iododesilylation. Our second discon-
nection of4 at C6-C7 yields two subunit$ and 6. We
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projected that the desired stereochemistry of the propagylic
alcohol4 at C7 could be realized utilizing an acetate aldol
reaction between the boron enolate of methyl ketbraad
the propargylic aldehydé. Finally, the stereogenic centers
of the polypropinate fragmenfsand6 could be constructed
using chiral E)-crotylsilane bond construction methodology,
developed earlier in our laboratorigs.

Assembly of the methyl ketorte started with the double
stereodifferentiating crotylation between readily avail&ble
aldehyde7 and -silane 8 (Scheme 1). Acidic workup
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removed the silyl protecting group in situ to afford homoal-
lylic alcohol 9 in 85% vyield with dr> 30:1 anti:syn The
resulting diol9 was converted to the-methoxybenzyl acetal
10in 90% yield. Subsequent ozonolysis of the double bond
in the presence of pyridine provided €C6 fragment in
95% vyield.

Synthesis of propargylic aldehyd@ds outlined in Scheme
2 and was initiated by a double stereodifferentiating reaction
between aldehyd#&1 and the §)-crotylsilane reagent?2 to
give the homoallylic alcohol3 (85%, dr> 30:1 synanti).
Protection of the homoallylic alcohol as the TBS ether (94%
yield), followed by the oxidative cleavage of the double bond,
and Corey-Fuchd® homologation, afforded vinyl dibromide
15in 84% yield (two steps). Treatment witlBuLi and
TMSCI led to acetylend6in 79% yield. Hydrozirconation
of silylacetylenel6 using Schwartz’'s reageit{Cp,Zr(H)-
Cl] (2.5 equiv, THF, 55°C, 1 h), followed by quenching
with iodine affored iodovinylsilan&7 as a single isomer in
92% vyield. Subsequent coupling df7 with methylzinc
species in the presence of a catalytic amount of Pd(0) gave
the @©)-vinyl silane 18 in 88% yield. Due to the inherent
stability, the vinylsilane functions as a masked vinyl iodide
throughout the synthesis until fragmesand3 are ready
for the crucial palladium(0)-mediated cross-coupling reaction.
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of complex trisubstituted olefins. Our approach provides
access to the configurationally pure Ci314 (£)-olefin of
the (+)-discodermolide.

The selective deprotection of the benzyl group (in the
presence of the vinylsilane functionality) &8 was carried
out using LDBB reaget'4in 95% yield. Swern oxidatiofi
of the deprotected alcohab, followed by the CoreyFuchs
homologation, afforded vinyl dibromid20 (81% yield, two
steps). Subsequent treatmenf06fwith n-BuLi followed by
the addition of ethyl formate furnished the propargylic
aldehyde6 (C7—C14 fragment) in 78% yield.

Cl,7at—78°C), produced the desired adddtas a single
diastereoisomé? (as determined byH NMR analysis) in
76% vyield.

A modified Tischenko reductidfof the 8-hydroxy ketone
21 providedanti-1,3 diol 22 in 95% vyield, differentiated as
the hydroxyisobutyrate. After hydrolysis of the isobutyrate
(KOH/MeOH), chromatography on silica gel unexpectedly
resulted in acetal rearrangement to afford di8lin 80%

With the efficient synthetic access to intermedicied ~ Yield along with the expected di@4 (20% yield). Diol 24
6, we next examined their union via aldol bond construction could be further converted into thermodynamically more
(Scheme 3). Analysis of this process dictated the use of StaPI€23 by stirring with SiQ in hexanes or by performing

enolborinates to establish the desired stereochemistry at c#ilica gel chromatography with the same conversion (80%).

. . . a6
via 1’5.ar.]t| asymmetric mduc.tmﬁ' . (17) Optimizing the reaction conditions, we found that while the use of

Gratifyingly, the aldol reaction between the dibutylboron poth CHCI, and EtO produced good resuits on a small scale<80%
enolate, derived from methyl ketoBeand aldehydé& (CH,- yield on a 26-40 mg scale), increasing the reaction scale usin@ fd to

considerable decrease in yields, due to decomposition of methyl ketone.

Use of CHCI; as a solvent allowed us to upscale the aldol reaction and
run it with reproducibly good yields on a 2600 mg scale.
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Since we planned to deprotect the primary hydroxy! of the || NN A

anticipated acetaP4 later (for eventual conversion to a

methyl ester for the subsequent lactonization step), this
rearrangement could save a step at this advanced point in
synthesis. To use the acetal rearrangement in our favor,
however, we needed to find the reagent system able to

selectively oxidize the primary hydroxyl to an aldehyde, in
the presence of the secondary propargylic alcohol.
determine the feasibility of this approach, a variety of
oxidative conditions were explored at this point. The use of
modified Ley’s oxidation protocé? (TPAP/NMO, CHCN;
then HO) as well as the use of 4-MeO-TEMPO/NaOCI
oxidation condition¥ caused decomposition of the substrate.
Fortunately, selective oxidation @Bworked extremely well
using RUCH(PhsP); 22 in benzene. Treatment with buffered
sodium chlorite?? followed by (trimethylsilyl)diazomethane,
furnished methyl estet5 with 90% overall yield. The choice
of protecting group for the C7 hydroxyl proved to be crucial
for the subsequent Lindlar reduction step. Our preliminary
studies indicated that bulky protecting groups inhibited the
hydrogenation of the alkyne in a similar system. For this
reason, we protected the C7 hydroxyl as MOM e2&{83%
yield).

Having only two steps left before the end of the fragment
synthesis, we initially decided to proceed with iododesily-
lation first, leaving the Lindlar reduction as the last step.
We argued that having a triple bond within the molecule
during the iododesilylation (electrophilic addition of thg |
was a safer option than having the (Z)-olefin, which may be

prone to isomerization. To this end, we have screened severad

iododesilylation conditions and learned thatCH,Cl, ?*
promoted decomposition &6 while the use of NIS/THP
gave back the starting material. Application of Kishi
protocof® (NIS, CH,CN/CICH,CN) resulted in a clean
transformationto vinyl iodid€7 in a 95% vyield. Unfortu-

(20) For a review of Ley’s oxidation, see: Ley, S.; Norman, J.; Griffith,
W.; Marsden, SSynthesisl994 639-666.
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H. Synthesid996 1153-1174. (b) Anelli, P. L.; Biffi, C.; Montanarie, F.;
Quici, S.J. Org. Chem1987, 52, 2559-2562. (c) Ireland, R. E.; Gleason,
J. L.; Gegnas, L. D.; Highsmith, T. KI. Org. Chem.1996 61, 6856-
6872.
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1981, 22, 1605-1608.

(23) Bal, B. S.; Childers, W. E.; Pinnick, H. \Wetrahedron1981, 37,
2091-2096.

(24) Chan, T. H.; Fleming, ISynthesis 979 10, 761-786.

(25) Piscopio, A. D.; Minowa, N.; Chakraborty, T. K.; Koide, K;
Bertinato, P.; Nicolaou, K. C]. Chem. Soc., Chem. Comma@93 617—
618.
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nately, the Lindlar reduction of this product led to hydro-
genolysis of the vinyl iodide. To circumvent this problem,
the order of the iododesilylation/Lindlar reduction sequence
was reversed (Scheme 4). Hydrogenation under Lindlar
conditions affordedZ)-olefin 28 in 98% yield. The use of
Kishi iododesilylation conditions (95% yield) completed the
synthesis of the C1C14 fragment.

In conclusion, the synthesis of the fully elaborated-C1
C14 fragment of {)-discodermolide was completed in 21
steps in approximately 14% vyield. The approach is conver-
ent and proceeds with high levels of stereocontrol through-
out. With the vinyl iodide2 in hand, we are now in position
to explore the final steps of the synthesis. Progress toward
the total synthesis continues and will be reported in due
course.
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